

(3s.) **v. 36** 1 (2018): 215–221. ISSN-00378712 in press doi:10.5269/bspm.v36i1.31299

Unramified extensions of some cyclic quartic fields

Abdelmalek Azizi, Idriss Jerrari* and Mohammed Talbi

ABSTRACT: Let K be a cyclic quartic field such that its 2-class group $C_{K,2}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. In this paper we give the generators of $C_{K,2}$ and we determine the fourteen unramified extensions of K.

Key Words: Unramified quadratic and biquadratic extensions, Hilbert 2-class field, cyclic quartic field, 2-class group, generators.

Contents

1	Introduction	215
2	The generators of $C_{K,2}$	216
3	The unramified extensions of K	218

1. Introduction

Let K be an imaginary cyclic quartic extension of the rational field \mathbb{Q} , $K_2^{(1)}$ be the Hilbert 2-class field of K, $K_2^{(2)}$ be the Hilbert 2-class field of $K_2^{(1)}$, $K^{(*)}$ be the genus field of K, that is the maximal absolute abelian subfield of $K_2^{(1)}/K$ and let $C_{K,2}$ be the 2-class group of K. If $C_{K,2}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, then A. Azizi and M. Talbi have studied this situation and answered concretely to the capitulation problem of $C_{K,2}$ in the three subfields of $K_2^{(1)}/K$ (see [1,2,3,4]...). Let $K = \mathbb{Q}(\sqrt{-2p\varepsilon\sqrt{\ell}})$ where $\ell \equiv 5 \pmod{8}$ and $p \equiv 1 \pmod{4}$ are different primes and ε is the fundamental unit of $k = \mathbb{Q}(\sqrt{\ell})$. If $\binom{p}{\ell} = -1$, then $C_{K,2}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and the capitulation problem has been studied in [3]. But if $\binom{p}{\ell} = 1$, then $K^{(*)} \subsetneq K_2^{(1)}$ and there exist two prime ideals \mathcal{B}_1 , \mathcal{B}_2 of k such that $\mathcal{B}_1\mathcal{B}_2 = (p)$. If h_0 denotes the class number of k, then $\mathcal{B}_1^{h_0} = (a + b\sqrt{\ell})$

such that $\mathcal{B}_1\mathcal{B}_2 = (p)$. If h_0 denotes the class number of k, then $\mathcal{B}_1^{h_0} = (a + b\sqrt{\ell})$ and $\mathcal{B}_2^{h_0} = (a - b\sqrt{\ell})$; one can show that four prime ideals of k ramify in K which are: the prime ideal of k above 2, $(\sqrt{\ell})$, \mathcal{B}_1 and \mathcal{B}_2 (see [8]), so $C_{K,2}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ if and only if $(\frac{2}{p}) = -(\frac{p}{\ell})_4$ (see [6, Theorem 4, p. 68]). By class field theory, there are seven unramified quadratic fields over K and seven unramified biquadratic fields over K which are contained in Hilbert 2-class field $K_2^{(1)}$. The following diagram illustrates the situation.

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

^{*} This work is partially supported by Hassan II Academy of Sciences and Technology (Morocco), URAC6 (CNRST) and ACSA laboratory (FSO-UMPO).

²⁰¹⁰ Mathematics Subject Classification: 11R16, 11R27, 11R37

Submitted March 11, 2016. Published May 22, 2016

DIAGRAM

In [5], the authors studied the capitulation problem of the 2-classes of the biquadratic fields $\mathbb{Q}(\sqrt{p_1p_2q},\sqrt{-1})$ with 2-class group isomorphic to $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$, in its 14 unramified abelian extension within the first Hilbert 2-class field. In the case where $K = \mathbb{Q}(\sqrt{-2p\varepsilon\sqrt{\ell}})$ with $C_{K,2}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$, we give, in this paper, the generators of $C_{K,2}$ and we will build the fourteen unramified abelian extensions within $K_2^{(1)}$ using [7] and [2,3].

2. The generators of $C_{K,2}$

Lemma 2.1. Let $p \equiv 1 \pmod{4}$ and $\ell \equiv 5 \pmod{8}$ be different primes. Put $k = \mathbb{Q}(\sqrt{\ell})$ and denote by ε its fundamental unit. Let $K = \mathbb{Q}(\sqrt{-2p\varepsilon\sqrt{\ell}})$, then the genus field of K is $K^{(*)} = K(\sqrt{p}, \sqrt{2})$.

