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Well-posedness and optimal decay rates for the viscoelastic Kirchhoff

equation

A. Guesmia, S. A. Messaoudi, C. M. Webler

abstract: In this paper, we investigate the well-posedness as well as optimal
decay rate estimates of the energy associated with a Kirchhoff-Carrier problem in n-
dimensional bounded domain under an internal finite memory. The considered class
of memory kernels is very wide and allows us to derive new and optimal decay rate
estimates then those ones considered previously in the literature for Kirchhoff-type
models.
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1. Introduction

The nonlinear vibrations of an elastic string are written in the form of partial
integro-differential equations by

ρh
∂2u

∂t2
=

(
p0 +

Eh

2L

∫ L

0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
+ f, (1.1)

for 0 < x < L and t ≥ 0, where





u is the lateral deflection,

x is the space coordenate variable while t denotes the time variable,

E represents the Young’s modulus,

ρ designates the mass density,

L indicates the string’s lengh,

h represents the cross section,

p0 denotes the axial tension,

f represents an external force.

The model (1.1) has been introduced by Kirchhoff [15] in the study of the
oscillations of stretched strings and plates, so that equation (1.1) is called the wave

Submitted May 22, 2016. Published August 19, 2016

203
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v35i3.31395


204 Guesmia, Messaoudi and Webler

equation of Kirchhoff type until now. It is worth mentioning that, when p0 = 0,
the model (1.1) is called degenerate, and when p0 > 0, we denominate it as a
non-degenerate model.

There is a large literature regarding the Kirchhoff equation. In the sequel, we
would like to mention some important works on this subject. Regarding the well-
posedness of problem (1.1), the analytic case is rather known in general dimensions,
as, for instance, [8], [9] and [25]. In what concerns solutions for (1.1) lying in
Sobolev spaces and, as far as we know, the results presented in the literature are
only local in time, as, for example, [1] and [24]. However, when equation (1.1)
is supplemented by some type of dissipative mechanism, which allows us, roughly
speaking, to derive decay rate estimates for the solutions of the linearized problen of
(1.1), it is possible to recover the global solvability in time. Consequently, deriving
global solutions in time deeply depends on the decay structure of the solutions to
the corresponding linearized problem of (1.1). Therefore, we are led naturally to
consider the Kirchhoff equation subject to a dissipative term which guarantees the
decay properties of the linearized problem. When the dissipation is given by a
frictional mechanism, like g(∂tu), there is a large body of works in the literature,
see, for instance, [2], [10], [4], [13], [16], [17], [18], [24], [21], [23] and a long list
of references therein.

In this paper, we investigate the well-posedness as well as optimal decay rate
estimates of the energy associated with the following Kirchhoff-Carrier problem
with memory:





u′′ −M(||∇u(t)||22)∆u+

∫ t

0

g(t− s)∆u(s) ds = 0 in Ω× R+ ,

u = 0 on Γ× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω ,

(1.2)

where Ω is a bounded domain in R
n, n ∈ N

∗, with smooth boundary ∂Ω := Γ.
While there is a great number of papers regarding the Kirchhoff equation subject
to a frictional damping, in contrast, there is just a few number of papers concerned
with the Kirchhoff equation subject to a dissipation given by a memory term. We
are aware solely the paper [22], where stronger conditions were considered on the
kernel of the memory term. The assumption given in (1.7), firstly introduced in
[20], is much more general and allows us to consider a wide class of kernels, and
consequently, get new and optimal decay rate estimates then those ones considered
previously in the literature for the linear viscoelastic wave equation. In the present
paper, we combine techniques given in [20] with new ingredients inherent to the
nonlinear character of the Kirchhoff equation (1.2).

It is worth mentioning some important contributions in connection with vis-
coelasticity, among them, we would like to mention [3], [5], [6], [7], [11], [12], [14],
[20], [26] and references therein.

The following assumptions are made on the function M :
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Assumption 1.1.

∃m0 > 0 : M ∈ C1(R+) and M(λ) ≥ m0, ∀λ ≥ 0. (1.3)

∃γ, δ > 0 : M(λ) ≤ δλγ , ∀λ ≥ 0. (1.4)

∃α, β > 0 : |M ′(λ)| ≤ βλα, ∀λ ≥ 0. (1.5)

We shall assume the following assumptions on the kernel g:

Assumption 1.2. The function g : R+ → R+ belongs to the class g ∈ C1(R+),
g′ ≤ 0 and, in addition

g(0) > 0 and g0 :=

∫ +∞

0

g(s) ds < m0. (1.6)

Moreover, there exists a differentiable non increasing function ξ : R+ → R
∗
+

such that

ξ′

ξ
∈ L∞(R+),

∫ +∞

0

ξ(s) ds = +∞

and

g′(s) ≤ −ξ(s)g(s), ∀s ≥ 0. (1.7)

Now, we are in a position to state our main result.

Theorem 1.3. Assume that Assumption 1.1 and Assumption 1.2 are in place.
Then, there exists an open unbounded set S in (H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω) which

contains (0, 0) such that, if (u0, u1) ∈ S, and, in addition, the initial data are taken
in bounded sets of H1

0 (Ω)×L2(Ω), problem (1.2) possesses a unique global solution
u satisfying

u ∈ L∞(R+;H
2(Ω) ∩H1

0 (Ω)) ∩W 1,∞(R+;H
1
0 (Ω)) ∩W 2,∞(R+;L

2(Ω)). (1.8)

Furthermore, we have the following decay estimates for the energy Ê given in
(2.10):

Ê(t) ≤ cÊ(0)e−θ
∫

t

0
ξ(s) ds, ∀t ≥ 0, (1.9)

where θ and c are positive constants independent of the initial data.

