Constant Angle Spacelike Surface in de Sitter Space S_{1}^{3}

Tuğba Mert and Baki Karliğa

Abstract

In this paper; using the angle between unit normal vector field of surfaces and a fixed spacelike axis in R_{1}^{4}, we develop two class of spacelike surface which are called constant timelike angle surfaces with timelike and spacelike axis in de Sitter space S_{1}^{3}. Moreover we give constant timelike angle tangent surfaces which are examples constant angle surfaces in de Sitter space S_{1}^{3}.

Key Words: Constant angle surfaces, de Sitter space, Helix.

Contents

1 Introduction And Results 79
2 Differantial Geometry of de Sitter Space S_{1}^{3} 80
3 Constant Timelike Angle Spacelike Surfaces 83
3.1 Constant Timelike Angle Surfaces With Spacelike Axis 84
4 Constant Timelike Angle Tangent Surfaces 89
4.1 Tangent Surface with Spacelike Axis 89

1. Introduction And Results

A constant angle curve whose tangents make constant angle with a fixed direction in ambient space is called a helix. A surface whose tangent planes makes a constant angle with a fixed vector field of ambient space is called constant angle surface. Constant angle surfaces have been studied for arbitrary dimension in Euclidean space $\mathbb{E}^{n}[13,14]$ and recently in product spaces $\mathbb{S}^{2} \times \mathbb{R}[15], \mathbb{H}^{2} \times \mathbb{R}[16]$ or different ambient spaces Nil_{3} [17]. In [1], Lopez and Munteanu studied constant hyperbolic angle surfaces whose unit normal timelike vector field makes a constant hyperbolic angle with a fixed timelike axis in Minkowski space \mathbb{R}_{1}^{4}. In the literature constant timelike and spacelike angle surface have not been investigated both in hyperbolic space H^{3} and de sitter space S_{1}^{3}. A constant timelike and a spacelike angle surface in Hyperbolic space H^{3} are developed in our paper [19]. In this paper we introduce constant timelike angle spacelike surfaces in de Sitter space S_{1}^{3}.

Let $x: M \longrightarrow \mathbb{R}_{1}^{4}$ be an immersion of a surface M into \mathbb{R}_{1}^{4}. We say that x is timelike (resp. spacelike, lightlike) if the induced metric on M via x is Lorentzian (resp. Riemannian, degenerated). If $\langle x, x\rangle=1$, then x is an immersion of S_{1}^{3}.

Let $x: M \longrightarrow S_{1}^{3}$ be a immersion and let ξ be a timelike unit normal vector field to M. If there exists spacelike direction W such that timelike angle $\theta(\xi, U)$

[^0]is constant on M, then M is called constant timelike angle surfaces with spacelike axis.

Let $x: M \longrightarrow S_{1}^{3}$ be a immersion and let ξ be a timelike unit normal vector field to M. If there exists timelike direction W such that timelike angle $\theta(\xi, U)$ is constant on M, then M is called constant timelike angle surfaces with timelike axis.

2. Differantial Geometry of de Sitter Space S_{1}^{3}

In this section, Differential geometry of curves and surfaces are summarized in de Sitter space S_{1}^{3}. Let \mathbb{R}_{1}^{4} be 4 -dimensional vector space equipped with the scalar product \langle,$\rangle which is defined by$

$$
\langle x, y\rangle=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}
$$

From now on, the constant angle surface is proposed in Minkowskian ambient space $\mathbb{R}_{1}^{4} . \mathbb{R}_{1}^{4}$ is 4 -dimensional vector space equipped with the scalar product \langle,$\rangle , than$ \mathbb{R}_{1}^{4} is called Lorentzian 4 - space or 4 -dimensional Minkowski space. The Lorentzian norm (length) of x is defined to be

$$
\|x\|=|\langle x, x\rangle|^{\frac{1}{2}} .
$$

If $\left(x_{0}^{i}, x_{1}^{i}, x_{2}^{i}, x_{3}^{i}\right)$ is the coordinate of x_{i} with respect to canonical basis $\left\{e_{0}, e_{1}, e_{2}\right.$, $\left.e_{3}\right\}$ of \mathbb{R}_{1}^{4}, then the lorentzian cross product $x_{1} \times x_{2} \times x_{3}$ is defined by the symbolic determinant

$$
x_{1} \times x_{2} \times x_{3}=\left|\begin{array}{cccc}
-e_{0} & e_{1} & e_{2} & e_{3} \\
x_{0}^{1} & x_{1}^{1} & x_{2}^{1} & x_{3}^{1} \\
x_{0}^{2} & x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \\
x_{0}^{3} & x_{1}^{3} & x_{2}^{3} & x_{3}^{3}
\end{array}\right| .
$$

One can easly see that

$$
\left\langle x_{1} \times x_{2} \times x_{3}, x_{4}\right\rangle=\operatorname{det}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) .
$$

In [2], [3] and [5] Izimuya at all introduced and investigated differantial geometry of curves and surfaces Hyperbolic 3-space. If $\langle x, x\rangle>0,\langle x, x\rangle=0$ or $\langle x, x\rangle<0$ for any non-zero $x \in \mathbb{R}_{1}^{4}$, then we call that x is spacelike, ligtlike or timelike ,respectively. In the rest of this section, we give background of context in [20].

