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abstract: Let K be a cyclic quartic field such that its 2-class group CK,2 is
isomorphic to Z/2Z × Z/2Z × Z/2Z. In this paper we give the generators of CK,2

and we determine the fourteen unramified extensions of K.
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1. Introduction

Let K be an imaginary cyclic quartic extension of the rational field Q, K
(1)
2

be the Hilbert 2-class field of K, K
(2)
2 be the Hilbert 2-class field of K

(1)
2 , K(∗) be

the genus field of K, that is the maximal absolute abelian subfield of K
(1)
2 /K and

let CK,2 be the 2-class group of K. If CK,2 is isomorphic to Z/2Z × Z/2Z, then
A. Azizi and M. Talbi have studied this situation and answered concretely to the

capitulation problem of CK,2 in the three subfields of K
(1)
2 /K (see [1,2,3,4]. . . ).

Let K = Q(

√

−2pε
√
ℓ) where ℓ ≡ 5 (mod 8) and p ≡ 1 (mod 4) are different

primes and ε is the fundamental unit of k = Q(
√
ℓ). If

(

p
l

)

= −1, then CK,2 is
isomorphic to Z/2Z× Z/2Z and the capitulation problem has been studied in [3].

But if
(

p
l

)

= 1, then K(∗) ( K
(1)
2 and there exist two prime ideals B1, B2 of k

such that B1B2 = (p). If h0 denotes the class number of k, then B
h0

1 = (a+ b
√
ℓ)

and B
h0

2 = (a− b
√
ℓ); one can show that four prime ideals of k ramify in K which

are: the prime ideal of k above 2, (
√
ℓ), B1 and B2 (see [8]), so CK,2 is isomorphic

to Z/2Z × Z/2Z × Z/2Z if and only if
(

2
p

)

= −
(

p
ℓ

)

4
(see [6, Theorme 4, p. 68]).

By class field theory, there are seven unramified quadratic fields over K and seven
unramified biquadratic fields over K which are contained in Hilbert 2-class field

K
(1)
2 . The following diagram illustrates the situation.
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Diagram

In [5], the authors studied the capitulation problem of the 2-classes of the
biquadratic fields Q(

√
p1p2q,

√
−1) with 2-class group isomorphic to Z/2Z×Z/2Z×

Z/2Z, in its 14 unramified abelian extension within the first Hilbert 2-class field.

In the case where K = Q(

√

−2pε
√
ℓ) with CK,2 is isomorphic to Z/2Z× Z/2Z ×

Z/2Z, we give, in this paper, the generators of CK,2 and we will build the fourteen

unramified abelian extensions within K
(1)
2 using [7] and [2,3] .

2. The generators of CK,2

Lemma 2.1. Let p ≡ 1 (mod 4) and ℓ ≡ 5 (mod 8) be different primes. Put

k = Q(
√
ℓ) and denote by ε its fundamental unit. Let K = Q(

√

−2pε
√
ℓ), then the

genus field of K is K(∗) = K(
√
p,
√
2).

Proof: As ℓ and p are the unique primes of Q different from 2 which ramify in K,
of ramification index eℓ = 4 and ep = 2 respectively, since the relative discriminant
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of K/k is ∆K/k = (8p
√
ℓ); then, according to [9, Theorem 4, p. 48− 49], we have

K(∗) = MℓMpK where Mℓ (respectively Mp) is the unique subfield of the ℓ-th
(respectively p-th) cyclotomic number field Q(ξℓ) (respectively Q(ξp)) of degree

eℓ = 4 (respectively ep = 2). Moreover, it is known that Mℓ = Q(
√

−ε
√
ℓ) (see

[10, Proposition 5.9, p. 160]) and Mp = Q(
√
p). Thus K(∗) = K(

√
p,
√
2). ✷

Lemma 2.2. Let k = Q(
√
ℓ) where ℓ is a prime number such that ℓ ≡ 5 (mod 8),

h0 be the class number of k, and p be a prime number such that p ≡ 1 (mod 4).
Assume that

(

p
ℓ

)

= 1, then ph0 = π1π2 with π1 = a+ b
√
ℓ and π2 = a− b

√
ℓ.