Our paper is organized as follows: in Section 2, we prove the general stability
(1.9). The Section 3 is devoted to the proof the well-posedness (1.8).
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2. General stability

In what follows, let us consider the Hilbert space L2(Ω) endowed with the inner
product

(u, v)L2(Ω) =

∫

Ω

u(x)v(x) dx

and the corresponding norm

||u||22 =

∫

Ω

|u(x)| 2dx,

and the Banach space Lp(Ω), for p ≥ 1, endowed by the norm

||u||pp =

∫

Ω

|u(x)|p dx.

Let −∆ be the operator defined by the triple
{
H1

0 (Ω), L
2(Ω), ((·, ·))H1

0 (Ω)

}
,

where

((u, v))H1
0 (Ω) =

∫

Ω

∇u∇v dx, ∀u, v ∈ H1
0 (Ω)

and

D(−∆) = H2(Ω) ∩H1
0 (Ω).

We recall that the Spectral Theorem for self-adjoint operators guarantees the
existence of a complete orthonormal system (ων) of L2(Ω) given by the eigenfunc-
tions of −∆. If (λν) are the corresponding eigenvalues of −∆, then

0 < λ1 ≤ λ2 ≤ · · · ≤ λν ≤ · · · and λν → +∞ when ν → +∞.

Moreover,

(
ων√
λν

)
is a complete orthonormal system in H1

0 (Ω)

and (
ων

λν

)
is a complete orthonormal system in H2(Ω) ∩H1

0 (Ω).

We denote by Vm the subspace of H2(Ω) ∩ H1
0 (Ω) generated by the first m

vectors w1, · · · , wm, namely, Vm = [w1, · · · , wm] and

um(t) =

m∑

j=1

γjm(t)ωj , (2.1)
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where um is the solution of the approximate Cauchy problem





(u′′m(t), wj)L2(Ω) +M(||∇um(t)||22)(∇um(t),∇wj)L2(Ω)

−
∫ t

0

g(t− s)(∇um(s),∇wj)L2(Ω) ds = 0, j = 1, · · · ,m,

u0m =

m∑

j=1

γjm(0)wj → u0 in H2(Ω) ∩H1
0 (Ω),

u1m =

m∑

j=1

γ′jm(0)wj → u1 in H1
0 (Ω).

(2.2)

By standard methods in differential equations, we can prove the existence of a
solution to (2.2) on some interval [0, tm). Then, this solution can be extended to
the interval R+ by using of the first estimate below.

The first estimate. Multiplying the first equation in (2.2) by γ′jm(t), j = 1, · · · ,m,
and summing the resulting expressions, we obtain

1

2

d

dt
||u′m(t)||22 +

1

2
M(||∇um(t)||22)

d

dt
||∇um(t)||22 (2.3)

−
∫ t

0

g(t− s)(∇um(s),∇u′m(t))L2(Ω) ds = 0.

Defining

M̂(λ) =

∫ λ

0

M(s) ds, (2.4)

and since

d

dt
M̂(||∇u(t)||22) =

d

dt

∫ ||∇u(t)||22

0

M(s) ds

=M(||∇u(t)||22)
d

dt
||∇u(t)||22,

then we deduce, taking (2.3) and the last identity into account,

1

2

d

dt
||u′m(t)||22 +

1

2

d

dt
M̂(||∇um(t)||22)−

∫ t

0

g(t− s)(∇um(s),∇u′m(t))L2(Ω) ds = 0.

(2.5)

Using the binary notation

(g�u)(t) =

∫ t

0

g(t− s)|u(t)− u(s)|2 ds,
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we infer

d

dt

∫

Ω

(g�∇u)(t)dx =

∫

Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx

+

∫

Ω

∫ t

0

g(t− s)
d

dt
|∇u(t)−∇u(s)|2 ds dx

=

∫

Ω

(g′�∇u)(t) dx

+2

∫

Ω

∫ t

0

g(t− s)(∇u(t)−∇u(s))∇u′(t) ds dx

=

∫

Ω

(g′�∇u)(t) dx+ 2

∫

Ω

∫ t

0

g(t− s)∇u(t)∇u′(t) ds dx

−2

∫

Ω

∫ t

0

g(t− s)∇u(s)∇u′(t) ds dx,

which implies that, for um instead of u,

−
∫ t

0

g(t−s)(∇um(s),∇u′m(t))L2(Ω) ds=
1

2

d

dt

∫

Ω

(g�um)(t)dx− 1

2

∫

Ω

(g′�∇um)(t) dx

−1

2

(∫ t

0

g(s) ds

)
d

dt
||∇um(t)||22. (2.6)

Then substituting (2.6) in (2.5) yields

1

2

d

dt
||u′

m(t)||22+
1

2

d

dt
M̂(||∇um(t)||22)+

1

2

d

dt

∫

Ω

(g�um)(t)dx−
1

2

(∫
t

0

g(s) ds

)
d

dt
||∇um(t)||22

=
1

2

∫

Ω

(g′�∇um)(t) dx,

and using

1

2

d

dt

[(∫ t

0

g(s) ds

)
||∇um(t)||22

]
=
1

2
g(t)||∇um(t)||22+

1

2

(∫ t

0

g(s) ds

)
d

dt
||∇um(t)||22,

we get

1

2

d

dt

[
||u′m(t)||22 + M̂(||∇um(t)||22)+

∫

Ω

(g�∇um)(t)dx −
(∫ t

0

g(s) ds

)
||∇um(t)||22

]

=
1

2

∫

Ω

(g′�∇um)(t) dx − 1

2
g(t)||∇um(t)||22. (2.7)

On the other hand, the hypothesis (1.3) implies that

M̂
(
||∇um(t)||22

)
=

∫ ||∇um(t)||22

0

M(s) ds ≥ m0||∇um(t)||22,
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consequently, taking (1.6) into account,

M̂
(
||∇um(t)||22

)
−
(∫ t

0

g(s) ds

)
||∇um(t)||22 ≥ (m0 − g0)||∇um(t)||22. (2.8)

Combining (2.7) and (2.8), and observing that g > 0 and g′ ≤ 0, we deduce

1

2
||u′m(t)||22 +

1

2
(m0 − g0)||∇um(t)||22 +

∫

Ω

(g�∇um)(t)dx (2.9)

≤ 1

2
||u1m||22 +

1

2
M̂(||∇u0m||22)

≤ L1

(
||u1||22, ||∇u0||22

)
, ∀t ≥ 0, ∀m ∈ N,

where L1 does not depend neither on m ∈ N nor on t ≥ 0. This implies that the
approximated solution um exists globally in the topologies given in (2.9).