Proof: As ℓ and p are the unique primes of \mathbb{Q} different from 2 which ramify in K, of ramification index $e_{\ell} = 4$ and $e_p = 2$ respectively, since the relative discriminant

of K/k is $\Delta_{K/k} = (8p\sqrt{\ell})$; then, according to [9, Theorem 4, p. 48 - 49], we have $K^{(*)} = M_{\ell}M_{p}K$ where M_{ℓ} (respectively M_{p}) is the unique subfield of the ℓ -th (respectively p-th) cyclotomic number field $\mathbb{Q}(\xi_{\ell})$ (respectively $\mathbb{Q}(\xi_{p})$) of degree $e_{\ell} = 4$ (respectively $e_p = 2$). Moreover, it is known that $M_{\ell} = \mathbb{Q}(\sqrt{-\varepsilon\sqrt{\ell}})$ (see [10, Proposition 5.9, p. 160]) and $M_p = \mathbb{Q}(\sqrt{p})$. Thus $K^{(*)} = K(\sqrt{p}, \sqrt{2})$.

Lemma 2.2. Let $k = \mathbb{Q}(\sqrt{\ell})$ where ℓ is a prime number such that $\ell \equiv 5 \pmod{8}$, h_0 be the class number of k, and p be a prime number such that $p \equiv 1 \pmod{4}$. Assume that $\binom{p}{\ell} = 1$, then $p^{h_0} = \pi_1 \pi_2$ with $\pi_1 = a + b\sqrt{\ell}$ and $\pi_2 = a - b\sqrt{\ell}$.

- 1. If $\left(\frac{\ell}{p}\right)_4 \neq \left(\frac{p}{\ell}\right)_4$, then the equation $-\pi_i \equiv x^2 \pmod{4}$ admits solution in k;
- 2. If $\left(\frac{\ell}{p}\right)_{4} = \left(\frac{p}{\ell}\right)_{4}$, then the equation $\pi_{i} \equiv x^{2} \pmod{4}$ admits solution in k.

Proof: See [2, p. 277–280].

Theorem 2.3. Let $K = \mathbb{Q}(\sqrt{-2p\varepsilon\sqrt{\ell}})$ where ε is the fundamental unit of k = $\mathbb{Q}(\sqrt{\ell}), \ \ell \equiv 5 \pmod{8}$ and $p \equiv 1 \pmod{4}$ are different primes such that $\binom{p}{\ell} = 1$ and $\left(\frac{2}{n}\right) = -\left(\frac{p}{I}\right)_{A}$. Then $C_{K,2} = \langle [\mathcal{H}], [\mathcal{P}_{1}^{h_{0}}], [\mathcal{P}_{2}^{h_{0}}] \rangle$, where \mathcal{P}_{1} and \mathcal{P}_{2} are the prime ideals in K above p and \mathcal{H} is the prime ideal in K above 2.

Proof: Recall that $p\mathcal{O}_K = \mathcal{P}_1^2 \mathcal{P}_2^2 = \pi_1 \pi_2 \mathcal{O}_K$ with \mathcal{O}_K the ring of integers of K, $\pi_1 = a + b\sqrt{\ell}$ and $\pi_2 = a - b\sqrt{\ell}$. The class $[\mathcal{P}_1^{h_0} \mathcal{P}_2^{h_0}]$ is of order 2. In fact, if $\mathcal{P}_1^{h_0} \mathcal{P}_2^{h_0} = (\alpha)$ for any α in K, this is equivalent to $(p^{h_0}) = (\alpha^2)$ in K. Then there exists ε' a unit of K such that $p^{h_0}\varepsilon' = \alpha^2$, thus $p^{h_0}\varepsilon' = (c + d\sqrt{-2p\varepsilon\sqrt{\ell}})^2 = c^2 - 2p\varepsilon\sqrt{\ell}d^2 + 2cd\sqrt{-2p\varepsilon\sqrt{\ell}}$ with cand d in k, and as $\{\varepsilon\}$ is a fundamental system of units of K and $\sqrt{-1} \notin K$, then $p^{h_0}\varepsilon' \in k$ therefore c = 0 or d = 0. If d = 0, then $p^{h_0}\varepsilon' = c^2$, thus $\pm p^{h_0} = c^2$ or $p^{h_0}\varepsilon = c^2$ in k, which gives that $\sqrt{\pm p} \in k$ in the first case and $\sqrt{-1} \in \mathbb{Q}$ in the second case, which is impossible, and similarly, if c = 0 we find that $\pm \ell$ is a square in \mathbb{Q} , which is not the case.

