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Bi Unique Range Sets -A Further Study

Abhijit Banerjee and Sanjay Mallick

abstract: The purpose of the paper is to obtain a new bi-unique range sets,
as introduced in [4] with smallest cardinalities ever for derivative of meromorphic
functions. Our results will improve all the results in connection to the bi-unique
range sets to a large extent. Some examples have been exhibited to justify our
certain claims. At last an open question have been posed for future investigations.
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1. Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane. It will be convenient to let E denote any set of
positive real numbers of finite linear measure, not necessarily the same at each
occurrence. For any non-constant meromorphic function h(z) we denote by S(r, h)
any quantity satisfying

S(r, h) = o(T (r, h)) (r −→ ∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g − a
have the same zeros with the same multiplicities. Similarly, we say that f and g
share a IM, provided that f−a and g−a have the same zeros ignoring multiplicities.
In addition we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM and we
say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

Let S be a set of distinct elements of C∪{∞} and Ef (S) =
⋃

a∈S{z : f(z)−a =
0}, where each zero is counted according to its multiplicity. If we do not count the
multiplicity the set

⋃

a∈S{z : f(z)−a = 0} is denoted by Ef (S). If Ef (S) = Eg(S)

we say that f and g share the set S CM. On the other hand if Ef (S) = Eg(S),
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we say that f and g share the set S IM. Evidently, if S contains only one element,
then it coincides with the usual definition of CM (respectively, IM) shared values.

The uniqueness theory of meromorphic functions is a vast subject. Under the
ambit of this theory several branches have been flourished. Among them set sharing
problem exists as a distinguishable entity. We start the discussion with the question
raised by Lin and Yi [17], in connection with the famous “Gross Question" {see
[9]}.
Question A. Can one find two finite sets Sj (j = 1, 2) such that any two non-
constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2
must be identical ?

To find the possible answer of the above question researchers have become more
engaged to find explicitly a set S with minimum cardinalities such that any two
meromorphic functions f and g having common poles sharing the set S become
identical {cf. [1]- [3], [5]- [8], [11], [15]- [17], [22]- [23]}. The advent of the new notion
of gradation of sharing of values and sets in [13,14] further add essence to-wards
the investigations. This notion is a scaling between CM and IM and measures how
close a shared value is to being shared IM or to being shared CM. In the following
we recall the definition.

Definition 1.1. [13,14] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Definition 1.2. [13] Let S be a set of distinct elements of C ∪ {∞} and k be a
nonnegative integer or ∞. We denote by Ef (S, k) the set ∪a∈SEk(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

Recently to study the possible answer of Question A the present first author
[4] have introduced the notion of bi unique range sets for entire or meromorphic
function with weight p, m as follows :

Definition 1.3. [4] A pair of finite sets S1 and S2 in C is called bi unique
range sets for meromorphic (entire) functions with weights p, m if for any two
non-constant meromorphic (entire) functions f and g, Ef (S1, p) = Eg(S1, p),
Ef (S2,m) = Eg(S2,m) implies f ≡ g. We write Si’s i = 1, 2 as BURSMp,m
(BURSEp,m) in short. As usual if both p = m = ∞, we say Si’s i = 1, 2 as
BURSM (BURSE).

In [4] the present first author manipulated the above definition in order to
get the possible answer of Question A for two finite sets in C, which significantly
improved the results obtained in [20] and [19]. Below we are recalling the result
in [4]. The purpose of the paper is to investigate this fact.



Bi Unique Range Sets -A Further Study 41

Theorem A. [4] Let S1 = {0, 1}, S2 =
{

z : (n−1)(n−2)
2 zn − n(n− 2)zn−1

+n(n−1)
2 zn−2 − c = 0

}

, where n(≥ 5) is an integer and c 6= 0, 1, 1
2 is a complex

number such that c2 − c+ 1 6= 0. Then Si’s i = 1, 2 are BURSM1, 3.

Theorem B. [4] Let Si, i = 1, 2 be given as in Theorem A. Then Si’s i = 1, 2
are BURSM3, 2.

It is to be observed that in [4] we were unable to diminish the cardinalities of
the range sets as mentioned in [19]. So it is natural to ask the following question.
Question 1: Can there exists any pair of range sets in the sense of Definition 1.3
whose cardinalities(s) are less than that given in Theorems A-B ?