1. If
(

ℓ
p

)

4
6=

(

p
ℓ

)

4
, then the equation −πi ≡ x2 (mod 4) admits solution in k;

2. If
(

ℓ
p

)

4
=

(

p
ℓ

)

4
, then the equation πi ≡ x2 (mod 4) admits solution in k.

Proof: See [2, p. 277–280]. ✷

Theorem 2.3. Let K = Q(

√

−2pε
√
ℓ) where ε is the fundamental unit of k =

Q(
√
ℓ), ℓ ≡ 5 (mod 8) and p ≡ 1 (mod 4) are different primes such that

(

p
ℓ

)

= 1

and
(

2
p

)

= −
(

p
ℓ

)

4
. Then CK,2 = 〈[H], [Ph0

1 ], [Ph0

2 ]〉, where P1 and P2 are the prime

ideals in K above p and H is the prime ideal in K above 2.

Proof: Recall that pOK = P2
1P

2
2 = π1π2OK with OK the ring of integers of K,

π1 = a+ b
√
ℓ and π2 = a− b

√
ℓ.

The class [Ph0

1 P
h0

2 ] is of order 2. In fact, if Ph0

1 P
h0

2 = (α) for any α in K, this
is equivalent to (ph0) = (α2) in K. Then there exists ε′ a unit of K such that

ph0ε′ = α2, thus ph0ε′ = (c+ d

√

−2pε
√
ℓ)2 = c2 − 2pε

√
ld2 + 2cd

√

−2pε
√
ℓ with c

and d in k, and as {ε} is a fundamental system of units of K and
√
−1 /∈ K, then

ph0ε′ ∈ k therefore c = 0 or d = 0. If d = 0, then ph0ε′ = c2, thus ±ph0 = c2 or
ph0ε = c2 in k, which gives that

√±p ∈ k in the first case and
√
−1 ∈ Q in the

second case, which is impossible, and similarly, if c = 0 we find that ±ℓ is a square
in Q, which is not the case.

The class [Ph0

i ] is of order 2. In fact, suppose that Ph0

i = (α) for any α in K,

then P
2h0

i = (α)2, this is equivalent to (πi) = (α2) in K. Then there exists ε′ a

unit of K such that πiε
′ = α2 = (c+d

√

−2pε
√
ℓ)2 = c2−2pε

√
ℓd2+2cd

√

−2pε
√
ℓ

with c and d in k, then c = 0 or d = 0. If d = 0, multiplying by πj for j 6= i, we
get ph0ε′ = πjc

2. So by applying the norm in k/Q, we find that ±ph0 = Nk/Q(c)
2,

this means that ±p is a square in Q, which is impossible. In a similar way if c = 0,
we get ±ℓp is a square in Q, which is impossible.

The class [H] is of order 2. In fact, suppose that H = (α) for any α in K, then
H2 = (α)2, this is equivalent to (2) = (α2) in K. Then there exists ε′ a unit of K

such that 2ε′ = α2 = (c+d

√

−2pε
√
ℓ)2 = c2−2pε

√
ℓd2+2cd

√

−2pε
√
ℓ with c and

d in k, then c = 0 or d = 0. If d = 0, then 2ε′ = c2, thus ±2 = c2 or 2ε = c2 in k,
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which gives that
√
±2 ∈ k in the first case and

√
−1 ∈ Q in the second case, which

is impossible. If c = 0, then 2ε′ = −2pε
√
ℓd2, so by applying the norm in k/Q, we

find that ±l is a square in Q, which is impossible.
The class [HP

h0

i ] is of order 2. In fact, suppose that HP
h0

i = (α) for any α in K,

then H
2
P
2h0

i = (α)2, this is equivalent to (2πi) = (α2) in K. Then there exists ε′ a

unit of K such that 2πiε
′ = α2 = (c+d

√

−2pε
√
ℓ)2 = c2−2pε

√
ℓd2+2cd

√

−2pε
√
ℓ

with c and d in k, then c = 0 or d = 0. If d = 0, so by applying the norm in k/Q,
we find that ±p is a square in Q, which is impossible. If c = 0, we get ±ℓp is a
square in Q, which is impossible.

