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Approximate Analytical Solution of a Third-Order IVP arising in Thin

Film Flows driven by Surface Tension

Fabrizio Morlando

abstract: In this paper, we present a way of applying the so-called He’s vari-
ational iteration method (VIM) to numerically solve the non linear autonomous
third-order ordinary differential equation (ODE) y

′′′
= y

−2 obtained by consider-
ing a traveling wave solution admitted by a lubrication equation modeling a two-
dimensional spreading of a thin viscous film on a inclined slope. Approximate ana-
lytical solution is derived and compared to the results obtained from the Adomian
decomposition method (ADM) proposed in [20], to the exact analytical solution
[7,8], to a fifth order Runge-Kutta method (DOPRI), a fourth order Runge-Kutta
method (RK4), a three-stage fifth order Runge-Kutta method (RKD5) developed in
[18]. A very good agreement and accuracy is observed. Comparisons are obtained
using symbolic capabilities of Maple 18.0 package.
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1. Introduction

In fluid dynamics of viscous fluids, the exact analytical solutions of the flow
problems are usually difficult to obtain since governing equations of motion, in
general, are highly nonlinear partial differential equations. In some situations, by
means of similarity transformations, the system of partial differential equations are
reduced to that of ordinary differential equations, which, on few occasions, for a
long time, before the advent computers, the researchers mainly directed their ef-
forts at obtaining some forms of approximate solutions. One of the key issues of
approximate solutions has always been the accuracy of the solutions. The accuracy,
generally speaking, is measured in terms of the norm of the relative percent error
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δ where the relative error being the difference of the approximate solution from
the exact solution divided by the exact solution. In the absence of an exact solu-
tion, (analytical or numerical) a heuristic approach consisting of the convergence of
successive approximate solution. With the advent of computers, the approximate
solutions in fluid dynamics have lost some of their importance as more and better
numerical algorithms have been developed to solve the increasingly realistic, but
more but more complicated problems numerically. Nevertheless, approximate ana-
lytical solutions still have their relevance because, firstly, they give the solution for
each point within the domain of interest, unlike the numerical solutions, which are
available, for a particular run, only for a set of discrete points in the domain, sec-
ondly, compared to a numerical solution, a nicely produced approximate solution,
requiring a minimal effort and having a reasonable amount of accuracy, is always
handy for an engineer, scientist or an applied mathematician, who can obtain a
solution quickly, thereby gaining a valuable insight into the essential of the problem
and, thirdly, even with most of the scientific packages, some initial guess is required
for the solution, as the algorithm, in general, are nor globally convergent. In such
situations, approximate solutions can provide an excellent starting guess, that can
be readily refined to the exact numerical solution in a few iterations. Problems
concerning the flow of thin films of viscous fluid with a free surface in which sur-
face tension effects play a key role typically lead to third-order ordinary differential
equations governing the shape of the free surface of the fluid y = y(x). Among
these, as pointed out in [33], it is of particular interest the third order ODE

y′′′ = y−2 (1.1)

obtained by investigating traveling-wave solutions or steady-state solutions of the
lubrication equation subject to the initial conditions

y(0) = y′(0) = y′′(0) = 1 (1.2)

where ′ = d/dx. This equation is of particular importance, because it describes
the thickness y = y(x) of a fluid layer draining down a vertical wall dynamic
balanced between surface tension effects, represented analytically by the third-
order derivative term, and viscous shearing forces, represented by the term y−2, in
the absence (or neglect) of gravity. Tanner, in [30], also derived this equation in
order to investigate the motion of the contact line for a thin oil droplet spreading
on a horizontal surface. We may consider equation (1.1) as an intermediate limit
problem being the small-y limit of a fluid dry wall draining model

y′′′ = −1 +
1

y2
(1.3)

where the extra constant term −1 represents the presence of gravity and the large-y
limit of its generalization to wet wall draining model,

y′′′ = −1 + (1 + δ + δ2)
1

y2
− (δ + δ2)