Defining the energy Ê associated to problem (1.2) by

Ê(t) :=
1

2
||u′(t)||22 +

1

2
M̂(||∇u(t)||22)−

1

2

(∫ t

0

g(s) ds

)
||∇u(t)||22 (2.10)

+
1

2

∫

Ω

(g�∇u)(t)dx,

then, in view of (2.7), it is non increasing function. In addition, as a consequence
of (2.7), the following identity of the energy holds:

Ê(t2)− Ê(t1) =
1

2

∫ t2

t1

∫

Ω

(
g′✷∇u− g(t)|∇u|2

)
dxdt ≤ 0, ∀t2 ≥ t1 ≥ 0. (2.11)

Energy decay estimate. Define

(g ◦ v)(t) =
∫ t

0

g(t− s)||v(t) − v(s)||22 ds

and

(g ⋄ v)(t) =
∫ t

0

g(t− s)(v(t) − v(s)) ds.

Lemma 2.1. Let ψ ∈ L1(R+,R+) and u ∈ L2(R+;L
2(Ω)). Then

||(ψ ⋄ u)(t)||22 ≤ ||ψ||L1(R+)(ψ ◦ u)(t).



210 Guesmia, Messaoudi and Webler

Proof. Applying Hölder inequality and Fubini theorem, we have

||(ψ ⋄ u)(t)||22 =

∫

Ω

(∫ t

0

√
ψ(t− s)

√
ψ(t− s)(u(t)− u(s)) ds

)2

dx

≤
(∫ t

0

ψ(ζ) dζ

)∫ t

0

ψ(t− s)

∫

Ω

(u(t)− u(s))2 dx ds.

✷

From now on, for short notation, we shall drop the parameter "m" in um. We
have the following useful lemma:

Lemma 2.2. Let u be a solution to the approximated problem (2.2) corresponding
to initial data taken in bounded sets of H1

0 (Ω)×L2(Ω). Then, we have the following
decay rate estimate:

Ê(t) ≤ cÊ(0)e−θ
∫

t

0
ξ(s) ds, t ≥ 0,

for some positive constants c and θ which do not depend on m ∈ N.

Proof. From (2.2), we have,

(u′′(t), w)L2(Ω) + M(||∇u(t)||22)(∇u(t),∇w)L2(Ω) (2.12)

−
∫ t

0

g(t− s)(∇u(s),∇w)L2(Ω) ds = 0, ∀w ∈ Vm.

Recovering the potential energy.

Substituting w = u in (2.12), multiplying by ξ(t) and integrating over [0, T ], we
can write
∫ T

0

ξ(t)(u′′(t), u(t))L2(Ω) dt +

∫ T

0

ξ(t)M(||∇u(t)||22)||∇u(t)||22 dt (2.13)

−
∫ T

0

ξ(t)

∫ t

0

g(t− s)(∇u(s),∇u(t))L2(Ω) ds dt = 0.

Having in mind that

d

dt
ξ(t)(u′(t), u(t))L2(Ω) = ξ(t)(u′′(t), u(t)) + ξ(t)||u′(t)||22 + ξ′(t)(u′(t), u(t))L2(Ω),

from (2.13) we obtain

ξ(t)(u′(t), u(t))L2(Ω)|T0 −
∫ T

0

ξ(t)||u′(t)||22 dt−
∫ T

0

ξ′(t)(u′(t), u(t))L2(Ω) dt

+

∫ T

0

ξ(t)M(||∇u(t)||22)||∇u(t)||22 dt (2.14)

−
∫ T

0

ξ(t)

∫ t

0

g(t− s)(∇u(s),∇u(t))L2(Ω) ds dt = 0,
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and, using (1.3) from (2.14), we find

m0

∫ T

0

ξ(t)||∇u(t)||22 dt ≤ − ξ(t)(u′(t), u(t))L2(Ω)|T0 (2.15)

+

∫ T

0

ξ(t)||u′(t)||22 dt+
∫ T

0

ξ′(t)(u′(t), u(t))L2(Ω) dt

+

∫ T

0

ξ(t)

∫ t

0

g(t− s)(∇u(s),∇u(t))L2(Ω) ds dt.

Now, we will estimate separately the last terms on the right hand side of (2.15).
We have, using Cauchy-Schwarz and Young’s inequalities,

∫ T

0

ξ(t)

∫ t

0

g(t− s)(∇u(s),∇u(t))L2(Ω) ds dt

≤
∫ T

0

ξ(t)

∫ t

0

g(t− s)||∇u(s)||2||∇u(t)||2 ds dt

≤
∫ T

0

ξ(t)

∫ t

0

g(t− s) (||∇u(s)−∇u(t)||2 + ||∇u(t)||2) ||∇u(t)||2 ds dt

=

∫ T

0

ξ(t)

∫ t

0

g(t− s)||∇u(s)−∇u(t)||2||∇u(t)||2 ds dt

+

∫ T

0

ξ(t)

∫ t

0

g(t− s)||∇u(t)||22 ds dt

≤ (1 + ε)

∫ T

0

ξ(t)

∫ t

0

g(t− s)||∇u(t)||22 ds dt+
1

4ε

∫ T

0

ξ(t)(g ◦ ∇u)(t) dt;

that is,

∫ T

0

ξ(t)

∫ t

0

g(t− s)(∇u(s),∇u(t))L2(Ω) ds dt ≤ (1 + ε)g0

∫ T

0

ξ(t)||∇u(t)||22 dt
(2.16)

+
1

4ε

∫ T

0

ξ(t)(g ◦ ∇u)(t) dt.