Given a vector $v \in \mathbb{R}_{1}^{4}$ and a real number c, the hyperplane with pseudo normal v is defined by

$$
H P(v, c)=\left\{x \in \mathbb{R}_{1}^{4} \mid\langle x, v\rangle=c\right\}
$$

We say that $H P(v, c)$ is a spacelike hyperplane, timelike hyperplane or lightlike hyperplane if v is timelike, spacelike or lightlike respectively in [20]. We have following three types of pseudo-spheres in \mathbb{R}_{1}^{4} :

$$
\begin{aligned}
& \text { Hyperbolic-3 space : } H^{3}(-1)=\left\{x \in \mathbb{R}_{1}^{4} \mid\langle x, x\rangle=-1, x_{0} \geq 1\right\}, \\
& \text { de Sitter 3- space: } S_{1}^{3}=\left\{x \in \mathbb{R}_{1}^{4} \mid\langle x, x\rangle=1\right\}, \\
& \quad \text { (open) lightcone: } L C^{*}=\left\{x \in \mathbb{R}_{1}^{4} /\{0\} \mid\langle x, x\rangle=0, x_{0}>0\right\} .
\end{aligned}
$$

We also define the lightcone 3 -sphere

$$
S_{+}^{3}=\left\{x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mid\langle x, x\rangle=0, x_{0}=1\right\}
$$

A hypersurface given by the intersection of S_{1}^{3} with a spacelike (resp.timelike) hyperplane is called an elliptic hyperquadric (resp. hyperbolic hyperquadric). If $c \neq 0$ and $H P(v, c)$ is lightlike, then $H P(v, c) \cap S_{1}^{3}$ is a de Sitter horosphere, [20].

Let $U \subset \mathbb{R}^{2}$ be open subset, and let $x: U \rightarrow S_{1}^{3}$ be an embedding. If the vector subspace \tilde{U} whih generated by $\left\{x_{u_{1}}, x_{u_{2}}\right\}$ is spacelike, then x is called spacelike surface, if \tilde{U} contain at least a timelike vector field, then x is called timelike surface in S_{1}^{3}.

In point of view Kasedou [20], we construct the extrinsic differential geometry on curves in S_{1}^{3}. Since S_{1}^{3} is a Riemannian manifold, the regular curve $\gamma: I \rightarrow S_{1}^{3}$ is given by arclength parameter.

Theorem 2.1. i) If $\gamma: I \rightarrow S_{1}^{3}$ is a spacelike curve with unit speed, then FrenetSerre type formulae is obtained

$$
\left\{\begin{aligned}
\gamma^{\prime}(s) & =t(s) \\
t^{\prime}(s) & =\kappa_{d}(s) n(s)-\gamma(s) \\
n^{\prime}(s) & =-\kappa_{d}(s) t(s)-\tau_{d}(s) e(s) \\
e^{\prime}(s) & =-\tau_{d}(s) n(s)
\end{aligned}\right.
$$

where $\kappa_{d}(s)=\left\|t^{\prime}(s)+\gamma(s)\right\|$ and $\tau_{d}(s)=-\frac{\operatorname{det}\left(\gamma(s), \gamma^{\prime}(s), \gamma^{\prime \prime}(s), \gamma^{\prime \prime \prime}(s)\right)}{\left(\kappa_{d}(s)\right)^{2}}$.
ii) If $\gamma: I \rightarrow S_{1}^{3}$ is a timelike curve with unit speed, then Frenet-Serre type formulae is obtained

$$
\begin{cases}\gamma^{\prime}(s) & =t(s) \\ t^{\prime}(s) & =\kappa_{d}(s) n(s)+\gamma(s) \\ n^{\prime}(s) & =-\kappa_{d}(s) t(s)+\tau_{d}(s) e(s) \\ e^{\prime}(s) & =-\tau_{d}(s) n(s)\end{cases}
$$

where $\kappa_{d}(s)=\left\|t^{\prime}(s)-\gamma(s)\right\|$ and $\tau_{d}(s)=-\frac{\operatorname{det}\left(\gamma(s), \gamma^{\prime}(s), \gamma^{\prime \prime}(s), \gamma^{\prime \prime \prime}(s)\right)}{\left(\kappa_{d}(s)\right)^{2}}$.
It is easily see that $\kappa_{d}(s)=0$ if and only if there exists a lightlike vector c such that $\gamma(s)-c$ is a geodesic.

Now we give extrinsic differential geometry on surfaces in S_{1}^{3} due to Kasedou [20].

Let $U \subset \mathbb{R}^{2}$ is an open subset and $x: U \rightarrow S_{1}^{3}$ is a regular surface $M=x(U)$. If $e(u)$ is defined as follows

$$
e(u)=\frac{x(u) \wedge x_{u_{1}}(u) \wedge x_{u_{2}}(u)}{\left\|x(u) \wedge x_{u_{1}}(u) \wedge x_{u_{2}}(u)\right\|}
$$

then

$$
\langle e, x\rangle \equiv\left\langle e, x_{u_{i}}\right\rangle \equiv 0,\langle e, e\rangle=-1
$$

where $x_{u_{i}}=\frac{\partial x}{\partial u_{i}}$. Thus there is de Sitter Gauss image of x which is defined by mapping

$$
E: U \rightarrow S_{1}^{3}, E(u)=e(u) .
$$

The lightcone Gauss image of x is defined by map

$$
L^{ \pm}: U \rightarrow L C^{*}, L^{ \pm}(u)=x(u) \pm e(u) .
$$

Let $d x\left(u_{0}\right)$ and $1_{T_{p} M}$ be identify mapping on the tangent space $T_{p} M$. So derivate $d x\left(u_{0}\right)$ can be identified with $T_{p} M$ relate to identification of U and M. That is

$$
d L^{ \pm}\left(u_{0}\right)=1_{T_{p} M} \pm d E\left(u_{0}\right)
$$

The linear transformation

$$
S_{p}^{ \pm}:=-d L^{ \pm}\left(u_{0}\right): T_{p} M \rightarrow T_{p} M
$$

and

$$
A_{p}:=-d E\left(u_{0}\right): T_{p} M \rightarrow T_{p} M
$$

is called the hyperbolic shape operator and de Sitter shape operator of M at $p=$ $x\left(u_{o}\right)$.

