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On multiplicative difference sequence spaces and related dual
properties
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abstract: The main purpose of the present article is to introduce the multiplica-
tive difference sequence spaces of order m by defining the multiplicative difference

operator ∆m
∗
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for all m, k ∈ N. By

using the concept of multiplicative linearity some topological properties are investi-
gated and determined their dual spaces via multiplicative infinite matrices.
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1. Introduction

The concept of difference sequence space was initially introduced by Kızmaz
[1]. Also Et and Çolak [2] generalized difference sequence spaces by defining
λ(∆m) = {x = (xk) : ∆m(x) ∈ λ}, where λ ∈ {ℓ∞, c, c0}, m ∈ N, the set of
non-negative integers, ∆0x = (xk),∆

mx = (∆m−1xk − ∆m−1xk+1) and ∆mxk =
∑m

i=0(−1)i
(

m
i

)

xk+i. These are Banach spaces with the norm defined by ‖x‖∆m =
∑m

i=1 |xi| + supk |∆
mxk|. Also this type sequence spaces were studied by many

authors the reader may refer to [3,4,5,6,7].

Let ω∗ be the space of all positive real valued sequences defined by

ω∗ = {x = (xk) | x : N → R
+, k → xk},

and any subspace of ω∗ is called a sequence space over the real field R
+.
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Quite recently Çakmak and Başar [8] have defined the multiplicative sets ℓ∗∞,
c∗, c∗0 and ℓ∗1 of sequences as follows:

ℓ∗∞ :=

{

x = (xk) ∈ ω∗ : sup
k∈N

|xk|
∗ < ∞

}

,

c∗ :=

{

x = (xk) ∈ ω∗ : ∃l ∈ R
+ ∋ ∗lim

k→∞
|xk/l|

∗ = 1

}

,

c∗1 :=

{

x = (xk) ∈ ω∗ : ∗lim
k→∞

|xk|
∗ = 1

}

,

ℓ∗1 :=

{

x = (xk) ∈ ω∗ :
∏

k

|xk|
∗ < ∞

}

.

In particular the sets ℓ∗∞, c∗ and c∗0 of sequences over R
+, normed by ‖ · ‖∞ =

supk∈N |xk|
∗, it is proved that these are all Banach spaces. Also Kadak [9] have

examined the spaces bs∗, cs∗ and cs∗1 defined by

bs∗ :=







x = (xk) ∈ ω∗ :

( k
∏

j=0

xj

)

∈ ℓ∗∞







,

cs∗ :=







x = (xk) ∈ ω∗ :

( k
∏

j=0

xj

)

∈ c∗







,

cs∗1 :=







x = (xk) ∈ ω∗ :

( k
∏

j=0

xj

)

∈ c∗1







.

Now, we define the sets

ℓ∞(∆m
∗ ) = {x = (xk) ∈ ω∗ : ∆m

∗ x ∈ ℓ∗∞}

c(∆m
∗ ) = {x = (xk) ∈ ω∗ : ∆m

∗ x ∈ c∗}

c1(∆
m
∗ ) = {x = (xk) ∈ ω∗ : ∆m

∗ x ∈ c∗1}

where m ∈ Z, ∆0
∗x = (xk), ∆∗x = (xk/xk+1), ∆

m
∗ x = (∆m−1

∗ xk/∆
m−1
∗ xk+1) and

so that

∆m
∗ (xk) = xk x

−(m1 )
k+1 x

(m2 )
k+2 x

−(m3 )
k+3 x

(m4 )
k+4 . . . x

(−1)m(mm)
k+m . (1.1)

Also the inverse operator can be interpreted as:

∆−m
∗ (xk) = xk xm

k+1 x
m(m+1)

2!

k+2 x
m(m+1)(m+2)

3!

k+3 . . . xm+1
k+m. (1.2)

For instance,

• ∆2
∗(xk) =

(

xkxk+2

x2
k+1

)

=
(

x0x2

x2
1
, x1x3

x2
2
, · · · ,

xkxk+2

x2
k+1

, · · ·
)
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• ∆3
∗(xk) =

(

xkx
3
k+2

x3
k+1xk+3

)

=
(

x0x
3
2

x3
1x3

,
x1x

3
3

x3
2x4

, · · · ,
xkx

3
k+2

x3
k+1xk+3

, · · ·
)

• ∆−2
∗ (xk) =

(

xkx
2
k+1x

3
k+2

)

=
(

x0x
2
1x

3
2, x1x

2
2x

3
3, . . . , xkx

2
k+1x

3
k+2, . . .

)

.

The main focus of this paper is to extend the difference sequence spaces of order
m defined earlier to the multiplicative form of these spaces. Moreover, by using
multiplicative difference operator ∆m

∗ , the duals of these spaces are investigated
with respect to the multiplicative infinite matrices.

2. Preliminaries and definitions

In the period from 1967 till 1972, Grossman and Katz [10] introduced the non-
Newtonian calculus consisting of the branches of geometric, bigeometric, quadratic
and biquadratic calculus etc. Also Grossman extended this notion to the other fields
in [11,12]. Many authors have extensively developed the notion of multiplicative
calculus. The complete mathematical description of multiplicative calculus, was
given by Bashirov et al. [13]. Also some authors have also worked on the classical
sequence spaces and related topics by using this type calculus [14,15]. Further
Kadak et al. [16,17,18] have examined matrix transformations between certain
sequence spaces and have generalized Runge-Kutta numerical method.