1

y3
(1.4)
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where δ > 0 stands for a very small input parameter measuring wall wetness. Re-
mark that when δ = 0 (1.4) reduces to (1.3). The interested reader is referred to
[8,33] and the references therein for a review of thin film flow theory in which some
third-order ODEs occurring.
In this work, we aim to apply the variational iteration method (abbr. VIM) in find-
ing the approximate analytical solutions of a highly nonlinear differential equation
arising in the thin film flow problems. The VIM is a powerful analytical technique
introduced by J.H. He in [10,11,12,13] as a modification of a general Lagrange mul-
tiplier method. This method gives rapidly convergent successive approximations of
the exact solutions if such solution exists. We propose here this method for solving
numerically equation (1.1) with condition (1.2) and, then, we compare the results
with some exact and numerical results well-known in literature. Notice that in [20]
the problem is also solved by the Adomian decomposition method (abbr. ADM).
For comparison purpose, we show that difference between the VIM and ADM solu-
tions is negligible. This comparison is benched-marked against numerical solutions.
An important advantage of these methods over the numerical methods is that they
provide series solutions in the form of functions of a single variable. These forms of
solutions can be used to evaluate analytical expressions of various flow parameters
of physical relevance. The convergence of the VIM and the ADM is systematically
discussed in [32].

This paper is divided up as follows. In Section 2, we formulate the concerned
mathematical model. In Section 3, we give a brief introduction of the He’s varia-
tional iteration method. In Section 4, we apply the variational iteration method to
give an approximate solution of the considered problem. In Section 5, the results
obtained are compared with the numerical (Runge-Kutta type methods) results.
Furthermore, we show that our approximated solution is in good agreement with
the previous results presented as far in literature and the absolute percent error of
approximation slightly improves. Concluding remarks are made in Section 6.

2. Problem statement and mathematical formulation

In the contest of standard lubrication theory, typically surface tension driven
thin film flows are described by a fourth order nonlinear parabolic partial differen-
tial equation of the form

ht = −

[

h3

3

(

Ch′′′ − δBh′ cosα+B sinα
)

]′

, (2.1)

modeling the two-dimensional spreading of a thin viscous film on a slope inclined
at an angle α to the horizontal, where C is the inverse capillary number (i.e. the
ratio of surface tension to viscous forces), B the Bond number (i.e. the ratio of
gravity to viscous forces), δ the aspect ratio and h = h(t, x) the time evolution
fluid film height, see ( [8], Appendix) for a derivation. For the flow of a thin film
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down a vertical wall, α = π/2 and (2.1) reduces to

ht = −

[

h3

3
(Ch′′′ +B)

]′

. (2.2)

For steady situations, it is well-known that (2.2) may be integrated once and a
third-order ordinary differential equation is obtained. Henceforth, we deal with
traveling wave solutions, i.e. solutions of the form

h(t, x) = y(x̄), x̄ = x− V t (2.3)

admitted by (2.2), where V is the wave velocity. The investigation of the traveling
wave solution (2.3) can be interpreted as investigating steady-state solutions with
respect to a moving frame where the frame moves with velocity V , see [30]. Sub-
stituting (2.3) into (2.2) we obtain the fourth order ordinary differential equation

− V y′ = −

[

y3

3
(Cy′′′ +B)

]′

, (2.4)

where, in this case, ′ = d/dx̄. Integrating (2.4) once and setting the integration
constant to zero, B = 0 and C = 3V we obtain (1.1) where the overhead bars are
suppressed for convenience. Another derivation of (1.1) comes from considering
traveling wave solutions of the lubrication equation:

ht = −
[

h3h′′′
]′
. (2.5)

Substituting (2.3) into (2.5) we obtain the third-order ODE

y3y′′′ = V y + c (2.6)

where c is a constant of integration. Finally, (2.6) is rescaled to (1.2), see [3]. Duffy
and Wilson in [7] use the solution of (1.1) obtained by Ford [8] (see also [22]) to
plot solutions of (1.1) subject to the initial conditions (1.2). They, then, show that
the critical initial condition y′′(0) = 1.28359871 leads to the boundary condition
that is also obtained by Tanner [30] and Tuck and Schwartz [33]. In this work, we
choose y′′(0) = 1 to simplify our calculations.