Let $\bar{K}_{i}^{ \pm}(p)$ and $K_{i}(p),(i=1,2)$ be the eigenvalues of $S_{p}^{ \pm}$and A_{p}. Since

$$
S_{p}^{ \pm}=-1_{T_{p} M} \pm A_{p},
$$

$S_{p}^{ \pm}$and A_{p} have same eigenvectors and relations

$$
\bar{K}_{i}^{ \pm}(p)=-1 \pm K_{i}(p) .
$$

$\bar{K}_{i}^{ \pm}(p)$ and $K_{i}(p),(i=1,2)$ are called hyperbolic and de Sitter principal curvatures of M at $p=x\left(u_{0}\right)$.

Let $\gamma(s)=x\left(u_{1}(s), u_{2}(s)\right)$ be a unit speed curve on M, with $p=\gamma\left(u_{1}\left(s_{0}\right)\right.$, $\left.u_{2}\left(s_{0}\right)\right)$. We consider the hyperbolic curvature vector $k(s)=t^{\prime}(s)-\gamma(s)$ and the de Sitter normal curvature

$$
K_{n}^{ \pm}\left(s_{0}\right)=\left\langle k\left(s_{0}\right), L^{ \pm}\left(u_{1}\left(s_{0}\right), u_{2}\left(s_{0}\right)\right)\right\rangle=\left\langle t^{\prime}\left(s_{0}\right), L^{ \pm}\left(u_{1}\left(s_{0}\right), u_{2}\left(s_{0}\right)\right)\right\rangle+1
$$

of $\gamma(s)$ at $p=\gamma\left(s_{0}\right)$. The de Sitter normal curvature depends only on the point p and the unit tangent vector of M at p analogous to the Euclidean case. Hyperbolic normal curvature of $\gamma(s)$ is defined to be

$$
\bar{K}_{n}^{ \pm}(s)=K_{n}^{ \pm}(s)-1 .
$$

The Hyperbolic Gauss curvature of $M=x(U)$ at $p=x\left(u_{0}\right)$ is defined to be

$$
K_{h}^{ \pm}\left(u_{0}\right)=\operatorname{det} S_{p}^{ \pm}=\bar{K}_{1}^{ \pm}(p) \bar{K}_{2}^{ \pm}(p) .
$$

The Hyperbolic mean curvature of $M=x(u)$ at $p=x\left(u_{0}\right)$ is defined to be

$$
H_{h}^{ \pm}\left(u_{0}\right)=\frac{1}{2} \operatorname{Trace} S_{p}^{ \pm}=\frac{\bar{K}_{1}^{ \pm}(p)+\bar{K}_{2}^{ \pm}(p)}{2}
$$

The extrinsic (de Sitter) Gauss curvature is defined to be

$$
K_{e}\left(u_{0}\right)=\operatorname{det} A_{p}=K_{1}(p) K_{2}(p),
$$

and the de Sitter mean curvature is

$$
H_{d}\left(u_{0}\right)=\frac{1}{2} \operatorname{Trace} A_{p}=\frac{K_{1}(p)+K_{2}(p)}{2} .
$$

3. Constant Timelike Angle Spacelike Surfaces

Let us show the space of the tangent vector fields on M with $X(M)$ and denote the Levi-Civita connections of $\mathbb{R}_{1}^{4}, S_{1}^{3}$ and M by $\overline{\bar{D}}, \bar{D}$ and D. Then for each $X, Y \in X(M)$, we have

$$
D_{X} Y=\left(\overline{\bar{D}}_{X} Y\right)^{T}, \widetilde{V}(X, Y)=\left(\overline{\bar{D}}_{X} Y\right)^{\perp}
$$

and

$$
\begin{equation*}
\overline{\bar{D}}_{X} Y=\bar{D}_{X} Y-\langle X, Y\rangle x, \overline{\bar{D}}_{X} Y=D_{X} Y+\widetilde{V}(X, Y) \tag{3.1}
\end{equation*}
$$

where the superscript ${ }^{T}$ and ${ }^{\perp}$ denote the tangent and normal component of $\overline{\bar{D}}_{X} Y$. (3.1) equation is called the Gauss formula of S_{1}^{3} and M.

If ξ is a normal vector field of M on S_{1}^{3}, then the Weingarten Endomorphism $A_{\xi}(X)$ and $B_{x}(X)$ are denoted by the tangent components of $-\overline{\bar{D}}_{X} \xi$ and $-\overline{\bar{D}}_{X} x$. So the Weingarten equations of the vector field ξ and x is like

$$
\left\{\begin{array}{l}
A_{\xi}(X)=-\overline{\bar{D}}_{X} \xi-\left\langle\overline{\bar{D}}_{X} x, \xi\right\rangle x \tag{3.2}\\
B_{x}(X)=-\overline{\bar{D}}_{X} x-\left\langle\overline{\bar{D}}_{X} x, \xi\right\rangle \xi
\end{array}\right.
$$

It is obvious that $A_{\xi}(X)$ and $B_{x}(X)$ are linear and self adjoint map for each $p \in M$. That is

$$
\left\langle A_{\xi}(X), Y\right\rangle=\left\langle X, A_{\xi}(Y)\right\rangle \text { and }\left\langle B_{x}(X), Y\right\rangle=\left\langle X, B_{x}(Y)\right\rangle
$$