On the other hand, because ξ′

ξ is bounded, we see that, for any ǫ0 > 0,

∫ T

0

ξ′(t)(u′(t), u(t))L2(Ω) dt ≤ c0

∫ T

0

ξ(t)

(
ǫ0||u′(t)||22 +

1

ǫ0
||∇u(t)||22

)
dt, (2.17)

where c0 = 1
2 (1 + λ

−1/2
1 )|| ξ′ξ ||L∞(R+).
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From (2.15), (2.16) and (2.17) we arrive at

m0

∫ T

0

ξ(t)||∇u(t)||22 dt ≤ −ξ(t)(u′(t), u(t))L2(Ω)|T0 + (1 + ǫ0c0)

∫ T

0

ξ(t)||u′(t)||22 dt
(2.18)

+

(
(1 + ε)g0 +

c0

ǫ0

)∫ T

0

ξ(t)||∇u(t)||22 dt+
1

4ε

∫ T

0

ξ(t)(g ◦ ∇u)(t) dt.

Recovering the kinectic energy. Substituting w = g ⋄ u ∈ Vm in (2.12) and multi-

plying by ξ(t), it results that

∫ T

0

ξ(t)(u′′(t), (g ⋄ u)(t))L2(Ω) dt (2.19)

+

∫ T

0

ξ(t)M
(
||∇u(t)||22

)
(∇u(t), (g ⋄ ∇u)(t))L2(Ω) dt

−
∫ T

0

ξ(t)

∫ t

0

g(t− s)(∇u(s), (g ⋄ ∇u)(t))L2(Ω) ds dt = 0.

But

d

dt
ξ(t)(u′(t), (g ⋄ u)(t))L2(Ω) = ξ(t)(u′′(t), (g ⋄ u)(t))L2(Ω)

+ξ(t)(u′(t), (g′ ⋄ u)(t))L2(Ω)

+ξ(t)

(
u′(t),

∫ t

0

g(t− s)u′(t) ds

)

L2(Ω)

+ξ′(t)(u′(t), (g ⋄ u)(t))L2(Ω).

Integrating the last identity over (0, T ), we obtain,

∫ T

0

ξ(t)(u′′(t), (g ⋄ u)(t))L2(Ω) dt = ξ(t)(u′(t), (g ⋄ u)(t))L2(Ω)|T0 (2.20)

−
∫ T

0

ξ′(t)(u′(t), (g ⋄ u)(t))L2(Ω) dt

−
∫ T

0

ξ(t)(u′(t), (g′ ⋄ u)(t))L2(Ω) dt

−
∫ T

0

ξ(t)

(∫ t

0

g(s) ds

)
||u′(t)||22 dt.
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Substituting (2.20) in (2.19), we conclude

∫ T

0

ξ(t)

(∫ t

0

g(s) ds

)
||u′(t)||22 dt (2.21)

= ξ(t)(u′(t), (g ⋄ u)(t))L2(Ω)|T0 −
∫ T

0

ξ(t)(u′(t), (g′ ⋄ u)(t))

+

∫ T

0

ξ(t)M
(
||∇u(t)||22

)
(∇u(t), (g ⋄ ∇u)(t))L2(Ω) dt

−
∫ T

0

ξ(t)

∫ t

0

g(t− s) (∇u(s), (g ⋄ ∇u)(t))L2(Ω) ds dt

−
∫ T

0

ξ′(t)(u′(t), (g ⋄ u)(t))L2(Ω) dt.

Let t0 > 0 such that g(t0)t0 > 0. This is possible in vertue of Assumption 1.2.
Then one has ∫ t

0

g(s) ds ≥ g(t0)t0 > 0, ∀t ≥ t0. (2.22)

Combining (2.21) and (2.22) yields

g(t0)t0

∫ T

t0

ξ(t)||u′(t)||22 dt (2.23)

≤ ξ(t)(u′(t), (g ⋄ u)(t))L2(Ω)|T0 −
∫ T

0

ξ(t)(u′(t), (g′ ⋄ u)(t))L2(Ω) dt

+

∫ T

0

ξ(t)M
(
||∇u(t)||22

)
(∇u(t), (g ⋄ ∇u)(t))L2(Ω) dt

−
∫ T

0

ξ(t)

∫ t

0

g(t− s) (∇u(s), (g ⋄ ∇u)(t))L2(Ω) ds dt

−
∫ T

0

ξ′(t)(u′(t), (g ⋄ u)(t))L2(Ω) dt, ∀T ≥ t0.