3. Basic concepts of He’s variational iteration method

For the purpose of illustration of the methodology to the proposed method
using variational iteration method (VIM), we begin by considering a non-linear
differential equation given in the following formal form

Lu(x) +Nu(x) = g(x), (3.1)

where L = d
m

dtm
, m ∈ N, is a linear operator, N a non linear operator and g is

known analytical non-homogeneous source term, subjected to the initial conditions

u(k)(0) = ck, k = 0, . . . ,m− 1,
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where ck is a real number. According to the variational iteration method, a cor-
rection functional can be constructed as

un+1(x) = un(x) +

∫ x

0

λ(Lun(t) +Nũn(t)− g(t)) dt, n ≥ 0, (3.2)

where λ = λ(t) is a general Lagrangian multiplier, the subscript n denotes the
nth order approximation and u0 is an initial approximation which can be known
according to the initial/boundary conditions. This can be considered as the main
shortcoming of the algorithm. Because of the existence of nonlinear part in (3.1),
it is not possible to exactly find the optimal value of Lagrange multiplier. Hence, it
is necessary to consider a limitation on the non linear part causing this part to be
ignored. Therefore, ũn is allocated to show the non linear part which has a special
property. It is considered as a restricted variation [12,13], i.e. δũn = 0. Firstly,
we identify the Lagrange multiplier λ optimally via integration by parts. The
successive approximations un+1(x) of the solution will be readily obtained upon
using the obtained Lagrange multiplier and by using any selective function u0.
After identifying the multiplier in (3.2), we have the following iteration algorithm

un+1(x) = un(x) +

∫

x

0

λ(Lun(t) +Nun(t)− g(t)) dt, n ≥ 0. (3.3)

Equation (3.3) is called Variational Iteration Algorithm-I. Hence, according to it-
erations of this sequence, we can determine approximations of the exact solution
as follow

u(x) = lim
n→∞

un(x). (3.4)

Notice that after identifying the Lagrange multiplier we can construct the iteration
formula

un+1(x) = u0(x) +

∫

x

0

λ(Nun(t)− g(t)) dt, n ≥ 0, (3.5)

instead of the iteration algorithm (3.3). We call (3.5) Variational Iteration Algo-
rithm-II. This formulation is derived in [15].

4. Application of VIM

To solve the equation (1.1) with initial condition (1.2) by the VIM-II, the cor-
rection functional can be written as follows:

yn+1(x) = yn(x) +

∫

x

0

λ(t)(y′′′
n
(t)− ỹn(t)

−2)dt, n ∈ N. (4.1)

By taking the variation on both sides of above equation with respect to yn and
using the fact that δũn = 0 we can deduce

δyn+1(x) = δyn(x) +

∫

x

0

λ(t)y′′′
n
(t)dt. (4.2)
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Via integration by parts, we find

δyn+1(x) = δyn(x) + λδy′′
n
|t=x −

∫

x

0

λ′(t)δy′′
n
(t)dt. (4.3)

Integrating by parts (4.3) twice we obtain

δyn+1(x) = δyn(x) +λδy′′
n
|t=x − λ′δy′

n
|t=x + λ′′δyn|t=x −

∫

x

0

λ′′′(t)δyn(t)dt. (4.4)

To find optimal value of λ, we impose the stationary condition δyn+1(x) = 0
obtaining the following equations

(1 + λ′′(t))|t=x = 0, λ′′′(t) = 0, −λ′(t)|t=x = 0, λ(t)|t=x = 0, (4.5)

from which the Lagrangian multiplier can be identified as

λ = −
1

2

(

t− x
)2
. (4.6)

Next, by substituting (4.6) into (4.1), the desired iterative relation can be con-
structed as

yn+1(x) = yn(x)−
1

2

∫

x

0

(t− x)2(y′′′
n
(t)− yn(t)