The eigenvalues $K_{i}(p)$ and $\tilde{K}_{i}(p)$ of $\left(A_{\xi}\right)_{p}$ are called the principal curvature of M on S_{1}^{3}. The eigenvalues $\tilde{K}_{i}(p)$ of $\left(B_{x}\right)_{p}$ are called the principal curvature of M in \mathbb{R}_{1}^{4}. Also, for $X, Y \in X(M)$ we have

$$
\left\langle A_{\xi}(X), Y\right\rangle=\langle\widetilde{V}(X, Y), \xi\rangle \quad, \quad\left\langle B_{x}(X), Y\right\rangle=\langle\widetilde{V}(X, Y), x\rangle
$$

Since $\widetilde{V}(X, Y)$ is second fundamental form of M on \mathbb{R}_{1}^{4}, so we can write as follows

$$
\widetilde{V}(X, Y)=-\langle\widetilde{V}(X, Y), \xi\rangle \xi+\langle\widetilde{V}(X, Y), x\rangle x
$$

and

$$
\tilde{V}(X, Y)=-\left\langle A_{\xi}(X), Y\right\rangle \xi+\left\langle B_{x}(X), Y\right\rangle x
$$

Let $\left\{v_{1}, v_{2}\right\}$ be a base of $T_{p} M$ tangent plane and let us denote

$$
\begin{align*}
a_{i j} & =\left\langle\widetilde{V}\left(v_{i}, v_{j}\right), \xi\right\rangle=\left\langle A_{\xi}\left(v_{i}\right), v_{j}\right\rangle \tag{3.3}\\
b_{i j} & =\left\langle\widetilde{V}\left(v_{i}, v_{j}\right), x\right\rangle=\left\langle B_{x}\left(v_{i}\right), v_{j}\right\rangle \tag{3.4}
\end{align*}
$$

Therefore

$$
\overline{\bar{D}}_{X} Y=D_{X} Y+\widetilde{V}(X, Y)
$$

and also since

$$
\bar{D}_{X} Y=D_{X} Y-\left\langle A_{\xi}(X), Y\right\rangle \xi \text { and } \bar{D}_{X} Y=\bar{D}_{X} Y-\langle X, Y\rangle x
$$

we obtain

$$
\overline{\bar{D}}_{X} Y=D_{X} Y-\left\langle A_{\xi}(X), Y\right\rangle \xi-\langle X, Y\rangle x
$$

On the other hand for $\left\{v_{1}, v_{2}\right\}$ base, we get

$$
\begin{equation*}
\overline{\bar{D}}_{v_{i}} v_{j}=D_{v_{i}} v_{j}-a_{i j} \xi-\left\langle v_{i}, v_{j}\right\rangle x \tag{3.5}
\end{equation*}
$$

If this basis is orthonormal, then we have from (3.1) and (3.2)

$$
\begin{align*}
& \overline{\bar{D}}_{v_{i}} v_{j}=D_{v_{i}} v_{j}-a_{i j} \xi, \tag{3.6}\\
& \overline{\bar{D}}_{v_{i}} \xi=-a_{i 1} v_{1}-a_{i_{2}} v_{2}, \tag{3.7}\\
& \overline{\bar{D}}_{v_{i}} x=-b_{i 1} v_{1}-b_{i 2} v_{2} . \tag{3.8}
\end{align*}
$$

3.1. Constant Timelike Angle Surfaces With Spacelike Axis

Definition 3.1. Let $U \subset \mathbb{R}^{2}$ be open set,let $x: U \rightarrow S_{1}^{3}$ be an embedding where $M=x(U)$. Let $x: M \rightarrow S_{1}^{3}$ and ξ is timelike unit normal vector field on M, if there exist a constant spacelike vector W which has a constant timelike angle with ξ, then M is called constant timelike angle surface with spacelike axis.

Since our surface is a spacelike surface, $\left\{x_{u}, x_{v}\right\}$ tangent vectors must be spacelike vectors. Let M be a spacelike surface with constant angle with spacelike axis and ξ is unit normal vector of M on S_{1}^{3}. Let us denote that the timelike angle between timelike vector ξ and spacelike vector W with θ. That is from [11]

$$
\langle\xi, W\rangle=\sin h(-\theta) .
$$

If timelike angle $\theta=0$, then $\xi=W$. Throughout this section, without loss of generality we assume that $\theta \neq 0$. If W^{T} is the projection of W on the tangent plane of M, then we decompose W as

$$
W=W^{T}+W^{N}
$$

So that we write

$$
W=W^{T}+\lambda_{1} \xi+\lambda_{2} x .
$$

If we take inner product of both sides of this inequality first with ξ, then with x

$$
\lambda_{1}=-\sin h(-\theta), \lambda_{2}=\langle W, x\rangle
$$

On the other hand, since W and x are two spacelike vector fields, then we can use define of the spacelike and timelike angle between W and x.