On the other hand, it is convenient to observe that

∫ T

0

ξ(t)

(∫ t

0

g(t− s)∇u(t) ds, (g ⋄ ∇u)(t)
)

L2(Ω)

dt (2.24)

=

∫ T

0

ξ(t) ((g ⋄ ∇u)(t), (g ⋄ ∇u)(t))L2(Ω) dt

+

∫ T

0

ξ(t)

(∫ t

0

g(t− s)∇u(s) ds, (g ⋄ ∇u)(t)
)

L2(Ω)

dt.
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Combining (2.23) and (2.24) we infer, for all T ≥ t0,

g(t0)t0

∫ T

t0

ξ(t)||u′(t)||22 dt ≤ ξ(t)(u′(t), (g ⋄ u)(t))L2(Ω)|T0

+

∫ T

0

ξ(t)||(g ⋄ ∇u)(t)||22 dt

−
∫ T

0

ξ(t)(u′(t), (g′ ⋄ u)(t))L2(Ω) dt

+

∫ T

0

ξ(t)M
(
||∇u(t)||22

)
(∇u(t), (g ⋄ ∇u)(t))L2(Ω) dt

−
∫ T

0

ξ(t)

(∫ t

0

g(t− s)∇u(t) ds, (g ⋄ ∇u)(t)
)

L2(Ω)

dt

−
∫ T

0

ξ′(t)(u′(t), (g ⋄ u)(t))L2(Ω) dt. (2.25)

Next, we shall analyse the terms on the right hand side of (2.25).

Estimate for I1 := ξ(t)(u′(t), (g ⋄ u)(t))L2(Ω)|T0 . We have,

I1 = ξ(T )

(
u′(T ),

∫ T

0

g(T − s)(u(T )− u(s))ds

)

L2(Ω)

. (2.26)

Thus, having in mind lemma 2.1, the definition of the energy in (2.10) and that
ξ is non increasing, we deduce

|I1| = ξ(T )|
∫ T

0

g(T − s)(u′(T ), u(T )− u(s))L2(Ω) ds| (2.27)

≤ ξ(0)

∫ T

0

g(T − s)||u′(T )||2 ||u(T )− u(s)||2 ds

≤ ξ(0)

∫ T

0

g(T − s)

(
1

2
||u′(T )||22 +

1

2
||u(T )− u(s)||22

)
ds

≤ 1

2
ξ(0)g0||u′(T )||22 +

λ
−1/2
1 ξ(0)

2

∫ T

0

g(T − s)||∇u(T )−∇u(s)||22 ds

=
1

2
ξ(0)g0||u′(T )||22 +

λ
−1/2
1 ξ(0)

2
(g ◦ ∇u)(T )

≤ ξ(0)
(
g0 + λ

−1/2
1

)
Ê(T ).

Therefore

|I1| ≤ CÊ(T ), (2.28)
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for some C > 0, which, from now on, will represent various constants do not depend
on T and m ∈ N, which is crucial in the proof.

Estimate for I2 := −
∫ T

0
ξ(t)(u′(t), (g′ ⋄ u)(t))L2(Ω) dt. Employing lemma 2.1 and

the property ξ(t) ≤ ξ(0), one has

|I2| ≤
∫ T

0

ξ(t)||u′(t)||2 ||(g′ ⋄ u)(t)||2 dt (2.29)

≤ ε

∫ T

0

ξ(t)||u′(t)||22 dt+
1

4ε

∫ T

0

ξ(t)||(g′ ⋄ u)(t)||22 dt

≤ ε

∫ T

0

ξ(t)||u′(t)||22 dt+
ξ(0)

4ε
||g′||L1(R+)

∫ T

0

(|g′| ◦ u)(t)dt

≤ ε

∫ T

0

ξ(t)||u′(t)||2 dt− ξ(0)λ
−1/2
1

4ε
||g′||L1(R+)

∫ T

0

(g′ ◦ ∇u)(t) dt,

where ε is an arbitrary positive constant.

Similarly, because ξ′

ξ is bounded, we have

| −
∫ T

0

ξ′(t)(u′(t), (g ⋄ u)(t))L2(Ω) dt| ≤ ε

∫ T

0

ξ(t)||u′(t)||2 dt (2.30)

+
λ
−1/2
1 g0

4ε
||ξ

′

ξ
||L∞(R+)

∫ T

0

ξ(t)(g ◦ ∇u)(t)dt,

where ε is an arbitrary positive constant.

Estimate for I3 :=
∫ T

0 ξ(t)M
(
||∇u(t)||22

)
(∇u(t), (g ⋄ ∇u)(t))L2(Ω) dt. Let us define:

E(t) :=
1

2
||u′(t)||22 +

1

2
||∇u(t)||22, (2.31)

the mechanical energy associated to problem (1.2). First, we observe that

Ê(t) ≥ 1

2

(
||u′(t)||22 + (m0 − g0)||∇u(t)||22

)
,

which implies that

Ê(0) ≥ Ê(t) ≥ α0E(t), ∀t ≥ 0,

where α0 = min{1,m0 − g0} (α0 > 0 in vertue of (1.6)). Thus, we get

E(t) ≤ α−1
0 Ê(t) ≤ α−1

0 Ê(0), ∀t ≥ 0. (2.32)
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Using the assumption (1.4) and taking (2.32) into account, we deduce, similarly
to the estimate (2.29),

|I3| ≤ δα
−γ
0 (2Ê(0))γ

∫ T

0

ξ(t)||∇u(t)||2 ||(g ⋄ ∇u)(t)||2 dt (2.33)

≤ ε

∫ T

0

ξ(t)||∇u(t)||22 dt+
δ2α

−2γ
0 (2Ê(0))2γ

4ε

∫ T

0

ξ(t)||(g ⋄ ∇u)(t)||22 dt

≤ ε

∫ T

0

ξ(t)||∇u(t)||22 dt+
δ2α

−2γ
0 g0(2Ê(0))2γ

4ε

∫ T

0

ξ(t)(g ◦ ∇u)(t)dt,

where ε is an arbitrary positive constant.