Possible answer of the above question is the motivation of the paper. We
shall show that if we take the set sharing problem of derivatives of meromorphic
functions, in stead of the original functions, a pair of range sets with cardinalities
2 and 3 different from those used in Theorems A-B provide the answer of Question
1. Till date this is the best result obtained in terms of bi-unique range sets.

Throughout the paper for an integer n and a nonzero constant a we shall denote
−an−1

n
= c1 and β = −cn1 − acn−1

1 . Below we are giving our main theorem.

Theorem 1.4. Let S1 = {0, c1}, S2 = {z : zn + azn−1 + b = 0}, where n(≥ 3)
be an integer and a and b be two nonzero constants such that b 6= β, β

2 . Then Si’s

i = 1, 2 are bi-unique range sets with weights 1 and 3 for f (k) and g(k).

The following example shows that in Theorem 1.4 a 6= 0 is necessary.

Example 1.5. Let f(z) = 3
√
−b ez and g(z) = (−1)k 3

√
−b e−z and S1 = {0},

S2 = {z : z3 + b = 0}. Then f (k), g(k) share (Si,∞), i = 1, 2 but f (k) 6≡ g(k).

From the following example we see that if in our main result we discard −an−1
n

in S1 and replace f (k) and g(k) simply by f and g then the conclusion ceases to
hold. In other words, the presence of the element −an−1

n
in S1 is essential in that

case.

Example 1.6. Let S1 = {0}, S2 = {z : z3 + az2 + b = 0} where a 6= 0, b be so
chosen that S2 has distinct elements. Let f and g be two non-constant meromorphic

functions such that f(z) = −a ez+e2z

1+ez+e2z
, g(z) = −a 1+ez

1+ez+e2z
. Then they share

(Si,∞), i = 1, 2 but f 6≡ g.

So natural question would be whether the cardinality of the set S1 in Theorem
1.4 can further be diminished ?

It is seen from the next example that the sets Si, (i = 1, 2) in Theorem 1.4 can
not be replaced by two arbitrary sets.

Example 1.7. Let f(z) = ez and g(z) = (−1)kαe−z and for a constant α 6= 0, 12 , 1

we take S1 = {1, α}, S2 = {0, 12 , 2α}. Then f (k), g(k) share (Si,∞), i = 1, 2 but

f (k) 6≡ g(k).
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Though for the standard definitions and notations of the value distribution
theory we refer to [10], we now explain some notations which are used in the
paper.

Definition 1.8. [12] For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1) the count-
ing function of simple a points of f . For a positive integer m we denote by
N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those a points of f whose
multiplicities are not greater(less) than m where each a point is counted according
to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the
a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are
defined analogously.

Definition 1.9. [14] We denote by N2(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2).

Definition 1.10. [13,14] Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) ≡
N∗(r, a; g, f) and in particular if f and g share (a, p) then N∗(r, a; f, g) ≤ N(r, a;
f |≥ p+ 1) = N(r, a; g |≥ p+ 1).

Definition 1.11. Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f | g 6=
b1, b2, . . . , bq) the counting function of those a-points of f , counted according to
multiplicity, which are not the bi-points of g for i = 1, 2, . . . , q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two non-constant meromorphic functions defined in C as follows

F =
P (f (k))

−b
=

(

f (k)
)n−1

(f (k) + a)

−b
, G =

P (g(k))

−b
=

(

g(k)
)n−1

(g(k) + a)

−b
,

(2.1)
where n(≥ 2) and k are two positive integers and for a meromorphic function h we
put
P (h) = (h)n + a(h)n−1. Henceforth we shall denote by H and Φ the following two
functions

H =

(

F
′′

F ′
− 2F

′

F − 1

)

−
(

G
′′

G′
− 2G

′

G− 1

)

(2.2)

and

Φ =
F

′

F − 1
− G

′

G− 1
. (2.3)

Lemma 2.1. ( [14], Lemma 1) Let F , G be two non-constant meromorphic func-
tions sharing (1, 1) and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).
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Lemma 2.2. Let S1 and S2 be defined as in Theorem 1.4 and F , G be given
by (2.1). If for two non-constant meromorphic functions f and g Ef(k)(S1, p) =
Eg(k)(S1, p), Ef(k)(S2, 0) = Eg(k)(S2, 0), where 0 ≤ p < ∞ and H 6≡ 0 then

N(r,H) ≤ N(r, 0; f (k) |≥ p+1)+N

(

r,−a
n− 1

n
; f (k) |≥ p+ 1

)

+N∗(r, 1;F,G)

+N(r,∞; f) +N(r,∞; g) +N0(r, 0; f
(k+1)) +N0(r, 0; g

(k+1)),

where N0(r, 0; f
(k+1)) is the reduced counting function of those zeros of f (k+1)

which are not the zeros of f (k)
(

f (k) − an−1
n

)

(F−1) and N0(r, 0; g
(k+1)) is similarly

defined.