Theorem 3.2. i) If φ is the spacelike angle between spacelike vectors W, x then we can write for [11]

$$
W=\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} e_{1}+(\sinh \theta) \xi+\cos \varphi x
$$

and de Sitter projection W_{d} of W as follows

$$
\begin{equation*}
W_{d}=\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} e_{1}+(\sinh \theta) \xi \tag{3.9}
\end{equation*}
$$

ii)If φ is timelike angle between spacelike vectors W and x, then we can write

$$
W=\sqrt{\left|\cosh ^{2} \theta-\cosh ^{2} \varphi\right|} e_{1}+(\sinh \theta) \xi-(\cosh \varphi) x
$$

and de sitter projection W_{d} of W as follows

$$
\begin{equation*}
W_{d}=\sqrt{\left|\cosh ^{2} \theta-\cosh ^{2} \varphi\right|} e_{1}+(\sinh \theta) \xi \tag{3.10}
\end{equation*}
$$

Let $e_{1}=\frac{W^{T}}{\left\|W^{T}\right\|}$ and let consider e_{2} be a unit vector field on M orthogonal to e_{1}. Then we have an oriented orthonormal basis $\left\{e_{1}, e_{2}, \xi, x\right\}$ for \mathbb{R}_{1}^{4}. Since W_{d} is constant vector field on S_{1}^{3} and $\overline{\bar{D}}_{e_{2}} W_{d}=\bar{D}_{e_{2}} W_{d}=0$, we have

$$
\begin{equation*}
\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} \overline{\bar{D}}_{e_{2} e_{1}+(\sinh \theta)} \overline{\bar{D}}_{e_{2}} \xi=0 \tag{3.11}
\end{equation*}
$$

By (3.11), we obtain

$$
\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}\left\langle\overline{\bar{D}}_{e_{2}} e_{1}, \xi\right\rangle+(\sinh \theta)\left\langle\overline{\bar{D}}_{e_{2}} \xi, \xi\right\rangle=0
$$

or

$$
\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} a_{21}=0
$$

Since $\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} \neq 0$, we conclude $a_{21}=a_{12}=0$. Using (3.7) in (3.11), we get

$$
\begin{equation*}
\overline{\bar{D}}_{e_{2}} e_{1}=\frac{\sinh \theta}{\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}} a_{22} e_{2} . \tag{3.12}
\end{equation*}
$$

Similarly, since W_{d} is a constant vector field on S_{1}^{3}, then we have

$$
\begin{equation*}
\bar{D}_{e_{1}} W_{d}=0 \text { and } \overline{\bar{D}}_{e_{1}} W_{d}=-\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi x} \tag{3.13}
\end{equation*}
$$

By (3.9), we obtain

$$
\begin{equation*}
\overline{\bar{D}}_{e_{1}} W_{d}=\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} \overline{\bar{D}}_{e_{1}} e_{1}+\sinh \theta \overline{\bar{D}} e_{1} \xi \tag{3.14}
\end{equation*}
$$

By (3.13) and (3.14), we conclude that

$$
\begin{equation*}
\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} \overline{\bar{D}}_{e_{1}} e_{1}+\sinh \theta \overline{\bar{D}} e_{1} \xi=-\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} x \tag{3.15}
\end{equation*}
$$

By (3.15), we get

$$
\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}\left\langle\overline{\bar{D}}_{e_{1}} e_{1}, \xi\right\rangle=0
$$

or

$$
\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} a_{11}=0
$$

Since $\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi} \neq 0$, we conclude $a_{11}=0$. Also , using (3.7) in (3.15), we obtain

$$
\begin{equation*}
\overline{\bar{D}}_{e_{1} e_{1}}=-x \tag{3.16}
\end{equation*}
$$

Now we have proved the following theorem.
Theorem 3.3. If D is Levi-Civita connection for a constant timelike angle with spacelike axis spacelike surface in S_{1}^{3} is given by

$$
\begin{array}{ll}
D_{e_{1}} e_{1}=0, & D_{e_{2}} e_{1}=\frac{\sinh \theta}{\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}} a_{22} e_{2} \\
D_{e_{1}} e_{2}=0, & D_{e_{2}} e_{2}=\frac{-\sinh \theta}{\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}} a_{22} e_{1}
\end{array}
$$

Corollary 3.4. Let M be a spacelike surface which is a constant timelike angle with spacelike axis on S_{1}^{3}. Then, there exist local coordinates u and v such that the metric on M writes as $\langle\rangle=,d u^{2}+\beta^{2} d v^{2}$, where $\beta=\beta(u, v)$ is a smooth function on M, i.e. the coefficients of the first fundamental form are $E=1, F=0, G=\beta^{2}$.

Now we find the $x=x(u, v)$ parametrization of the surface M with respect to the metric $\langle\rangle=,d u^{2}+\beta^{2} d v^{2}$ on M. By the above parametrization $x(u, v)$ can obtain the following corollary.
Corollary 3.5. There exist an equation system for constant timelike angle with spacelike axis spacelike surface on S_{1}^{3} which is

$$
\left\{\begin{align*}
x_{\mathrm{u} u} & =-x \tag{3.17}\\
x_{u v} & =\frac{\beta_{u}}{\beta} x_{v} \\
x_{v v} & =-\beta \beta_{u} x_{u}+\frac{\beta_{v}}{\beta} x_{v}-\beta^{2} a_{22} \xi-\beta^{2} x
\end{align*}\right.
$$

Corollary 3.6. Let ξ be unit normal vector of the constant timelike angle with spacelike axis spacelike surface M. Then the equation below hold

$$
\left\{\begin{array}{l}
\xi_{u}=\overline{\bar{D}}_{x_{u}} \xi=0 \tag{3.18}\\
\xi_{v}=\overline{\bar{D}}_{x_{v}} \xi=-a_{22} x_{v} .
\end{array}\right.
$$