Estimate for I4 :=
∫ T

0 ξ(t)||(g ⋄ ∇u)(t)||22. Lemma 2.1 implies that

|I4| ≤ g0

∫ T

0

ξ(t)(g ◦ ∇u)(t) dt. (2.34)

Estimate for I5 := −
∫ T

0 ξ(t)
(∫ t

0 g(t− s)∇u(t) ds, (g ⋄ ∇u)(t)
)
L2(Ω)

dt. One has,

using again lemma 2.1,

|I5| ≤ g0

∫ T

0

ξ(t)||∇u(t)||2 ||(g ⋄ ∇u)(t)||2 dt (2.35)

≤ ε

∫ T

0

ξ(t)||∇u(t)||22 dt+
g20
4ε

∫ T

0

ξ(t)||(g ⋄ ∇u)(t)||22 dt

≤ ε

∫ T

0

ξ(t)||∇u(t)||22 dt+
g30
4ε

∫ T

0

ξ(t)(g ◦ ∇u)(t)dt.

Combining (2.25), (2.28), (2.29), (2.30), (2.33), (2.34) and (2.35), we conclude,
for all T ≥ t0,

g(t0)t0

∫ T

t0

ξ(t)||u′(t)||22 dt≤ 2ε

∫ T

0

ξ(t)||u′(t)||2 dt+ 2ε

∫ T

0

ξ(t)||∇u(t)||22 dt (2.36)

+CÊ(T ) + C

∫ T

0

(ξ(t)(g ◦ ∇u)(t)− (g′ ◦ ∇u)(t)) dt.

Multiplying (2.18) by a constant β1 > 0, adding (2.36) and having in mind
that, according to the properity ξ(t) ≤ ξ(0) and (2.32),

g(t0)t0

∫ t

0

ξ(t)||u′(t)||22 dt ≤ g(t0)t0ξ(0)

∫ t0

0

||u′(t)||22 dt ≤ CÊ(0), ∀t ∈ [0, t0]
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and

| − ξ(t)(u′(t), u(t))L2(Ω)|T0 | ≤ CÊ(0), ∀t ≥ 0,

we can write

(g(t0)t0 − 2ε− β1(1 + ǫ0c0))

∫ T

0

ξ(t)||u′(t)||22 dt (2.37)

+

(
β1

(
m0 − g0 −

c0

ǫ0

)
− ε(β1g0 + 2)

)∫ T

0

ξ(t)||∇u(t)||22 dt

≤ CÊ(0) + C

∫ T

0

(ξ(t)(g ◦ ∇u)(t)− (g′ ◦ ∇u)(t))dt, ∀T ≥ t0.

Choosing ǫ0 >
c0

m0−g0
, 0 < β1 <

g(t0)t0
1+ǫ0c0

and 0 < ε <

min

{
1
2 (g(t0)t0 − β1(1 + ǫ0c0)),

β1(m0−g0−
c0
ǫ0

)

β1g0+2

}
. Hence, from (2.37), we deduce

∫ T

0

ξ(t)||ξ(t)u′(t)||22 dt+
∫ T

0

ξ(t)||∇u(t)||22 dt (2.38)

≤ CÊ(0) + C

∫ T

0

(ξ(t)(g ◦ ∇u)(t)− (g′ ◦ ∇u)(t)) dt, ∀T ≥ t0.

Taking (2.31) and (2.38) into consideration, it results that

∫ T

0

ξ(t)E(t) dt ≤ CÊ(0)+C

∫ T

0

(ξ(t)(g ◦ ∇u)(t)−(g′ ◦ ∇u)(t)) dt, ∀T ≥ t0.(2.39)

Recalling that M̂(λ) =
∫ λ

0 M(s) ds, from (1.3) and (1.4), we infer

m0λ ≤ M̂(λ) ≤ δ

γ + 1
λγ+1, ∀λ ≥ 0. (2.40)

Considering (2.40) and using (2.32), we can write

Ê(t) =
1

2

(
||u′(t)||22 + M̂(||∇u(t)||22) + (g ◦ ∇u)(t)−

(∫ t

0

g(s) ds

)
||∇u(t)||22

)

≤ 1

2
g ◦ ∇u+

1

2

(
||u′(t)||22 +

δ

γ + 1
||∇u(t)||2γ2 ||∇u(t)||22

)
(2.41)

≤ 1

2
(g ◦ ∇u)(t) + 1

2

(
||u′(t)||22 +

δ

γ + 1

(
2

α0
Ê(0)

)γ

||∇u(t)||22
)
.

We are assuming, by assumption, that the initial data are taken in bounded
sets of H1

0 (Ω) × L2(Ω). Consequently, let L > 0 (not depending neither on m ∈ N
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nor on t ∈ R+) such that E(t) ≤ L. This implies that there exists d > 0 such that

Ê(0) < d. Then, from (2.41), we conclude

Ê(t) ≤ 1

2
(g ◦ ∇u)(t) +B0E(t), ∀t ≥ 0, (2.42)

where B0 = max

{
1,

δ(2d)γ

(γ + 1)αγ
0

}
, and, therefore

∫ T

0

ξ(t)Ê(t) dt ≤ 1

2

∫ T

0

ξ(t)(g ◦ ∇u)(t) dt+B0

∫ T

0

ξ(t)E(t) dt, ∀T ≥ 0. (2.43)

Combining (2.39) and (2.43) we deduce, for all T ≥ t0,

∫ T

0

ξ(t)Ê(t) dt ≤ CÊ(0) + C

∫ T

0

(ξ(t)(g ◦ ∇u)(t)− (g′ ◦ ∇u)(t)) dt. (2.44)

Since, according to (2.7),

Ê′(t) ≤ 1

2
(g′ ◦ ∇u)(t), ∀t ≥ 0,

it implies that
(−g′ ◦ ∇u)(t) ≤ −2Ê′(t), ∀t ≥ 0,

and consequently, from (2.44), we have

∫ T

0

ξ(t)Ê(t) dt ≤ CÊ(0) + C

∫ T

0

ξ(t)(g ◦ ∇u)(t) dt− C

∫ T

0

Ê′(t) dt, ∀T ≥ t0,

namely,

∫ T

0

ξ(t)Ê(t) dt ≤ CÊ(0) + C

∫ T

0

ξ(t)(g ◦ ∇u)(t) dt, ∀T ≥ t0. (2.45)