Proof: We note that F
′

= (f(k))n−2(nf(k)+a(n−1))f(k+1)

−b
, G

′

= (g(k))n−2(ng(k)+a(n−1))g(k+1)

−b

and

F
′′

=
(f (k))n−2(nf (k)+a(n−1))f (k+2)+(f (k))n−3(n(n−1)f (k)+a(n−1)(n−2))(f (k+1))

2

−b
,

G
′′

=
(g(k))n−2(ng(k)+a(n−1))g(k+2)+(g(k))n−3(n(n−1)g(k)+a(n−1)(n−2))(g(k+1))

2

−b
.

So

H =
(n− 1)(nf (k) + a(n− 2))f (k+1)

f (k)(nf (k) + a(n− 1))
− (n− 1)(ng(k) + a(n− 2))g(k+1)

g(k)(ng(k+1) + a(n− 1))

+
f (k+2)

f (k+1)
− g(k+2)

g(k+1)
−
(

2F
′

F − 1
− 2G

′

G− 1

)

.

Since Ef(k)(S2, 0) = Eg(k) (S2, 0) it follows that if z0 is a 0-point of f (k) (g(k))

then either g(k)(z0) = 0 (f (k)(z0) = 0) or g(k)(z0) = −an−1
n

(f (k)(z0) = −an−1
n

).
Clearly F and G share (1, 0). Since H has only simple poles, the lemma can easily
be proved by simple calculation. ✷

Lemma 2.3. [6] Let f and g be two meromorphic functions sharing (1,m), where
1 ≤ m < ∞. Then

N(r, 1; f)+N(r, 1; g)−N(r, 1; f |= 1)+

(

m−
1

2

)

N∗(r, 1; f, g) ≤
1

2
[N(r, 1; f)+N(r, 1; g)]

Lemma 2.4. [18] Let f be a non-constant meromorphic function and let

R(f) =

n
∑

k=0

akf
k

m
∑

j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where
an 6= 0 and bm 6= 0 Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.
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Lemma 2.5. Let S1 and S2 be defined as in Theorem 1.4 with n ≥ 3 and F ,
G be given by (2.1). If for two non-constant meromorphic functions f and g
Ef(k)(S1, p) = Eg(k)(S1, p), Ef(k)(S2,m) = Eg(k)(S2,m), 0 ≤ p < ∞ and Φ 6≡ 0
then

(2p+ 1)
{

N
(

r, 0; f (k) |≥ p+ 1
)

+N
(

r, c1; f
(k) |≥ p+ 1

)}

≤ N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k)).

Proof: By the given condition clearly F and G share (1,m). Also we see that

Φ =
(f (k))n−2

(

nf (k) + a(n− 1)
)

f (k+1)

−b(F − 1)
− (g(k))n−2

(

ng(k) + a(n− 1)
)

g(k+1)

−b(G− 1)
.

Let z0 be a zero or a c1- point of f (k) with multiplicity r. Since Ef(k)(S1, p) =
Eg(k)(S1, p) then that would be a zero of Φ of multiplicity min {(n − 2)r + r −
1, r + r − 1} i.e., of multiplicity min {(n− 1)r − 1, 2r − 1} if r ≤ p and a zero of
multiplicity at least min{(n− 2)(p+ 1) + p, p+ 1 + p} i.e., a zero of multiplicity
at least min{(n− 1)p+ (n− 2), 2p+1} if r > p. So using Lemma 2.4 by a simple
calculation we can write

min{(n− 1)p+ (n− 2), (2p+ 1)}
{

N(r, 0; f (k) |≥ p+ 1) +N(r, c1; f
(k) |≥ p+ 1)