Since $\xi_{u v}=\xi_{v u}=0$, we have $\overline{\bar{D}}_{x_{u}}\left(-a_{22} x_{v}\right)=0$. Using $a_{12}=0, \overline{\bar{D}}_{x_{u}} x_{v}=$ $\overline{\bar{D}}_{x_{v}} x_{u}$ and Theorem 2.1, we obtain

$$
\begin{equation*}
\left(a_{22}\right)_{u}+\frac{\sinh \theta}{\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}}\left(a_{22}\right)^{2}=0 \tag{3.19}
\end{equation*}
$$

So that

$$
\begin{equation*}
\left(a_{22}\right)_{u}+\frac{\beta_{u}}{\beta} a_{22}=0 \tag{3.20}
\end{equation*}
$$

and than we get obtain

$$
\begin{equation*}
\left(\beta a_{22}\right)_{u}=0 . \tag{3.21}
\end{equation*}
$$

By (3.21), we see that there exist a smooth function $\psi=\psi(v)$ depending on v such that

$$
\begin{equation*}
\beta a_{22}=\psi(v) \tag{3.22}
\end{equation*}
$$

Proposition 3.7. Let $x=x(u, v)$ be parametrization of a spacelike surface which is constant timelike angle with spacelike axis on S_{1}^{3}. If $a_{22}=0$ on M, then the x describes an flat plane of de Sitter space S_{1}^{3}.

Proof. If $a_{22}=0$ on M, then by (3.18)

$$
\left\{\begin{array}{l}
\xi_{u}=0 \\
\xi_{v}=0
\end{array}\right.
$$

This imply we have ξ is a constant vector field which normal vector is M surface. Thus $x=x(u, v)$ is de-Sitter plane in S_{1}^{3}.

From now on, we are going to assume that $a_{22} \neq 0$. By solving equation (3.19), we obtain a function $\alpha=\alpha(v)$ such that

$$
a_{22}=\frac{\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}}{u \sinh \theta+\alpha(v)} .
$$

Therefore by (3.22) , we obtain

$$
\beta(u, v)=\frac{\psi(v)}{\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}}(u \sinh \theta+\alpha(v))
$$

Consequently,

$$
\begin{aligned}
& x_{\mathrm{u} u}=-x, \\
& x_{u v}=\frac{\sinh \theta \psi(v)}{u \sinh \theta+\alpha(v)} x_{v}, \\
& x_{v v}=\left[\frac{-\psi^{2}(v) \sinh \theta(u \sinh \theta+\alpha(v))}{\sinh ^{2} \theta+\sin ^{2} \varphi}\right] x_{u}+\left[\frac{\psi^{\prime}(v)}{\psi(v)}+\frac{\alpha^{\prime}(v)}{u \sinh \theta+\alpha(v)}\right] x_{v} \\
& -\left[\frac{\psi^{2}(v)(u \sinh \theta+\alpha(v))}{\left.\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}\right] \xi-\left[\frac{\psi^{2}(v)(u \sinh \theta+\alpha(v))^{2}}{\sinh ^{2} \theta+\sin ^{2} \varphi}\right] x .} .\right.
\end{aligned}
$$

Here, if we spesificly choose $\psi(v)=e^{v} \sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}$ and $\alpha(v)=e^{-v}$, then this equation system becomes

$$
\left\{\begin{align*}
x_{\mathrm{u} u} & =-x \tag{3.23}\\
x_{u v} & =\frac{e^{v} \sinh \theta}{1+u e^{v} \sinh \theta} x_{v} \\
x_{v v} & =-e^{v} \sinh \theta\left(u e^{v} \sinh \theta+1\right) x_{u}+\frac{u e^{v} \sinh \theta}{u e^{v} \sinh \theta+1} x_{v}- \\
& -e^{v} \sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}\left(u e^{v} \sinh \theta+1\right) \xi-\left(u e^{v} \sinh \theta+1\right)^{2} x
\end{align*}\right.
$$

Now we have the following Theorem.
Theorem 3.8. If M is satisfying (3.23), then there exist local coordinates u and v on M with having the parametrization

$$
\begin{equation*}
x_{i}(u, v)=\left(\frac{-c_{1 i}(v)}{2 e^{v} \sinh \theta\left(u e^{v} \sinh \theta+1\right)^{2}}+c_{2 i}(v)\right) \quad, \quad i=1,2,3,4 \tag{3.24}
\end{equation*}
$$

Proof. From (3.23), the proof is clear.
Example 3.9. We can calculate Gauss and mean curvature of a spacelike surface with constant angle spacelike axis in de Sitter space S_{1}^{3}. Since

$$
\overline{\bar{D}}_{X} \xi=\bar{D}_{X} \xi
$$

we can write

$$
\overline{\bar{D}}_{v_{i}} \xi=\left\langle\overline{\bar{D}}_{v_{i}} \xi, v_{1}\right\rangle v_{1}+\left\langle\overline{\bar{D}}_{v_{i}} \xi, v_{2}\right\rangle v_{2} .
$$

Thus from (3.7), we have

$$
\overline{\bar{D}}_{v_{i}} \xi=-a_{i 1} v_{1}-a_{i_{2}} v_{2}
$$

From $A_{\xi}\left(v_{i}\right)=-\overline{\bar{D}}_{v_{i}} \xi$ and $a_{21}=a_{12}=0, a_{11}=0$, we obtain

$$
A_{\xi}=\left(\begin{array}{cc}
0 & 0 \\
0 & a_{22}
\end{array}\right)
$$

Since eigenvalues of linear transformation $A_{p}: T_{p} M \rightarrow T_{p} M$ are principal curvatures of M at p, we obtain the following principal curvatures of M

$$
K_{1}(p)=0 \text { and } K_{2}(p)=a_{22}
$$

Hence Gauss and mean curvature of M at p are

$$
\begin{gathered}
K_{e}(p)=0 \\
H_{d}(p)=\frac{1}{2} a_{22},
\end{gathered}
$$

where a_{22} is

$$
a_{22}=\frac{\sqrt{\sinh ^{2} \theta+\sin ^{2} \varphi}}{e^{-v}+u \sinh \theta}
$$

Remark 3.10. If we consider

$$
W_{d}=\sqrt{\cosh ^{2} \theta-\cosh ^{2} \varphi} e_{1}+\sinh \theta \xi
$$

the constant direction of spacelike surface with constant timelike angle in de Sitter space S_{1}^{3}, then we obtain similar results in Theorem 3.2-i.