Once we are assuming (1.7) and because ξ is non increasing, we see that

ξ(t)(g ◦ ∇u)(t) ≤ ((ξg) ◦ ∇u)(t) ≤ −(g′ ◦ ∇u)(t) ≤ −2Ê′(t),

then, we deduce from (2.45) that

∫ T

0

ξ(t)Ê(t) dt ≤ CÊ(0)− C

∫ T

0

Ê′(t), ∀T ≥ t0, (2.46)

which leads us

∫ T

0

ξ(t)Ê(t) dt ≤ CÊ(0), ∀T ≥ t0. (2.47)
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For 0 ≤ T ≤ t0, one has, using (2.11) and the fact that ξ(t) ≤ ξ(0),

∫ T

0

ξ(t)Ê(t) dt ≤ Tξ(0)Ê(0) ≤ t0ξ(0)Ê(0),

which gives us (2.47), for all T > 0.

Let ξ̂(t) =
∫ t

0 ξ(s) ds and F (t) = Ê(ξ̂
−1

(t)). Thanks to Assumption 1.2, ξ̂

defines a bijection from R+ to R+, F is non increasing and F (0) = Ê(0), and then
(2.47) implies that

∫ T

0

F (t) dt ≤ CF (0), ∀T ≥ 0.

Consequently, by applying Theorem 9.1 in [16], we find that ther exist positive
constants c and θ not depending on Ê(0) such that

F (t) ≤ cF (0)e−θt, ∀t ≥ 0.

✷

By the definition of F , this last inequality implies the general stability (1.9),
which finishes the proof.

3. Well-posedness

Lemma 3.1 (H2(Ω) a priori bounds). Suppose that u is a local solution on [0, T [
such that

sup
t∈[0,T [

{||∇u′(t)||2, ||∆u(t)||2} < K,

for some K > 0 and T > 0. Then, the following estimate holds:

||∇u′(t)||22 + ||∆u(t)||22 ≤ CK3(Ê(0))
2α+1

2

∫ t

0

e−
θ(2α+1)

2

∫
s

0
ξ(τ) dτ ds (3.1)

+α−1
0

(
||∇u1||22 +M(||∇u0||22)||∆u0||22

)

:= G(t, I0, I1,K) on [0, T [,

with I0 = Ê(0) and I1 = ||∇u1||22 +M(||∇u0||22)||∆u0||22.

Proof. Taking w = −∆u′ ∈ Vm in the approximate problem (2.2) yields

1
2

d
dt

[
||∇u′(t)||22 +M(||∇u(t)||22)||∆u(t)||22

]
−
∫ t

0 g(t− s)(∆u(s),∆u′(s))L2(Ω) ds

=M ′(||∇u(t)||22)(∇u′(t),∇u(t))L2(Ω)||∆u(t)||22. (3.2)
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Considering similar computations as done before, from (3.2), we infer

1

2

d

dt

[
||∇u′(t)||22+M(||∇u(t)||22)||∆u(t)||22−

(∫ t

0

g(s)ds

)
||∆u(t)||22+(g ◦∆u)(t)

]

=
1

2
(g′ ◦∆u)(t) dx− 1

2
g(t)||∆u(t)||22 +M ′(||∇u||22)(∇u′(t),∇u(t))L2(Ω)||∆u(t)||22.

(3.3)

Integrating (3.3) over (0, t), t > 0, we deduce

||∇u′(t)||22 +M
(
||∇u(t)||22

)
||∆u(t)||22 −

(∫ t

0

g(s)ds

)
||∆u(t)||22 + (g ◦∆u)(t)

−
(
||∇u1||22 +M

(
||∇u0||22

)
||∆u0||22

)
(3.4)

≤ 2

∫ t

0

M ′
(
||∇u(s)||22

)
(∇u′(s),∇u(s))L2(Ω) ||∆u(s)||22 ds.

On the other hand, we have, in vertue of (1.3) of and (1.6),

||∇u′(t)||22 +M
(
||∇u(t)||22

)
||∆u(t)||22 −

(∫ t

0

g(s)ds

)
||∆u(t)||22 + (g ◦∆u)(t) dx

≥ ||∇u′(t)||22 + (m0 − g0)||∆u(t)||22 (3.5)

≥ α0

(
||∇u′(t)||22 + ||∆u(t)||22

)
.

Combining (3.4) and (3.5), and taking (1.5) and (2.32) into account, we obtain

α0

(
||∇u′(t)||22 + ||∆u(t)||22

)
−
(
||∇u1||22 +M(||∇u0||22)||∆u0||22

)
(3.6)

≤ 2

∫ t

0

|M ′(||∇u(s)||22)|||∇u′(s)||2||∇u(s)||2||∆u(s)||22 ds

≤ 2βK3

∫ t

0

||∇u(s)||2α+1
2 ds

≤ 2
2α+3

2 βK3

∫ t

0

(E(s))
2α+1

2 ds

≤ 2
2α+3

2 α
− 2α+1

2
0 βK3

∫ t

0

(Ê(s))
2α+1

2 ds.

