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A variation on arithmetic continuity

Huseyin Cakalli

abstract: A sequence (xk) of points in R, the set of real numbers, is called
arithmetically convergent if for each ε > 0 there is an integer n such that for every
integer m we have |xm − x<m,n>| < ε, where k|n means that k divides n or n

is a multiple of k, and the symbol < m, n > denotes the greatest common divisor
of the integers m and n. We prove that a subset of R is bounded if and only if
it is arithmetically compact, where a subset E of R is arithmetically compact if
any sequence of point in E has an arithmetically convergent subsequence. It turns
out that the set of arithmetically continuous functions on an arithmetically compact
subset of R coincides with the set of uniformly continuous functions where a function
f defined on a subset E of R is arithmetically continuous if it preserves arithmetically
convergent sequences, i.e., (f(xn) is arithmetically convergent whenever (xn) is an
arithmetic convergent sequence of points in E.

Key Words: arithmetical convergent sequences, boundedness, uniform conti-
nuity
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1. Introduction

The concept of continuity and any concept involving continuity play a very
important role not only in pure mathematics but also in other branches of sci-
ences involving mathematics especially in computer science, information theory,
biological science.

A real function f defined on R is continuous if and only if it preserves Cauchy
sequences, i.e., (f(xn)) is a Cauchy sequence whenever (xn) is. Using the idea
of continuity of a real function in terms of sequences in the sense that a function
preserves a certain kind of sequences in the above manner, many kinds of continu-
ities were introduced and investigated, not all but some of them we recall in the
following: slowly oscillating continuity ( [7]), quasi-slowly oscillating continuity (
[18]), ward continuity ( [15]), δ-ward continuity ( [8]), statistical ward continuity
( [10]), λ-statistical ward continuity ( [24]), ρ-statistical ward continuity ( [4]), la-
cunary ward continuity ( [12], strongly lacunary ward continuity ( [3]), and which
enabled some authors to obtain conditions on the domain of a function for some
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characterizations of uniform continuity (see [39, Theorem 6], [2, Theorem 1 and
Theorem 2], [18, Theorem 2.3], [24, Theorem 5]).

The purpose of this paper is to give a further investigation of the concept
of arithmetic continuity of a real function given in [40], and prove interesting
theorems.

2. Arithmetic continuity

A sequence x = (xk) of points in R and k, n ∈ N the notation
∑

k|n xk means the
finite sum of all the numbers xk as k ranges over the integers that divide n including
1 and n. In general for integers k and n, we write k|n to mean k divides n or n

is a multiple of k. We use the symbol < m,n > to denote the greatest common
divisor of two integers m and n. In [37], W.H.Ruckle, introduced the notions
arithmetically summable and arithmetical convergence as follows: A sequence x =
(xk) of points in R is called arithmetically summable if for each ε > 0 there is an
integer n such that for every integer m we have |

∑
k|n xk −

∑
k|<m,n> xk| < ε, and

a sequence y = (yk) is called arithmetically convergent if for each ε > 0 there is
an integer n such that for every integer m we have |ym − y<m,n>| < ε. A sequence
(xk) is arithmetically summable if and only if the sequence y = (yn) defined by
yn = Σk|nxk is arithmetically convergent, but the sequence y is not convergent in
the ordinary sense, and is in fact periodic. Recently, in [40], Yaying and Hazarika
introduced the concepts of arithmetic continuity and arithmetic compactness in
the senses that a function f defined on a subset E of R is arithmetically continuous
if it preserves arithmetically convergent sequences, i.e., (f(xn) is arithmetically
convergent whenever (xn) is an arithmetic convergent sequence of points in E, and
a subset E of R is arithmetically compact if any sequence of point in E has an
arithmetically convergent subsequence. First, we note that any finite subset of R
is arithmetically compact, the union of two arithmetically compact subsets of R is
arithmetically compact and the intersection of any family of arithmetically compact
subsets of R is arithmetically compact. Any G-sequentially compact subset of
R is arithmetically compact for a regular subsequential method G (see [6], [9]).
Furthermore any subset of an arithmetically compact set is arithmetically compact,
any bounded subset of R is arithmetically compact, any slowly oscillating compact
subset of R is arithmetically compact (see [7] for the definition of slowly oscillating
compactness). These observations suggest to us the following.