Remark 3.11. If the W_{d} constant direction of spacelike surface is chosen a timelike vector, then we obtain similar resultys in chapter 3.1

4. Constant Timelike Angle Tangent Surfaces

4.1. Tangent Surface with Spacelike Axis

In this section we will focus on constant timelike angle spacelike tangent surfaces with spacelike axis in de Sitter space S_{1}^{3}. (see [2] and [6] for the Minkowski ambient space and Euclidean ambient space,respectively). Let $\alpha: I \rightarrow S_{1}^{3} \subset \mathbb{R}_{1}^{4}$ be a regular spacelike curve given by arc-length. We define the tangent surface M, which is generated by α, with

$$
\begin{equation*}
x(s, t)=\alpha(s) \cos t+\alpha^{\prime}(s) \sin t, \quad(s, t) \in I \times \mathbb{R} \tag{4.1}
\end{equation*}
$$

The tangent plane at a point (s, t) of M is spanned by $\left\{x_{s}, x_{t}\right\}$, where

$$
\begin{cases}x_{s} & =\alpha^{\prime}(s) \cos t+\alpha^{\prime \prime}(s) \sin t \tag{4.2}\\ x_{t} & =-\alpha(s) \sin t+\alpha^{\prime}(s) \cos t\end{cases}
$$

By computing the coefficients of first fundamental form $\{E, F, G\}$ of M with respect to basis $\left\{x_{s}, x_{t}\right\}$, we get

$$
\left\{\begin{array}{l}
E=\left\langle x_{s}, x_{s}\right\rangle=1+\kappa_{d}^{2}(s) \sin ^{2} t, \\
F=\left\langle x_{s}, x_{t}\right\rangle=1 \\
G=\left\langle x_{t}, x_{t}\right\rangle=1 .
\end{array}\right.
$$

Hence we have

$$
E G-F^{2}=\kappa_{d}^{2}(s) \sin ^{2} t
$$

Then, since $E G-F^{2}>0$, it is obvious that M is a spacelike surface. From Frenet-Serre type formulae, we obtain

$$
\begin{cases}x(s, t) & =\alpha(s) \cos t+t(s) \sin t \tag{4.3}\\ x_{s}(s, t) & =\alpha(s) \sin t+t(s) \cos t+n(s) \kappa_{d}(s) \sin t \\ x_{t}(s, t) & =-\alpha(s) \sin t+t(s) \cos t\end{cases}
$$

Now let us calculate normal vector of M. As we already know the normal vector of M is

$$
\begin{equation*}
e=\frac{x \wedge x_{s} \wedge x_{t}}{\left\|x \wedge x_{s} \wedge x_{t}\right\|} \tag{4.4}
\end{equation*}
$$

Then, since

$$
x \wedge x_{s} \wedge x_{t}=-\left(\alpha \wedge \alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \sin t
$$

and

$$
\left\|x \wedge x_{s} \wedge x_{t}\right\|=\left|\kappa_{d} \sin t\right| \quad, \quad \kappa_{d} \neq 0
$$

we find

$$
\begin{equation*}
e= \pm \frac{\alpha \wedge \alpha^{\prime} \wedge \alpha^{\prime \prime}}{\left|\kappa_{d}\right|} \tag{4.5}
\end{equation*}
$$

Let us find W_{d} direction of constant timelike angle with spacelike axis surface M. Since (3.9) and

$$
e_{1}=\frac{x_{s}}{\left\|x_{s}\right\|} \text { and }\left\|x_{s}\right\|=\sqrt{1+\kappa_{d}^{2} \sin ^{2} t} .
$$

we get

$$
\begin{align*}
W_{d} & =\sin t \sqrt{\frac{\sinh ^{2} \theta-\sinh ^{2} \varphi}{1+\kappa_{d}^{2} \sin ^{2} t}} \alpha(s)+\cos t \sqrt{\frac{\sinh ^{2} \theta-\sinh ^{2} \varphi}{1+\kappa_{d}^{2} \sin ^{2} t}} t(s)+ \tag{4.6}\\
& +\kappa_{d}(s) \sin t \sqrt{\frac{\sinh ^{2} \theta-\sinh ^{2} \varphi}{1+\kappa_{d}^{2} \sin ^{2} t}} n(s)+e(s) \cosh \theta
\end{align*}
$$

Theorem 4.1. Let $\alpha: I \rightarrow S_{1}^{3} \subset \mathbb{R}_{1}^{4}$ be a curve with $\kappa_{d} \neq 0$. If $x(s, t)$ tangent surface is constant timelike angle surface with spacelike axis, then α curve is planarly.
Proof. Suppose that $x(s, t)$ tangent surface is constant timelike angle surface with spacelike axis such that α is a curve with $\kappa_{d} \neq 0$. Since

$$
\xi=\frac{x \wedge x_{s} \wedge x_{t}}{\left\|x \wedge x_{s} \wedge x_{t}\right\|}=e
$$

there exsist a $\theta>0$ real number such that

$$
\left\langle\xi, W_{d}\right\rangle=\left\langle e(s), W_{d}\right\rangle=\cosh \theta
$$