The class $[\mathcal{P}_i^{h_0}]$ is of order 2. In fact, suppose that $\mathcal{P}_i^{h_0} = (\alpha)$ for any α in K, then $\mathcal{P}_i^{2h_0} = (\alpha)^2$, this is equivalent to $(\pi_i) = (\alpha^2)$ in K. Then there exists ε' a unit of K such that $\pi_i \varepsilon' = \alpha^2 = (c + d\sqrt{-2p\varepsilon\sqrt{\ell}})^2 = c^2 - 2p\varepsilon\sqrt{\ell}d^2 + 2cd\sqrt{-2p\varepsilon\sqrt{\ell}}$ with c and d in k, then c = 0 or d = 0. If d = 0, multiplying by π_j for $j \neq i$, we get $p^{h_0}\varepsilon' = \pi_j c^2$. So by applying the norm in k/\mathbb{Q} , we find that $\pm p^{h_0} = N_{k/\mathbb{Q}}(c)^2$, this means that $\pm p$ is a square in \mathbb{Q} , which is impossible. In a similar way if c = 0, we get $\pm \ell p$ is a square in \mathbb{Q} , which is impossible.

The class $[\mathcal{H}]$ is of order 2. In fact, suppose that $\mathcal{H} = (\alpha)$ for any α in K, then $\mathcal{H}^2 = (\alpha)^2$, this is equivalent to $(2) = (\alpha^2)$ in K. Then there exists ε' a unit of K such that $2\varepsilon' = \alpha^2 = (c + d\sqrt{-2p\varepsilon\sqrt{\ell}})^2 = c^2 - 2p\varepsilon\sqrt{\ell}d^2 + 2cd\sqrt{-2p\varepsilon\sqrt{\ell}}$ with c and d in k, then c = 0 or d = 0. If d = 0, then $2\varepsilon' = c^2$, thus $\pm 2 = c^2$ or $2\varepsilon = c^2$ in k,

which gives that $\sqrt{\pm 2} \in k$ in the first case and $\sqrt{-1} \in \mathbb{Q}$ in the second case, which is impossible. If c = 0, then $2\varepsilon' = -2p\varepsilon\sqrt{\ell}d^2$, so by applying the norm in k/\mathbb{Q} , we find that $\pm l$ is a square in \mathbb{Q} , which is impossible.

The class $[\mathcal{HP}_i^{h_0}]$ is of order 2. In fact, suppose that $\mathcal{HP}_i^{h_0} = (\alpha)$ for any α in K, then $\mathcal{H}^2\mathcal{P}_i^{2h_0} = (\alpha)^2$, this is equivalent to $(2\pi_i) = (\alpha^2)$ in K. Then there exists ε' a unit of K such that $2\pi_i\varepsilon' = \alpha^2 = (c+d\sqrt{-2p\varepsilon\sqrt{\ell}})^2 = c^2 - 2p\varepsilon\sqrt{\ell}d^2 + 2cd\sqrt{-2p\varepsilon\sqrt{\ell}}$ with c and d in k, then c = 0 or d = 0. If d = 0, so by applying the norm in k/\mathbb{Q} , we find that $\pm p$ is a square in \mathbb{Q} , which is impossible. If c = 0, we get $\pm \ell p$ is a square in \mathbb{Q} , which is impossible.

The class $[\mathcal{HP}_1^{h_0}\mathcal{P}_2^{h_0}]$ is of order 2. In fact, if $\mathcal{HP}_1^{h_0}\mathcal{P}_2^{h_0} = (\alpha)$ for any α in K, this is equivalent to $(2p^{h_0}) = (\alpha^2)$ in K. Then there exists ε' a unit of K such that $2p^{h_0}\varepsilon' = \alpha^2 = (c + d\sqrt{-2p\varepsilon\sqrt{\ell}})^2 = c^2 - 2p\varepsilon\sqrt{\ell}d^2 + 2cd\sqrt{-2p\varepsilon\sqrt{\ell}}$ with c and d in k, since $2p^{h_0}\varepsilon' \in k$ therefore c = 0 or d = 0. If d = 0, then $2p^{h_0}\varepsilon' = c^2$, thus $\pm 2p^{h_0} = c^2$ or $2p^{h_0}\varepsilon = c^2$ in k, which gives that $\sqrt{\pm 2p} \in k$ in the first case and $\sqrt{-1} \in \mathbb{Q}$ in the second case, which is impossible. If c = 0, we find that $\pm \ell$ is a square in \mathbb{Q} , which is absurd.