The class [HP
h0

1 P
h0

2 ] is of order 2. In fact, if HP
h0

1 P
h0

2 = (α) for any α in K,
this is equivalent to (2ph0) = (α2) in K. Then there exists ε′ a unit of K such

that 2ph0ε′ = α2 = (c+ d

√

−2pε
√
ℓ)2 = c2 − 2pε

√
ld2 + 2cd

√

−2pε
√
ℓ with c and

d in k, since 2ph0ε′ ∈ k therefore c = 0 or d = 0. If d = 0, then 2ph0ε′ = c2, thus
±2ph0 = c2 or 2ph0ε = c2 in k, which gives that

√±2p ∈ k in the first case and√
−1 ∈ Q in the second case, which is impossible. If c = 0, we find that ±ℓ is a

square in Q, which is absurd.
Thus 〈[H], [Ph0

1 ], [Ph0

2 ]〉 is of type (2, 2, 2), then CK,2 = 〈[H], [Ph0

1 ], [Ph0

2 ]〉. ✷

3. The unramified extensions of K

Let M = N(
√
α) be an extension of a number field N contains the 2-roots of

unity, where α is a square free element of N coprime to 2, it is well known that
M is unramified extension of N if and only if the principal ideal generated by α is
the square of an ideal of N and the equation α ≡ x2 (mod 4) admits solution in
N (see [7]).

Lemma 2.1 and Lemma 2.2 allow us to deduce the following Theorem:

Theorem 3.1. Let K = Q(

√

−2pε
√
ℓ) where ε is the fundamental unit of Q(

√
ℓ),

ℓ ≡ 5 (mod 8) and p ≡ 1 (mod 4) are different primes such that
(

p
ℓ

)

= 1 and
(

2
p

)

= −
(

p
ℓ

)

4
. Then the fourteen unramified extensions of the imaginary cyclic

quartic field K are given by:

1. If
(

ℓ
p

)

4
6=

(

p
ℓ

)

4
, then

• The unramified quadratic extensions of K are:

F1 = K(
√
−π1) ≃ F2 = K(

√
−π2), F3 = K(

√
2), F4 = K(

√
p),

F5 = K(
√

2p) and F6 = K(
√
−2π1) ≃ F7 = K(

√
−2π2).

• The unramified biquadratic extensions of K are:

L1 = F1F2 = F1F4 = F2F4, L2 = F2F6 = F2F5 = F6F5,

L3 = F1F3 = F1F6 = F3F6, L4 = K(∗), L5 = F1F7 = F1F5 = F7F5,

L6 = F6F7 = F6F4 = F7F4 and L7 = F2F3 = F2F7 = F3F7.
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2. If
(

ℓ
p

)

4
=

(

p
ℓ

)

4
, then

• The unramified quadratic extensions of K are:

F1 = K(
√
π1) ≃ F2 = K(

√
π2), F3 = K(

√
2), F4 = K(

√
p),

F5 = K(
√

2p) and F6 = K(
√
2π1) ≃ F7 = K(

√
2π2).

• The unramified biquadratic extensions of K are:

L1 = F1F2 = F1F4 = F2F4, L2 = F2F6 = F2F5 = F6F5,

L3 = F1F3 = F1F6 = F3F6, L4 = K(∗), L5 = F1F7 = F1F5 = F7F5,

L6 = F6F7 = F6F4 = F7F4 and L7 = F2F3 = F2F7 = F3F7.

Note that πi is defined in the Lemma 2.2.

Proof: According to Lemma 2.1, K(∗) = K(
√
p,
√
2), then F3 = K(

√
2), F4 =

K(
√
p) and F5 = K(

√
2p).