}

≤ N(r, 0; Φ)

≤ T (r,Φ)

≤ N(r,∞; Φ) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

✷

Lemma 2.6. Let S1, S2 be defined as in Theorem 1.4 and F , G be given by (2.1).
If for two non-constant meromorphic functions f and g Ef(k)(S1, p) = Eg(k) (S1, p),
Ef(k)(S2,m) = Eg(k)(S2,m), where 0 ≤ p < ∞, 2 ≤ m < ∞ and H 6≡ 0, then

(n+ 1) {T (r, f (k)) + T (r, g(k)}
≤ 2

{

N(r, 0; f (k)) +N
(

r, c1; f
(k)
)}

+N
(

r, 0; f (k) |≥ p+ 1
)

+N
(

r, c1; f
(k) |≥ p+ 1

)

+ 2{N(r,∞; f) +N(r,∞; g)}

+
1

2
[N(r, 1;F ) +N(r, 1;G)]−

(

m− 3

2

)

N∗(r, 1;F,G)

+S(r, f (k)) + S(r, g(k)).
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Proof: By the second fundamental theorem we get

(n+ 1){T (r, f (k)) + T (r, g(k))} (2.4)

≤ N(r, 1;F ) +N(r, 0; f (k)) +N
(

r, c1; f
(k)
)

+N(r,∞; f) +N(r, 1;G)

+N(r, 0; g(k)) +N
(

r, c1; g
(k)
)

+N(r,∞; g)−N0(r, 0; f
(k+1))

−N0(r, 0; g
(k+1)) + S(r, f (k)) + S(r, g(k)).

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we note that

N(r, 1;F ) +N(r, 1;G) (2.5)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 1;F |= 1)−

(

m− 1

2

)

N∗(r, 1;F,G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 0; f (k) |≥ p+ 1)

+N

(

r,−a
n− 1

n
; f (k) |≥ p+ 1

)

+N(r,∞; f) +N(r,∞; g)

−
(

m− 3

2

)

N∗(r, 1;F,G) +N0(r, 0; f
(k+1)) +N0(r, 0; g

(k+1))

+S(r, f (k)) + S(r, g(k)).

Using (2.5) in (2.4) and noting that

N(r, 0; f (k)) +N
(

r, c1; f
(k)
)

= N(r, 0; g(k)) +N
(

r, c1; g
(k)
)

the lemma follows. ✷

Lemma 2.7. Let f (k), g(k) be two non-constant meromorphic functions such that

Ef(k)({0, c1}, 0) =Eg(k) ({0, c1}, 0). Then
(

f (k)
)n−1(

f (k)+a
)

≡
(

g(k)
)n−1(

g(k)+a
)

implies f (k) ≡ g(k), where n (≥ 2) is an integer, k is a positive integer and a is a
nonzero finite constant.

Proof: Let z0 be a zero of f (k) (g(k)). Then z0 must be either a 0-point or a c1-point
of g(k) (f (k)). But from the given condition if z0 is not a zero of g(k), then it must
be a zero of g(k) + a, which is impossible. So we conclude that here f (k) and g(k)

share (0,∞) and f , g share (∞,∞). We also note that Θ
(

∞; f (k)
)

+Θ
(

∞; g(k)
)

≥
2 − 2

k+1 = 2k
k+1 > 0. Now the lemma can be proved in the line of proof of Lemma

3 [16]. ✷

Lemma 2.8. Let F , G be given by (2.1) and they share (1,m). Also let ω1, ω2 . . . ωn

are the members of the set S2 as defined in Theorem 1.4. Then

N∗(r, 1;F,G) ≤ 1

m

[

N(r, 0; f (k)) +N(r, c1; f
(k))
]

+ S(r, f (k)).
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Proof: First we note that since S1 has distinct elements, c1 can not be a member
of S2. So

N∗(r, 1;F,G)

≤ N(r, 1;F |≥ m+ 1)

≤ 1

m

(

N(r, 1;F )−N(r, 1;F )
)

≤ 1

m





n
∑

j=1

(

N(r, ωj ; f
(k))−N(r, ωj ; f

(k))
)





≤ 1

m

[

N
(

r, 0; f (k+1) | f (k) 6= 0, c1

)]

≤ 1

m

[

N

(

r,∞;
f (k)(f (k) − c1)

f (k+1)

)]

≤ 1

m

[

N

(

r,∞;
f (k+1)

f (k)(f (k) − c1)

)]

+ S(r, f (k))

≤ 1

m

[

N(r, 0; f (k)) +N(r, c1; f
(k))
]

+ S(r, f (k))

✷

Lemma 2.9. [21] If H ≡ 0, then F , G share (1,∞).