Thus $\langle [\mathcal{H}], [\mathcal{P}_1^{h_0}], [\mathcal{P}_2^{h_0}] \rangle$ is of type (2, 2, 2), then $C_{K,2} = \langle [\mathcal{H}], [\mathcal{P}_1^{h_0}], [\mathcal{P}_2^{h_0}] \rangle$. \Box

3. The unramified extensions of *K*

Let $M = N(\sqrt{\alpha})$ be an extension of a number field N contains the 2-roots of unity, where α is a square free element of N coprime to 2, it is well known that M is unramified extension of N if and only if the principal ideal generated by α is the square of an ideal of N and the equation $\alpha \equiv x^2 \pmod{4}$ admits solution in N (see [7]).

Lemma 2.1 and Lemma 2.2 allow us to deduce the following Theorem:

Theorem 3.1. Let $K = \mathbb{Q}(\sqrt{-2p\varepsilon\sqrt{\ell}})$ where ε is the fundamental unit of $\mathbb{Q}(\sqrt{\ell})$, $\ell \equiv 5 \pmod{8}$ and $p \equiv 1 \pmod{4}$ are different primes such that $\left(\frac{p}{\ell}\right) = 1$ and $\left(\frac{2}{p}\right) = -\left(\frac{p}{\ell}\right)_4$. Then the fourteen unramified extensions of the imaginary cyclic quartic field K are given by:

- 1. If $\left(\frac{\ell}{p}\right)_{4} \neq \left(\frac{p}{\ell}\right)_{4}$, then
 - The unramified quadratic extensions of K are:

$$F_1 = K(\sqrt{-\pi_1}) \simeq F_2 = K(\sqrt{-\pi_2}), \quad F_3 = K(\sqrt{2}), \quad F_4 = K(\sqrt{p}),$$

$$F_5 = K(\sqrt{2p}) \quad and \quad F_6 = K(\sqrt{-2\pi_1}) \simeq F_7 = K(\sqrt{-2\pi_2}).$$

• The unramified biquadratic extensions of K are:

$$\begin{split} L_1 &= F_1F_2 = F_1F_4 = F_2F_4, \qquad L_2 = F_2F_6 = F_2F_5 = F_6F_5, \\ L_3 &= F_1F_3 = F_1F_6 = F_3F_6, \quad L_4 = K^{(*)}, \quad L_5 = F_1F_7 = F_1F_5 = F_7F_5, \\ L_6 &= F_6F_7 = F_6F_4 = F_7F_4 \quad and \quad L_7 = F_2F_3 = F_2F_7 = F_3F_7. \end{split}$$

- 2. If $\left(\frac{\ell}{p}\right)_4 = \left(\frac{p}{\ell}\right)_4$, then
 - The unramified quadratic extensions of K are:

$$F_1 = K(\sqrt{\pi_1}) \simeq F_2 = K(\sqrt{\pi_2}), \quad F_3 = K(\sqrt{2}), \quad F_4 = K(\sqrt{p}),$$

 $F_5 = K(\sqrt{2p}) \quad and \quad F_6 = K(\sqrt{2\pi_1}) \simeq F_7 = K(\sqrt{2\pi_2}).$

• The unramified biquadratic extensions of K are:

$$\begin{split} L_1 &= F_1F_2 = F_1F_4 = F_2F_4, \qquad L_2 = F_2F_6 = F_2F_5 = F_6F_5, \\ L_3 &= F_1F_3 = F_1F_6 = F_3F_6, \quad L_4 = K^{(*)}, \quad L_5 = F_1F_7 = F_1F_5 = F_7F_5, \\ L_6 &= F_6F_7 = F_6F_4 = F_7F_4 \quad and \quad L_7 = F_2F_3 = F_2F_7 = F_3F_7. \end{split}$$

Note that π_i is defined in the Lemma 2.2.

Proof: According to Lemma 2.1, $K^{(*)} = K(\sqrt{p}, \sqrt{2})$, then $F_3 = K(\sqrt{2})$, $F_4 = K(\sqrt{p})$ and $F_5 = K(\sqrt{2p})$.