Theorem 2.1. A subset E of R is bounded if and only if it is arithmetically

compact.

Proof: If E is a bounded subset of R, then any sequence of points in E has a con-
vergent subsequence which is also arithmetically convergent. Conversely, suppose
that E is not bounded. If it is not bounded below, then pick an element x1 of E less
than 0. Then we can choose an element x2 of E such that x2 < −1+ x1. Similarly
we can choose an element x3 of E such that x3 < −2+x1+x2. We can inductively
choose xk+1 satisfying xk+1 < −k+

∑k

1
xi for each k ∈ N. Hence |xn−xm| ≥ 1 for
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each n,m ∈ N. Then the sequence (xk) does not have any arithmetically conver-
gent subsequence. If E is unbounded above, then we can find a y1 greater than 0.
Then we can pick a y2 such that y2 > 1+y1+y2. We can successively find for each
k ∈ N a yk+1 such that yk+1 > k +

∑k

1
yi. Then |ym − yn| > k for each m,n ∈ N.

Then the sequence (yk) does not have any arithmetically convergent subsequence.
Thus E is not arithmetically compact. This completes the proof. ✷

Corollary 2.2. A subset of R is arithmetically compact if and only if it is ρ-

statistically compact.

Proof: The proof follows from [4, Theroem 1], and the preceding theorem, so is
omitted. ✷

According to Theorem 2.1, we see that arithmetical compactness coincides with
not only ρ-statistical ward compactness (( [4]), but also ward compactness, p-ward
compactness ( [16]), statistical ward compactness ( [10]), λ-statistical ward com-
pactness ( [24]), lacunary statistical ward compactness ( [12]), strongly lacunary
ward compactness ( [3]), Abel ward compactness ( [11]), and I-ward compactness
for a nontrivial admissible ideal I ( [20], [16]).

We also see that arithmetical compactness and closedness together coincide
with not only compactness, but also statistical sequential compactness ( [10]), λ-
statistical sequential compactness ( [24]), ρ-statistical ward compactness ( [4], lacu-
nary statistical sequential compactness ( [12]), strongly lacunary sequential com-
pactness ( [3]), Abel sequential compactness ( [11]), and I-sequential compactness
for a nontrivial admissible ideal I ( [20], [16]).

Yaying and Hazarika also introduced the concept of arithmetic continuity in
the sense that a function defined on a subset E of R is arithmetically continuous
if it preserves arithmetically convergent sequences, i.e. (f(xn)) is an arithmeti-
cally convergent sequence whenever (xn) is. We note that arithmetical continuity
cannot be obtained by any sequential method G. Yaying and Hazarika proved
that the composition of two arithmetically continuous functions is arithmetically
continuous, the the sum of two arithmetically continuous functions is arithmeti-
cally continuous, and absolute value of an arithmetically continuous function is
arithmetically continuous.

We note that it follows from [40, Theorem 2.6] that for functions defined on
intervals, not only ward continuity, but also p-ward continuity, statistical ward
continuity, λ-statistical ward continuity, ρ-statistical ward continuity imply arith-
metical continuity.

In connection with arithmetical convergent sequences, and convergent sequences
the problem arises to investigate the following types of ŞcontinuityŤ of functions
on R.

(AC) (xn) ∈ AC ⇒ (f(xn)) ∈ AC

(ACc) (xn) ∈ AC ⇒ (f(xn)) ∈ c
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(c) (xn) ∈ c ⇒ (f(xn)) ∈ c

(cAC) (xn) ∈ c ⇒ (f(xn)) ∈ AC

We see that (AC) is the arithmetical continuity of f , and (c) is the ordinary
continuity of f . It is easy to see that (ACc) implies (AC), and (AC) does not
imply (ACc); and (AC) implies (cAC).