−2)dt, n ∈ N. (4.7)

In order to start iteration using (4.7), y0(x) is needed. We represent it by Maclaurin
series up the order three and, then, by substituting the given boundary conditions
(1.2) into we conclude that

y0(x) =

2
∑

k=0

xk

k!
y(k)(0) = y(0) + xy′(0) +

x2

2
y′′(0)

= 1 + x+
x2

2
. (4.8)

From (4.7) and (4.8) with n = 0, we have the first VIM-iteration

y1(x) = 1 + x+
x2

2
+

1

2

∫

x

0

(t− x)2

(1 + t+ t2

2 )
2
dt. (4.9)

With the aid of Maple 18.0 package, we get

y1 :=1 + 2x+
x2

2
− ln(x2 + 2 ∗ x+ 2) ∗ x− ln(x2 + 2 ∗ x+ 2) + arctan(1 + x)

∗x2 + 2 ∗ arctan(1 + x) ∗ x+ ln(2) ∗ x+ ln(2)−
π

4
∗ x2 −

π

2
∗ x, (4.10)

and, clearly, yn for a fixed n ∈ N implementing an opportune do-loop. Here
we point out that just the first approximation y1 is capable to be an efficient
approximation of the exact solution as is the case of the Blasius equation, see [17].



Approximate Analytical Solution of a Third-Order IVP 123

5. Numerical results and comparisons

In this section, we compare the VIM solution with the numerical solution ob-
tained by the following selected explicit Runge-Kutta methods:

1. DOPRI: the seven-stage fifth order Runge-Kutta method as in [6],

2. RK4: the four-stage fourth order Runge-Kutta method as in [4],

3. RKD5: the three-stage fifth order direct Runge-Kutta (RKD) method derived
in [18].

To use Runge-Kutta methods, following [2], (1.1) need to be reduced to the fol-
lowing system of three first-order equations:

y′1 = y2(x), y′2 = y3(x), y′3 = y−2
1 (x). (5.1)

In [18], the authors introduce a new method called RKD5 that requires less function
evaluations than the RK4 and DOPRI methods, essentially because the reduced
system 5.1 is three times the dimension. From [7,8,20] the exact solution of (1.1)
is given in parametric form as

x = 2
1

3π
Ai(s)Bi(s0)−Ai(s0)Bi(s)

(αAi(s0) + βBi(s0))(αAi(s) + βBi(s))
,

y = (αAi(s) + βBi(s))−2,

where Ai(s) and Bi(s) denote the Airy functions and α, β and s0 are constants to
be determined. Imposing the initial conditions (1.2) we find that

α = 0.676482, β = 1.60629, s0 = −0.39685.

The plot for the exact solution is presented in Figure 1. We plot only the solution
for y ≥ 0 since the case y < 0 is a drop with negative height and can be ignored
because not physically interest.

From Table 1 we observe that the numerical results using DOPRI, RK4, RKD5
methods and VIM yield five-decimal-place accuracy and, further, Figure 4, obtained
with GNU Octave 4.0.0, visualize the good agreement of those methods.
In [20], the authors use the Adomian decomposition method (ADM) to obtain a
power series approximation to the exact solution. Basically, the ADM provides
an effective algorithm for approximating the nonlinear term y−2 in 5.1. Here, we
consider two polynomials approximation from [20]

y6 = 1 + x+
x2

2!
+

x3

3!
− 2

x4

4!
+ 4

x5

5!
− 8

x6

6!
,

y7 = y6 +
22

7!
x7.

Notice that as the number of iterations increases, the amount of calculations needed
to obtain the new Adomian polynomial also increases and the process of obtaining
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Figure 1: The Duffy-Wilson exact solution

Figure 2: Plot comparing the ADM solutions y6 and y7 with the exact solution.
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Figure 3: Plot comparing the 1st VIM iteration solution with the exact solution.