Lemma 2.10. Let S1, S2 be defined as in Theorem 1.4 with n ≥ 3 an integer. If
for two non-constant meromorphic function f and g, Ef(k)(S1, p) = Eg(k) (S1, p),
Ef(k)(S2,m) = Eg(k)(S2,m), where 0 ≤ p < ∞, 2 ≤ m < ∞ and Φ 6≡ 0 then

{

N
(

r, 0; f (k)
)

+N
(

r, c1; f
(k)
)}

≤
(

m

m− 1

)

[N(r,∞; f) +N(r,∞; g)] + S(r, f (k)) + S(r, g(k)).

Proof: Using Lemma 2.5 for p = 0 and Lemma 2.8 we get

N
(

r, 0; f (k)
)

+N
(

r, c1; f
(k)
)

≤ N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k))

≤ N(r,∞; f) +N(r,∞; g) +
1

m

[

N
(

r, 0; f (k)
)

+N
(

r, c1; f
(k)
)]

+S(r, f (k)) + S(r, g(k)).

From above the lemma follows. ✷
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3. Proof of the theorem

Proof: [Proof of Theorem 1.4] Let F , G be given by (2.1). Then F and G share
(1, 3). We consider the following cases.
Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then using Lemma 2.6 for m = 3, p = 1, Lemma 2.5
for p = 0 and p = 1, Lemma 2.8 for m = 3, Lemma 2.10 and Lemma 2.4 we obtain

(n+ 1) {T (r, f (k)) + T (r, g(k))} (3.1)

≤ 2
{

N(r, 0; f (k)) +N
(

r, c1; f
(k)
)}

+N(r, 0; f (k) |≥ 2)

+N
(

r, c1; f
(k) |≥ 2

)

+ 2{N(r,∞; f) +N(r,∞; g)}

+
1

2
[N(r, 1;F ) +N(r, 1;G)]− 3

2
N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k))

≤
{

4 +
1

3

}

{

N(r,∞; f) +N(r,∞; g)
}

+
1

2
[N(r, 1;F ) +N(r, 1;G)]

+

{

1

2
+

1

3

}

N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k))

≤ 13

3

{

N(r,∞; f) +N(r,∞; g)
}

+
1

2
[N(r, 1;F ) +N(r, 1;G)]

+
5

12

{

N(r,∞; f) +N(r,∞; g)
}

+ S(r, f (k)) + S(r, g(k))

≤ 57

12

{

N(r,∞; f) +N(r,∞; g)
}

+
n

2
[T (r, f (k) + T (r, g(k)]

+S(r, f (k)) + S(r, g(k))

≤
{

n

2
+

57

24

}

[T (r, f (k) + T (r, g(k)] + S(r, f (k)) + S(r, g(k)).

(3.1) gives a contradiction for n ≥ 3.
Subcase 1.2 Let H ≡ 0. Then

1

F − 1
≡ A

G− 1
+B, (3.2)

where A 6= 0, B are constants. Also T (r, F ) = T (r,G) +O(1). i.e.,

nT (r, f (k)) = nT (r, g(k)) +O(1). (3.3)

In view of Lemma 2.9 it follows that F and G share (1,∞). We now consider
the following cases.
Subcase 1.2.1.

Let B = 0. From (3.2) we get

1

F − 1
≡ A

G− 1
.
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i.e.,
G

′ ≡ AF
′

.

i.e.,
Φ ≡ 0,

a contradiction.
Subcase 1.2.2.

If B 6= 0, then

F − 1 ≡ G− 1

BG+A−B
. (3.4)

Subcase 1.2.2.1.

If A−B 6= 0, then from (3.4) we get

F − 1 ≡ G− 1

B
(

G− (B−A
B

)
) . (3.5)

So

N(r,
B −A

B
;G) = N(r,∞;F ).

Subcase 1.2.2.1.1.