Now we give the implication (AC) implies (c), i.e. any arithmetically continuous
function is continuous.

Theorem 2.3. If f is arithmetically continuous on a subset E of R, then it is

continuous on E.

Proof: Assume that f is an arithmetically continuous function on E. Let (xn) be
any convergent sequence with limk→∞ xk = ℓ. Then the sequence

(x1, ℓ, x2, ℓ, ℓ, x3, ℓ, ℓ, ℓ, x4, ..., xn−1, ℓ, ℓ, ℓ, ..., ℓ, xn, ℓ, ...)

is convergent to ℓ. Hence it is arithmetically convergent. Since f is arithmetically
continuous, the sequence

(f(x1), f(ℓ), f(x2), f(ℓ), f(ℓ), f(x3), f(ℓ), f(ℓ), f(ℓ),

f(x4), ..., f(xn−1), f(ℓ), f(ℓ), f(ℓ), ..., f(ℓ), f(xn), ...)

is arithmetically convergent. It follows from this that the sequence (f(xn)) con-
verges to f(ℓ). This completes the proof of the theorem. ✷

Related to G-continuity we have the following result.

Corollary 2.4. If f is arithmetically continuous, then it is G-continuous for any

regular subsequential method G.

The preceding corollary ensures that arithmetical continuity implies either of
the following continuities; ordinary continuity, statistical continuity, λ-statistical
continuity ( [24]), ρ-statistical continuity ( [4]), lacunary statistical continuity ( [5]),
and I-sequential continuity for any non trivial admissible ideal I of N ( [20]).

It is well known that any continuous function on a compact subset E of R is
uniformly continuous on E. For arithmetically continuous functions we have the
following result.

Theorem 2.5. Let E be a arithmetically compact subset E of R and let

f : E −→ R be an arithmetically continuous function on E. Then f is uniformly

continuous on E.

Proof: Suppose that f is not uniformly continuous on E so that there exists an
ε0 > 0 such that for any δ > 0 x, y ∈ E with |x − y| < δ but |f(x) − f(y)| ≥ ε0.
For each positive integer n, there are xn and yn such that |xn − yn| <

1

n
, and
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|f(xn)− f(yn)| ≥ ε0. Since E is arithmetically compact, there exists an arithmeti-
cally convergent subsequence (xnk

) of the sequence (xn). It is clear that the corre-
sponding subsequence (ynk

) of the sequence (yn) is also arithmetically convergent.
Then the sequence (xn1

, yn1
, xn2

, yn2
, xn3

, yn3
, ..., xnk

, ynk
, ...) is arithmetically con-

vergent. But the transformed sequence

(f(xn1
), f(yn1

), f(xn2
), f(yn2

), f(xn3
), f(yn3

), ..., f(xnk
), f(ynk

), ...)

is not arithmetically convergent. Thus f does not preserve arithmetical convergent
sequences. This contradiction completes the proof of the theorem. ✷

Corollary 2.6. If a function f is arithmetically continuous on a bounded subset

E of R, then it is uniformly continuous on E.

Proof: The proof easily follows from Theorem 2.5 and Lemma 2.1, so it is omitted.
✷

We note that arithmetical continuity on bounded subsets coincides with not only
ward continuity, but also p-ward continuity ([17]), statistical ward continuity ([10]),
λ-statistical ward continuity ( [24]), ρ-statistical ward continuity ( [4]), lacunary
statistical ward continuity ( [12]), strongly lacunary ward continuity ( [3]), and I-
ward continuity for a nontrivial admissible ideal I ( [20], [16]).

Corollary 2.7. Arithmetically continuous image of any bounded subset of R is

arithmetically compact.

The proof follows from [40, Theorem 4.2] and 2.1, so it is omitted.