Figure 4: Relative errors comparison of DOPRI, RK4 and RKD5 methods (tak-
ing a step size h = 0.01) and the VIM versus the exact solution at x ∈
[0.0, 0.2, 0.4, 0.6, 0.8, 1.0].
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these polynomials becomes tedious and time consuming. Such drawback is elim-
inated through the application of He’s variational iteration method, which does
not require the additional computations of the Adomian polynomials. In Figure
2 we plot a comparison between y6, y7 and the exact solution according to ( [20],
Fig.1, pp.23-20). Notice that Theorem 1 in [20] holds also for our type of solutions
and, then, as a byproduct, the analytical solution, the ADM solution and the VIM
solution converge for ‖x‖2 < 1 and diverge for ‖x‖2 > 1. In Figure 3 we plot a
comparison of first VIM iteration and the exact solution observing a very good
agreement.

Remark 5.1.

1. The natural first attempt to solve equation (1.1) by simply calling Maple’s
dsolve command, without imposing initial values conditions, just gives some-
thing like the an implicit formulation as the answer in terms of Airy func-
tions, constants _C1, _C2, _C3 and using the RootOf command in terms of
the global variable _Z. From here, applying the boundary conditions (1.2)
seems quite difficult.

2. The exact solution (5.2) is plotted by using the function odeplot in the plots
package with the refine = 1 option which tells odeplot to us all the stored
points for the plot. The odeplot function plots solution curves obtained from
the output of a call to dsolve is able to detect a singularity of the problem,
in fact after run the command it returns the following warning message:
cannot evaluate solution further left of −1.1175363, probably a

singularity.

We find, simply using fsolve command, that the considered solutions of
(1.1), (1.2) have a zero at the point x as reported in Table 2. This points
lie outside the domain of convergence ‖x‖2 < 1 and, thus, are considered
singularities for the solutions. Notice that in [20] the authors, in order to
include also singularity points the domain of convergence, truncate the ob-
tained ADM solution at a suitable order to ensure that the truncated solution

x Exact DOPRI RK4 RKD5 VIM
Solution

0.0 1.000000000 1.0000000000 1.0000000000 1.0000000000 1.000000000
0.2 1.221211030 1.2212100045 1.2212100046 1.2212100045 1.221210124
0.4 1.488834893 1.4888347799 1.4888347800 1.4888347799 1.488840085
0.6 1.807361404 1.8073613977 1.8073613978 1.8073613977 1.807403897
0.8 2.179819234 2.1798192339 2.1798192341 2.1798192339 2.179990552
1.0 2.608275822 2.6082748676 2.6082748678 2.6082748676 2.608752772

Table 1: Table comparing values of DOPRI, RK4 and RKD5 methods tak-
ing h = 0.01 as step size, the exact solution and the first VIM-iteration at
x ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0].
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satisfies the so-called contact line condition. Based on the fact that (1.1) is
autonomous it is possible to opportunely shift x → x + α to get a numerical
solution in the interval ‖x‖2 < 1 subject to the initial conditions in α.

Solution x

y6 -1.163163474, 3.647085299
y7 -1.155031099
VIM -1.343770114
Exact -1.276597745

Table 2: Table comparing zero values for different classes of solutions.

6. Conclusions

In this paper, the VIM has been successfully applied to finding the solutions of
(1.1) and (1.2). The obtained solutions are compared with numerical and ADM
solutions. Those comparisons point out that the VIM may be considered as an ef-
ficient alternative method for solving a wide range of physical nonlinear problems,
especially those arising in the area of fluid dynamics. We point out how the VIM
can also be applied to any heat transfer and flow problem leading to a coupled
nonlinear system of ODEs, see for instance [5,14,16,17,23,31,35] without any claim
to completeness. The major advantage of the VIM, unlike the common numeri-
cal methods, is of providing analytical approximation or an approximated solution
without linearization, perturbation, closure approximation, or discretization. Fur-
thermore, unlike the ADM, VIM does not require the additional computations of
the Adomian polynomials.
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