1. If
(

ℓ
p

)

4
6=

(

p
ℓ

)

4
, then, from Lemma 2.2, the equation −πi ≡ x2 (mod 4) admits

solution in k i.e. admits solution in K. Since B
h0

i = (πi) and Bi ramifies

in K, then (−πi) = (Ph0

i )2 with Pi an ideal of K. Therefore K(
√−πi) is

an unramified quadratic extension of K, this implies that Fi = K(
√−πi) for

i = 1, 2. Since K(
√−2πi) is a subfield of K(

√
2,
√−πi) which is unramified

over K, then K(
√
−2πi) is unramified over K, thus F6 = K(

√
−2π1) and

F7 = K(
√−2π2). On the other hand, the extensions Fi are pairwise different

for i = 1, 2, 6, 7, because for example if F1 = F2, then there exists t ∈ K
such that π1 = t2π2, this yields that ph0 = t2π2

2, which is not the case,
since

√
p /∈ K. Similarly, we show the other cases. Also Fi 6= Fj for (i, j) ∈

{1, 2, 6, 7}×{3, 4, 5} (see the following Remark). It is easy to see that F1 ≃ F2

and F6 ≃ F7.

2. We proceed as in 1. We conclude easily that

L1 = F1F2 = F1F4 = F2F4, L2 = F2F6 = F2F5 = F6F5,

L3 = F1F3 = F1F6 = F3F6, L4 = K(∗), L5 = F1F7 = F1F5 = F7F5,

L6 = F6F7 = F6F4 = F7F4 and L7 = F2F3 = F2F7 = F3F7.

✷

Remark 3.1. The base field K admits tree unramified quadratic extensions abso-

lutely abelian of type (2, 4), which are intermediate fields between K and its genus

field K(∗), and four unramified quadratic extensions absolutely non-Galois which

are F1, F2, F6 and F7. Moreover, the field K admits tree unramified biquadratic ex-

tensions absolutely Galois which are L1, L4 and L6, and four unramified biquadratic

extensions absolutely non-Galois which are L2, L3, L5 and L7.
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Example 3.1. Let K = Q(
√

−2.17ε
√
13) where ε = 3+

√
13

2 . As 13 ≡ 5 (mod 8),
17 ≡ 1 (mod 4) and

(

2
17

)

= −
(

17
13

)

4
=

(

13
17

)

4
= 1, then

F1 = K(
√
−π1), F2 = K(

√
−π2), F3 = K(

√
2), F4 = K(

√
17),

F5 = K(
√
2.17), F6 = K(

√
−2π1) and F7 = K(

√
−2π2),

with π1 = 15 + 4
√
13 and π2 = 15− 4

√
13.

Moreover,

L1 = K(
√
−π1,

√
−π2), L2 = K(

√
−2π1,

√
−π2), L3 = K(

√
−π1,

√
2),

L4 = K(∗) = K(
√
2,
√
17), L5 = K(

√
−π1,

√
−2π2), L6 = K(

√
−2π1,

√
−2π2),

L7 = K(
√
2,
√
−π2) and K

(1)
2 = K(

√
2,
√
17,

√
−πi).

Example 3.2. Let K = Q(
√

−2.89ε
√
5) where ε = 1+

√
5

2 . As 5 ≡ 5 (mod 8),
89 ≡ 1 (mod 4) and

(

2
89

)

= −
(

89
5

)

4
= −

(

5
89

)

4
= 1, then

F1 = K(
√
π1), F2 = K(

√
π2), F3 = K(

√
2), F4 = K(

√
89),

F5 = K(
√
2.89), F6 = K(

√
2π1) and F7 = K(

√
2π2),

with π1 = 13 + 4
√
5 and π2 = 13− 4

√
5.

Moreover,

L1 = K(
√
π1,

√
π2), L2 = K(

√
2π1,

√
π2), L3 = K(

√
π1,

√
2),

L4 = K(∗) = K(
√
2,
√
89), L5 = K(

√
π1,

√
2π2), L6 = K(

√
2π1,

√
2π2),

L7 = K(
√
2,
√
π2) and K

(1)
2 = K(

√
2,
√
89,

√
πi).
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