Inequality (3.6) combined with Lemma 2.2 yields

||∇u′(t)||22 + ||∆u(t)||22 (3.7)

≤ α−1
0

(
||∇u1||22 +M(||∇u0||22)||∆u0||22

)

+CK3(Ê(0))
2α+1

2

∫ t

0 e
− (2α+1)θ

2

∫
s

0
ξ(τ) dτ ds,

which proves the Lemma 3.1. ✷
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Now, we finish the proof of (1.8) when

∫ +∞

0

e−
(2α+1)θ

2

∫
s

0
ξ(τ) dτ ds < +∞. (3.8)

Remark 3.4. Condition (3.8) as well as Assumption 1.2 are satisfied, for
example, if g converges to zero at infinity faster than 1

td
, for any d > 0, like

g1(t) = a1e
−b1(t+1)q1 and g2(t) = a2e

−b2(ln(t+eq2−1))q2 ,

where ai, bi, q1 > 0 and q2 > 1 such that ai are small enough so that (1.6) holds.
For these two particular examples, ξ is given, respectively, by

ξ(t) = b1q1(t+ 1)min{0,q1−1} and ξ(t) = b2q2(t+ eq2−1)−1(ln(t+ eq2−1))q2−1.

Howover, when g converges to zero at infinity slower than 1
td

, for some d > 0, like

g3(t) = a3(t+ 1)−q3 ,

where a3 > 0 and q3 > 1, Assumption 1.2 is satisfied with

ξ(t) = q3(t+ 1)−1

provided that a3 is small enough so that (1.6) holds. But (3.8) is not always
satisfied, since (3.8) is equivalent to 1

2 (2α+ 1)θq3 > 1.

Assume that Assumption 1.1, Assumption 1.2 and (3.8) hold, let K > 0 and
set

SK := {(u0, u1) ∈ (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω), G(t, I0, I1,K) < K2, ∀t ≥ 0}, (3.9)

and

S =
⋃

K>0

SK . (3.10)

Recalling Lemma 2.2, one can assert that u (the approximate solution con-
structed by Galerkin method) and u′ exist globally in R+. Suppose that (u0, u1) ∈
SK for some K > 0. Thus, we would like to prove that

||∆u(t)||2 < K and ||∇u′(t)||2 < K, ∀t ≥ 0. (3.11)

In order to prove (3.11), we argue by contradiction. So, assume that (3.11) does
not hold. Then, there exists some T > 0 such that

||∆u(t)||2 < K and ||∇u′(t)||2 < K, ∀t ∈ [0, T [ (3.12)

and

||∆u(T )||2 = K or ||∇u′(T )||2 = K. (3.13)
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Repeating the proof of Lemma 3.1, we see from (3.12) and (3.13) that (3.1)
remains valid, for 0 ≤ t < T , so that, taking (3.9) into account, one has

||∇u′(T )||22 + ||∆u(T )||22 ≤ G(T, I0, I1,K) ≤ lim
t→+∞

G(t, I0, I1,K) < K2, (3.14)

which contradicts (3.13). Thus, we have shown (3.11). As a consequence, we
can repeat the continuation procedure indefinitely and we can conclude that, if
(u0, u1) ∈ S, the solution u can be continued globally on R+ and (u(t), u′(t)) ∈ S,
for all t ≥ 0.

Uniqueness. Let u and v be two solutions to problem (1.2). Then w = u− v

satisfies 



w′′ −M(||∇u(t)||22)∆w +

∫ t

0

g(t− s)∆w(s) ds

=
(
M(||∇u(t)||22)−M(||∇v(t)||22)

)
∆v in Ω× R+,

w = 0 on Γ× R+,

w(0) = w′(0) = 0 in Ω.

(3.15)

Taking the inner product in L2(Ω) of the first equation of the above system
with w′, we deduce

1

2

d

dt

[
||w′(t)||22+M

(
||∇u(t)||22

)
||∇w(t)||22−

(∫ t

0

g(s)ds

)
||∇w(t)||22+(g ◦ ∇w)(t)

]

=
1

2
(g′ ◦ ∇w)(t)− 1

2
g(t)||∇w(t)||22+M ′

(
||∇u||22

)
(∇u′(t),∇u(t))L2(Ω) ||∇w(t)||22

+
(
M
(
||∇u(t)||22

)
−M

(
||∇v(t)||22

))
(∆v(t), w′(t))L2(Ω) ,

which implies

1
2

d

dt

[
||w′(t)||22 +M

(
||∇u(t)||22

)
||∇w(t)||22 −

(∫
t

0
g(s)ds

)
||∇w(t)||22 + (g ◦ ∇w)(t)

]

≤ M ′
(
||∇u||22

)
(∇u′(t),∇u(t))

L2(Ω) ||∇w(t)||22

+
(
M

(
||∇u(t)||22

)
−M

(
||∇v(t)||22

))
(∆v(t), w′(t))

L2(Ω) .

Making use of the main value theorem, we infer

|M
(
||∇u(t)||22

)
−M

(
||∇v(t)||22

)
| ≤ C|||∇u(t)||22 − ||∇v(t)||22|

≤ C (||∇u(t)||2 + ||∇v(t)||2) ||∇u(t)||2
−||∇v(t)||2|

≤ C||∇w(t)||2.
Thus,

1

2

d

dt

[
||w′(t)||22+M

(
||∇u(t)||22

)
||∇w(t)||22−

(∫ t

0

g(s)ds

)
||∇w(t)||22+(g ◦ ∇w)(t)

]

≤ C
(
||∇w(t)||22 + ||∇w(t)||2||w′(t)||2

)
.
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Integrating the last inequality over (0, t) and noting that w(0)=w′(0)=0 yields

1

2

(
||w′(t)||22+(m0−g0)||∇w(t)||22+(g ◦ ∇w)(t)

)
≤ C

∫ t

0

(
||w′(s)||22 + ||∇w(s)||22

)
ds.

This implies that

||w′(t)||22 + ||∇w(t)||22 ≤ C

∫ t

0

(||w′(s)||22 + ||∇w(s)||22) ds, ∀t ≥ 0,

which, by Gronwall’s inequality, implies w = 0. This completes the proof of (1.8)
in case (3.8).
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