Corollary 2.8. Arithmetical continuous image of a G-sequentially compact subset

of R is arithmetically compact for any subsequential regular method G.

Proof: The proof follows from [6, Corollary 5] and Theorem 2.1, so it is omitted.
✷

Write f ∈ (cAC), and say (cAC)-continuous if f transforms convergent se-
quences into arithmetical convergent sequences, i.e. (xn) ∈ c ⇒ (f(xn)) ∈ AC. It
is a well known result that uniform limit of a sequence of continuous functions is
continuous. This is also true in case of (cAC)-continuity, i.e. uniform limit of a
sequence of functions of points in (cAC) is (cAC)-continuous.

Theorem 2.9. If (fn) is a sequence of functions defined on a subset E of R in

(cAC) and (fn) is uniformly convergent to a function f , then f ∈ (cAC).

Proof: Let ε be a positive real number and (xk) be any convergent sequence of
points in E. By uniform convergence of (fn) there exists a positive integer N such
that |fn(x)−f(x)| < ε

3
for all x ∈ E whenever n ≥ N . As fN is (cAC)-continuous,

there exists an n0 ∈ N, greater than N such that

|fN (xm)− fN(x<m,n>)| <
ε

3
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for every m ≥ n0. Now it follows that
|f(xm)− f(x<m,n>)| ≤
≤ |f(xm) − fN(xm))| + |fN(xm)) − fN(x<m,n>)| + |fN (x<m,n>) − f(x<m,n>)| <
ε
3
+ ε

3
+ ε

3
= ε.

This completes the proof of the theorem. ✷

Theorem 2.10. The set of all (cAC)-continuous functions on a subset E of R is a

closed subset of the set of all continuous functions on E, i.e. (cAC(E)) = (cAC(E))
where (cAC(E)) is the set of all (cAC)-continuous functions on E, (cAC(E)) de-

notes the set of all cluster points of (cAC(E)).

Proof: Let f be any element in the closure of (cAC(E)). Then there exists a
sequence of points in (cAC(E)) such that limk→∞ fk = f . To show that f is
(cAC)-continuous, take any convergent sequence (xk) of points in E. Let ε > 0.
Since (fk) converges to f , there exists an N such that for all x ∈ E and for all
n ≥ N , |f(x)− fn(x)| <

ε
3
. As fN is (cAC)-continuous, we have

|fN (xm)− fN (x<m,n>)| <
ε
3
. On the other hand,

|f(xm)− f(x<m,n>)|
≤ |f(xm)− fN (xm)|+ |fN (xm)− fN (x<m,n>)|+ |fN (x<m,n>)− f(x<m,n>)|.
Now it follows that
|f(xm)− f(x<m,n>)| < ε.

This completes the proof of the theorem. ✷

Corollary 2.11. The set of all (cAC(E))-continuous functions on a subset E of

R is a complete subspace of the space of all continuous functions on E.

Proof: The proof easily follows from Theorem 2.10, so is omitted. ✷

3. Conclusion

In this paper we give a further investigation on arithmetical ward continuity
introduced in [40], presenting theorems related to this kind of continuity, and some
other kinds of continuities. One may expect this investigation to be a useful tool in
the field of analysis in modeling various problems occurring in many areas of science,
dynamical systems, computer science, information theory, and biological science.
It turns out that the set of uniformly continuous functions coincides with the set of
arithmetically continuous functions on bounded subsets of R. On the other hand,
we suggest to investigate arithmetically convergent sequences of fuzzy points or soft
points (see [22], for the definitions and related concepts in fuzzy setting, and see
[1] related concepts in soft setting). We also suggest to investigate arithmetically
convergent double sequences (see for example [32], [35], [31], [36], [34], and [21]
for the definitions and related concepts in the double sequences case). For another
further study, we suggest to investigate arithmetically convergent sequences in a
abstract metric space (see [25], [33], [23], and [38]). Yet another further study,
our suggestion is to investigate the theory in 2-normed spaces (see [19], [26] for
the related concepts).
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