If g(k) − c1 is a repeated factor of G− B−A
B

, then

(g(k) − c1)
2
n−2
∏

i=1

(g(k) − αi) ≡
1

B

G− 1

F − 1
,

where g(k) − αi’s (i = 1, 2, . . . , n − 2) are the distinct simple factors of G − B−A
B

.

Since f (k), g(k) share {0, c1} and F , G share (1,∞) it follows that c1 points of
g(k) can not be a pole of f and so it must be an e.v.P. of g(k). Therefore αi’s are
neutralised by the poles of f . Now if z0 is a zero of g(k) − c1 of order p, then it
would be pole of f (k) of order q such that p = nq ≥ n(k + 1). So in view of the
second fundamental theorem and (3.3) we get

(n− 2)T (r, g(k)) ≤
n−2
∑

i=1

N(r, αi; g
(k)) +N(r, c1; g

(k)) +N(r,∞; g) + S(r, g(k))

i.e.,

(n− 2)T (r, g(k)) ≤ (n− 2)

n(k + 1)
T (r, g(k)) +

1

k + 1
T (r, g(k)) + S(r, g(k)),

which gives a contradiction for n ≥ 3.
Subcase 1.2.2.1.2. If (g(k) − c1) is not a factor of G− B−A

B
, then

n
∏

i=1

(g(k) − βi) ≡
1

B

G− 1

F − 1
,
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where g(k)−βi’s (i = 1, 2, . . . , n) are the distinct simple factors of G− B−A
B

. Clearly
from above we get

n
∑

i=1

N(r, βi; g
(k)) = N(r,∞; f).

Again by the second fundamental theorem we get

(n− 1)T (r, g(k)) ≤
n
∑

i=1

N(r, βi; g
(k)) +N(r,∞; g) + S(r, g(k))

≤ N(r,∞; f) +N(r,∞; g) + S(r, g(k)),

i.e., in view of (3.3)

(

n− 1− 2

k + 1

)

T (r, g(k)) ≤ S(r, g(k)),

which is a contradiction for n ≥ 3.
Subcase 1.2.2.2.

If A−B = 0, then from (3.4) we get

B

−b

(

g(k)
)n−1

(g(k) + a) ≡ G− 1

F − 1
.

Using the same argument as in Subcase 1.2.2.1.1. we get that 0 is an e.v.P. of g
and

N(r,−a; g(k)) ≤ 1

n(k + 1)
T (r, f (k)).

So by the second fundamental theorem and (3.3) we get

T (r, g(k)) ≤ N(r,−a; g(k)) +N(r, 0; g(k)) +N(r,∞; g) + S(r, g(k))

≤
{

1

n(k + 1)
+

1

k + 1

}

T (r, g(k)) + S(r, g(k)),

a contradiction for n ≥ 3.
Case 2. Suppose that Φ ≡ 0. On integration we get

(F − 1) ≡ A(G − 1) (3.6)

for some nonzero constant A. Here also in view of Lemma 2.4, (3.3) holds. Since by
the given condition of the theorem Ef (S1, 0) = Eg(S1, 0), we consider the following
cases.
Subcase 2.1. Let us first assume f (k) and g(k) share (0, 0) and (c1, 0). If one of
0 or c1 is an e.v.P. of both f (k) and g(k), then we get A = 1 and we have F ≡ G,
which in view of Lemma 2.7 implies f (k) ≡ g(k). If both 0 and c1 are e.v.P. of f (k)
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as well as of g(k) then noting that here F ≡ AG + (1 − A), suppose A 6= 1. Using
Lemma 2.4, (3.3) and the second fundamental theorem we get

nT (r, f (k))

≤ N(r, 0;F ) +N(r, 1−A;F ) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f (k)) +N(r,−a; f (k)) +N(r, 0;G) +N(r,∞; f) + S(r, f (k))

≤ (1 +
1

k + 1
)T (r, f (k)) + T (r, g(k)) + S(r, f (k))

≤ (2 +
1

k + 1
)T (r, f (k)) + S(r, f (k)),

which implies a contradiction since n ≥ 3.
Subcase 2.2. Next suppose that f (k) and g(k) do not share (0, 0) and (c1, 0). We
now consider the following subcases.
Subcase 2.2.1.

Suppose none of 0, c1 is e.v.P. of f (k) i.e., none of c1, 0 is e.v.P. of g(k). Also from
(3.6) we get

P (f (k)) + b(1−A) ≡ AP (g(k)).