- 1. If $\left(\frac{\ell}{p}\right)_4 \neq \left(\frac{p}{\ell}\right)_4$, then, from Lemma 2.2, the equation $-\pi_i \equiv x^2 \pmod{4}$ admits solution in k i.e. admits solution in K. Since $\mathcal{B}_i^{h_0} = (\pi_i)$ and \mathcal{B}_i ramifies in K, then $(-\pi_i) = (\mathcal{P}_i^{h_0})^2$ with \mathcal{P}_i an ideal of K. Therefore $K(\sqrt{-\pi_i})$ is an unramified quadratic extension of K, this implies that $F_i = K(\sqrt{-\pi_i})$ for i = 1, 2. Since $K(\sqrt{-2\pi_i})$ is a subfield of $K(\sqrt{2}, \sqrt{-\pi_i})$ which is unramified over K, then $K(\sqrt{-2\pi_i})$ is unramified over K, thus $F_6 = K(\sqrt{-2\pi_1})$ and $F_7 = K(\sqrt{-2\pi_2})$. On the other hand, the extensions F_i are pairwise different for i = 1, 2, 6, 7, because for example if $F_1 = F_2$, then there exists $t \in K$ such that $\pi_1 = t^2\pi_2$, this yields that $p^{h_0} = t^2\pi_2^2$, which is not the case, since $\sqrt{p} \notin K$. Similarly, we show the other cases. Also $F_i \neq F_j$ for $(i, j) \in$ $\{1, 2, 6, 7\} \times \{3, 4, 5\}$ (see the following Remark). It is easy to see that $F_1 \simeq F_2$ and $F_6 \simeq F_7$.
- 2. We proceed as in 1. We conclude easily that

$$L_1 = F_1F_2 = F_1F_4 = F_2F_4, \qquad L_2 = F_2F_6 = F_2F_5 = F_6F_5,$$

$$L_3 = F_1F_3 = F_1F_6 = F_3F_6, \quad L_4 = K^{(*)}, \quad L_5 = F_1F_7 = F_1F_5 = F_7F_5,$$

$$L_6 = F_6F_7 = F_6F_4 = F_7F_4 \quad and \quad L_7 = F_2F_3 = F_2F_7 = F_3F_7.$$

Remark 3.1. The base field K admits tree unramified quadratic extensions absolutely abelian of type (2, 4), which are intermediate fields between K and its genus field $K^{(*)}$, and four unramified quadratic extensions absolutely non-Galois which are F_1 , F_2 , F_6 and F_7 . Moreover, the field K admits tree unramified biquadratic extensions absolutely Galois which are L_1 , L_4 and L_6 , and four unramified biquadratic extensions absolutely non-Galois which are L_2 , L_3 , L_5 and L_7 .

Example 3.1. Let $K = \mathbb{Q}(\sqrt{-2.17\varepsilon\sqrt{13}})$ where $\varepsilon = \frac{3+\sqrt{13}}{2}$. As $13 \equiv 5 \pmod{8}$, $17 \equiv 1 \pmod{4}$ and $\binom{2}{17} = -\binom{17}{13}_4 = \binom{13}{17}_4 = 1$, then

$$F_{1} = K(\sqrt{-\pi_{1}}), \qquad F_{2} = K(\sqrt{-\pi_{2}}), \qquad F_{3} = K(\sqrt{2}), \qquad F_{4} = K(\sqrt{17}),$$

$$F_{5} = K(\sqrt{2.17}), \qquad F_{6} = K(\sqrt{-2\pi_{1}}) \qquad and \qquad F_{7} = K(\sqrt{-2\pi_{2}}),$$

$$with \qquad \pi_{1} = 15 + 4\sqrt{13} \qquad and \qquad \pi_{2} = 15 - 4\sqrt{13}.$$

Moreover,

$$L_{1} = K(\sqrt{-\pi_{1}}, \sqrt{-\pi_{2}}), \qquad L_{2} = K(\sqrt{-2\pi_{1}}, \sqrt{-\pi_{2}}), \qquad L_{3} = K(\sqrt{-\pi_{1}}, \sqrt{2}),$$
$$L_{4} = K^{(*)} = K(\sqrt{2}, \sqrt{17}), \qquad L_{5} = K(\sqrt{-\pi_{1}}, \sqrt{-2\pi_{2}}), \qquad L_{6} = K(\sqrt{-2\pi_{1}}, \sqrt{-2\pi_{2}}),$$
$$L_{7} = K(\sqrt{2}, \sqrt{-\pi_{2}}) \qquad and \qquad K_{2}^{(1)} = K(\sqrt{2}, \sqrt{17}, \sqrt{-\pi_{i}}).$$