If we differentiate the both sides of the last equation with respect to s then we get that

$$
\left\langle e^{\prime}(s), W_{d}\right\rangle=0
$$

By the way we know that from Frenet-Serret equation system

$$
e^{\prime}(s)=\tau_{d}(s) n(s)
$$

Hence we get

$$
\begin{equation*}
\left\langle n(s), W_{d}\right\rangle=0 \text { or } \tau_{d}(s)=0 . \tag{4.7}
\end{equation*}
$$

If in equation (4.7) $\left\langle n(s), W_{d}\right\rangle=0$ then scalar producting of (4.6) equation with $n(s)$ that we have $t=0$. This is contradict with definition of tangent surface. Therefore using equation (4.7) $\tau_{d}(s)=0$ is obvious. It means that α is planarly line.

Example 4.2. Let $\alpha: I \rightarrow S_{1}^{3} \subset \mathbb{R}_{1}^{4}$ be a regular curve given by arc-length

$$
\alpha(s)=\left(s \sinh (\arccos h s), s \cosh (\arccos h s), \sqrt{1-s^{2}}, 0\right) .
$$

Since the tangent surface M generated by α as the surface parametrized by

$$
x(s, t)=\alpha(s) \cos t+\alpha^{\prime}(s) \sin t, \quad(s, t) \in I \times \mathbb{R}
$$

The picture of the Stereographic projection of tangent surface appear in Figure 1

Figure 1:

Remark 4.3. If we consider

$$
W_{d}=\sqrt{\left|\cosh ^{2} \theta-\cosh ^{2} \varphi\right|} e_{1}+\sinh \theta \xi
$$

then we will get similar result.
Remark 4.4. If the W_{d} constant direction of spacelike surface is chosen timelike, then we obtain similar results in chapter 4.1

References

1. R. Lopez, M.I. Munteanu, Constant angle surfaces in Minkowski space, Bulletin of the Belgian Math. So. Simon Stevin, Vo. 18 (2011) 2, (271-286).
2. S.Izumıya, K.Sajı, M.Takahashı, Horospherical flat surfaces in Hyperbolic 3-space, J.Math.Soc.Japan, Vol. 87 (2010), (789-849).
3. S.Izumıya, D.Peı, M.D.C.R. Fuster, The horospherical geometry of surfaces in hyperbolic 4-spaces,Israel Journal of Mathematics, Vol. 154 (2006), (361-379).
4. C.Thas, A gauss map on hypersurfaces of submanıfolds in Euclidean spaces, J.Korean Math.Soc., Vol. 16 (1979) No. 1.
5. S.Izumıya, D.Peı, T.Sano, Singularities of hyperbolic gauss map, London Math.Soc. Vol. 3 (2003), (485-512).
6. M.I.Munteanu, A.I.Nistor, A new approach on constant angle surfaces in \mathbb{E}^{3}, Turk T.Math. Vol. 33 (2009), (169-178).
7. C.Takızawa, K.Tsukada, Horocyclic surfaces in hyperbolic 3-space, Kyushu J.Math. Vol. 63 (2009), (269-284).
8. S.Izumıya, M.D.C.R. Fuster, The horospherical Gauss-Bonnet type theorem in hyperbolic space, J.Math.Soc.Japan, Vol. 58 (2006), (965-984).
9. B. O'Neill, Semi-Riemannıan Geometry with applıcations to relativity, Academic Press, New York, 1983.
10. W.Fenchel , Elementary Geometry in Hyperbolic Space, Walter de Gruyter , New York , 1989.
11. J.G.Ratcliffe, Foundations of Hyperbolic Manifolds, Springer 1948.
12. P.Cermelli, A.J. Di Scala, Constant angle surfaces in liquid crystals, Phylos. Magazine, Vol. 87 (2007), (1871-1888).
13. A.J. Di Scala, G. Ruiz-Hernandez, Helix submanifolds of Euclidean space, Monatsh. Math. DOI 10.1007 / s00605-008-0031-9.
14. G.Ruiz-Hernandez, Helix, shadow boundary and minimal submanifolds, Illinois J. Math. Vol. 52 (2008), (1385-1397).
15. F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant angle surfaces in $\mathbb{S}^{2} \times \mathbb{R}$, Monaths. Math. , Vol. 152 (2007), (89-96).
16. F. Dillen and M. I. Munteanu, Constant angle surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Bull. Braz. Math. soc. , Vol. 40 (2009), (85-97).
17. J. Fastenakels, M. I: Munteanu, J. Van der Veken, Constant angle surfaces in the Heisenberg group, Acta Math. Sinica (English Series) Vol. 27 (2011), (747-756).
18. R.Lopez, Differantial Geometry of Curves and Surfaces in Lorentz-Minkowski space, arXiv: 0810.3351 (2008).
19. T.Mert, B.Karlığa, Constant Angle Spacelike Surfaces in Hyperbolik Space H^{3}, J. Adv. Res. Appl. Math. 7(2015), no.2, (89-102).
20. M. Kasedou, Spacelike Submanifolds in De Sitter Space, Demonstratı Mathematica, Vol. XLIII (2010), 2.

Tuğba Mert
Cumhuriyet University
E-mail address: tmert@cumhuriyet.edu.tr
and
Baki Karliğa
Gazi University
E-mail address: karliga@gazi.edu.tr

[^0]: Submitted July 11, 2014. Published March 02, 2016