Since at least one c1-point of f (k) corresponds to at least one 0-point of g(k), from
above we have

b(1−A) = β. (3.7)

Again form (3.6) we get

P (f (k))

A
≡ P (g(k))− b(1−A)

A
. (3.8)

We claim that − b(1−A)
A

6= β. For if − b(1−A)
A

= β, then in view of (3.7) we have A =

−1, which again in view of (3.7) implies b = β
2 , a contradiction. So P (g(k))− b(1−A)

A

has n distinct factors. Let them be γi, (i = 1, 2, . . . , n). Hence from (3.8) we have

n
∏

i=1

(g(k) − γi) ≡
1

A
(f (k))n−1(f (k) + a). (3.9)

Since none of γi, (i = 1, 2, . . . , n) coincides with 0 or c1, from (3.9) it follows that
0 is an e.v.P. of f (k), a contradiction to the initial assumption of this subcase.
Subcase 2.2.2.

Let one of 0 or c1 is an e.v.P. of f (k).
Subcase 2.2.2.1.

Suppose first 0 is an e.v.P. of f (k). If c1 is not an e.v.P. of g(k), then there would
be at least one z0 such that g(z0) = f(z0) = c1 and then from (3.6) we get A = 1,
which in view of Lemma 2.6 yields f (k) ≡ g(k) and we are done. So c1 must be an
e.v.P. of g(k). Now using the similar argument as used in Subcase 2.2.1., from (3.9)
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and the second fundamental theorem we get

nT (r, g(k)) ≤
n
∑

i=1

N(r, γi; g
(k)) +N(r, c1; g

(k)) +N(r,∞; g) + S(r, g(k))

≤ N(r,−a; f (k)) +
1

k + 1
T (r, g(k)) + S(r, g(k)),

which in view of (3.3) again gives a contradiction for n ≥ 3.
Subcase 2.2.2.2.

Suppose next c1 is an e.v.P. of f (k), i.e., 0 is an e.v.P. of g(k). Here noticing the fact
that in (3.6) F and G are interchangeable, using the same argument as in Subcase
2.2.2 this subcase can be disposed off. So we omit the details.
Subcase 2.2.3.

Let 0, c1 are both e.v.P. of f (k), i.e., c1, 0 are both e.v.P. of g(k), then again in
view of (3.6) we consider the following subcases.
Subcase 2.2.3.1.

Suppose F + A − 1 has n distinct zeros, ξi, i = 1, 2, . . . , n. Then (3.6) takes the
form

A(g(k))n−1(g(k) + a) ≡ (f (k) − ξ1)(f
(k) − ξ2) . . . (f

(k) − ξn).

Then from the second fundamental theorem we get

(n+ 1)T (r, f (k))

≤
n
∑

i=1

N(r, ξi; f
(k)) +N(r, 0; f (k)) +N(r, c1; f

(k)) + S(r, f (k))

≤ N(r,−a; g(k)) +
1

k + 1
T (r, f (k)) + S(r, f (k)),

which in view of (3.3) gives a contradiction for n ≥ 3.
Subcase 2.2.3.2.

Suppose F +A− 1 has n− 2 distinct zeros, ηi, i = 1, 2, . . . , n− 2 and a double zero
at c1. Then (3.6) changes to the form

A(g(k))n−1(g(k) + a) ≡
(

f (k) − c1

)2

(f (k) − η1)(f
(k) − η2) . . . (f

(k) − ηn−2).

So again from the second fundamental theorem we get

(n− 1)T (r, f (k))

≤
n−2
∑

i=1

N(r, ηi; f
(k)) +N(r, 0; f (k)) +N(r, c1; f

(k)) +N(r,∞; f) + S(r, f (k))

≤ N(r,−a; g(k)) +
1

k + 1
T (r, f (k)) + S(r, f (k)),

which in view of (3.3) gives a contradiction for n ≥ 3. ✷
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4. Concluding Remark and an Open Question

We see from the statement of Example 1.7 that conclusion of Theorem 1.4 does
not hold for any arbitrary sets different from that used in Theorem 1.4. So natural
question would be
i) Whether the sets Si used in Theorem 1.4 are the only bi-unique range sets for
the derivatives of two meromorphic functions for the case n = 3 ?
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