Example 3.2. Let $K = \mathbb{Q}(\sqrt{-2.89\varepsilon\sqrt{5}})$ where $\varepsilon = \frac{1+\sqrt{5}}{2}$. As $5 \equiv 5 \pmod{8}$, $89 \equiv 1 \pmod{4}$ and $\left(\frac{2}{89}\right) = -\left(\frac{89}{5}\right)_4 = -\left(\frac{5}{89}\right)_4 = 1$, then

$$F_{1} = K(\sqrt{\pi_{1}}), \qquad F_{2} = K(\sqrt{\pi_{2}}), \qquad F_{3} = K(\sqrt{2}), \qquad F_{4} = K(\sqrt{89}),$$

$$F_{5} = K(\sqrt{2.89}), \qquad F_{6} = K(\sqrt{2\pi_{1}}) \qquad and \qquad F_{7} = K(\sqrt{2\pi_{2}}),$$

with $\pi_{1} = 13 + 4\sqrt{5}$ and $\pi_{2} = 13 - 4\sqrt{5}.$

Moreover,

$$L_{1} = K(\sqrt{\pi_{1}}, \sqrt{\pi_{2}}), \qquad L_{2} = K(\sqrt{2\pi_{1}}, \sqrt{\pi_{2}}), \qquad L_{3} = K(\sqrt{\pi_{1}}, \sqrt{2}),$$
$$L_{4} = K^{(*)} = K(\sqrt{2}, \sqrt{89}), \qquad L_{5} = K(\sqrt{\pi_{1}}, \sqrt{2\pi_{2}}), \qquad L_{6} = K(\sqrt{2\pi_{1}}, \sqrt{2\pi_{2}}),$$
$$L_{7} = K(\sqrt{2}, \sqrt{\pi_{2}}) \qquad and \qquad K_{2}^{(1)} = K(\sqrt{2}, \sqrt{89}, \sqrt{\pi_{i}}).$$

Acknowledgments

We would like to thank the referees for the helpful and constructive comments.

References

- 1. A. Azizi et M. Talbi, Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques, Acta Arithmetica, **127**(3) (2007), 231 248.
- 2. A. Azizi et M. Talbi, Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques, Archivum Mathematicum (Brno), 44 (2008), 271 284.
- A. Azizi et M. Talbi, Groupe de Galois de certains corps de classes, An. St. Univ. Ovidius Constanta, Ser. Mat. 19(3) (2011), 27 – 50.
- A. Azizi and M. Talbi, Galois group for some class field, Miskolc Mathematical Notes, Vol. 15(2) (2014), 317–325.
- A. Azizi, A. Zekhnini, M. Taous and D. C. Mayer, Principalization of 2-class groups of type (2, 2, 2) of biquadratic fields Q(√p₁p₂q, i), Int. J. Number Theory, 11(4), (2015), 1177 – 1215.

220

- E. Brown and C. J. Parry, The 2-class group of certain biquadratic number fields I, J. Reine Angew. Math. 295 (1977), 61 – 71.
- E. Hecke, Lectures on the Theory of Algebric Numbers, Graduate Texts in Mathematics 77, (1981), Springer-Verlag, New York-Berlin.
- J. A. Hymo and C. J. Parry, On relative integral bases for cyclic quartic fields, Journal of Number theory 34 (1990), 189 – 197.
- 9. M. Ishida, *The genus fields of algebraic number fields*, Lecture notes in mathematics 555, Springer-Verlag (1976).
- 10. F. Lemmermeyer, *Reciprocity laws*, Springer Monographs in Mathematics, Springer-Verlag. Berlin (2000).

Abdelmalek Azizi and Idriss Jerrari Mohamed First University Department of Mathematics and Computer Sciences Faculty of Sciences 60000 Oujda, Morocco. E-mail address: abdelmalekazizi@yahoo.fr E-mail address: idriss_math@hotmail.fr

and

Mohammed Talbi Regional center of Education and Training 60000 Oujda, Morocco E-mail address: talbimm@yahoo.fr