Definition 2.1. [13] Let X be a nonempty set. A multiplicative metric (*metric)
is a mapping d∗ : X ×X → R

+ satisfying the following conditions:

(i) d∗(x, y) ≥ 1 for all x, y ∈ X and d∗(x, y) = 1 if and only if x = y;

(ii) d∗(x, y) = d∗(y, x) for all x, y ∈ X;

(iii) d∗(x, y) ≤ d∗(x, z) ·d∗(y, z) for all x, y, z ∈ X (multiplicative triangle inequal-
ity).

The multiplicative absolute value of x ∈ R
+ is defined by

|x|∗ =

{

x , (x ≥ 1),
1/x , (x < 1).

(2.1)

On the base of this, one can define multiplicative metric spaces as alternative to
the ordinary metric spaces.

Definition 2.2. [8] Let X = (X, d∗) be a *metric space. Then, the basic notions
are given as follows:

(a) A sequence (xn) in X = (X, d∗) is said to be multiplicative convergent (*con-
vergent) if for every given ε > 1, there exist an n0 = n0(ε) ∈ N and x ∈ X
such that d∗(xn, x) < ε for all n > n0 and, is denoted by ∗limn→∞ xn = x or

xn
∗
−→ x, as n → ∞.

(b) A sequence (xn) ∈ (X, d∗) is said to be multiplicative bounded (*bounded) if
there exists a number M such that |xn|

∗ ≤ M for every natural number n.
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(c) A sequence (xn) in X = (X, d∗) is said to be multiplicative Cauchy (*Cauchy)
if for every ε > 1 there is an n0 = n0(ε) ∈ N such that d∗(xn, xm) < ε for all
m,n > n0.

(d) A *complete metric space is a *metric space in which every *Cauchy sequence
is *convergent.

Now, we give the basic concepts *open and *closed sets.

Definition 2.3. Given any point x0 ∈ X. Then, for a real number r > 0,

B(x0; r) = {x ∈ X | d∗(x, x0) < r}

is a *neighborhood (or *open ball) of centre x0 and radius r and

B[x0; r] = {x ∈ X | d∗(x, x0) ≤ r}

is a *closed ball of centre x0 and radius r.

Definition 2.4. Let (X, d∗) be a *metric space. Then G ⊂ X is called *open set if
and only if every point of G has a *neighborhood contained in G. Similarly G ⊂ X
is called *closed set if and only if its complement is *open.

Definition 2.5. [17] A multiplicative vector space (*vector space) over the field
R

+ is a set V ⊂ R
2 on which two operations are defined, called *addition and scalar

*multiplication, and denoted (⊕) and (⊙) by

⊕ : V × V −→ V

(u, v) −→ u⊕ v = (u1v1, u2v2),

⊙ : R+ × V −→ V

(λ, u) −→ λ⊙ u = (uλ
1 , u

λ
2 )

where the *vectors u = (u1, u2), v = (v1, v2) ∈ V and the scalar λ ∈ R
+. Then the

operations must satisfy the following conditions:

(a) For all λ ∈ R
+ and all u, v ∈ V , u ⊕ v and λ ⊙ v are uniquely defined and

belong to V .

(b) For all ξ, η ∈ R
+ and all u, v, w ∈ V , u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ w and

ξ ⊙ (η ⊙ v) = (ξ ⊙ η)⊙ v.

(c) For all u, v ∈ V , u⊕ v = v ⊕ u.

(d) The set V contains an additive identity element, denoted by θA = (1, 1), such
that for all u ∈ V , u⊕ θA = u.

(e) The set V contains an additive inverse element, denoted by u−1
+ =(1/u1, 1/u2)

∈ V , such that for all u ∈ V , u⊕ u−1
+ = u−1

+ ⊕ u = θA.
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(f) For all ξ, η ∈ R
+ and all u, v ∈ V , ξ ⊙ (u ⊕ v) = (ξ ⊙ u) ⊕ (ξ ⊙ v) and

(ξ ⊕ η)⊙ u = (ξ ⊙ u)⊕ (η ⊙ u).

(g) The set V contains an element 1∗ such that 1∗ ⊙ u = u for all u ∈ V .

Definition 2.6. [17] Let X be a *vector space over the field R
+ and ‖ · ‖∗ be a

function from X to R
+ satisfying the following axioms: For x, y ∈ X and λ ∈ R

+,

(N1) ‖x‖∗ = 1 ⇔ x = θ∗, θ∗ = (1, 1, . . . )

(N2) ‖λ⊙ x‖∗ = λ⊙ ‖x‖∗ (= ‖x‖λ∗)

(N3) ‖x⊕ y‖∗ ≤ ‖x‖∗ ⊕ ‖y‖∗ (= ‖x‖∗ · ‖y‖∗).

Then, (X, ‖ · ‖∗) is said a *normed space. It is trivial that a *norm on X defines a
*metric d∗ on X which is given by d∗(x, y) = ‖x/y‖∗; (x, y ∈ X) and is called the
*metric induced by the *norm.

Definition 2.7. (Multiplicative linearity) Let V and W be two *linear spaces. An
operator T : V → W is said to be multiplicative linear (*linear) if

T (v1 ⊕ v2) = T (v1)⊕ T (v2) and T (λ⊙ v) = λ⊙ T (v)

for all v1, v2 ∈ V and λ ∈ R
+, or equivalently,

T (v1 · v2) = T (v1) · T (v2) and T (vλ) = (T (v))λ.

The important point to note here is the notion of *linearity have not the same
meaning than in the standard case since the *linear space has NOT an ordinary
linear structure with the usual operations.

Definition 2.8. (i) The *limit of a function f , denoted by ∗lim
x→a

f(x) = b, at an

element a in R
+ is, if it exists, the unique number b in R

+ such that

∀ε > 1, ∃δ > 1 ∋ |f(x)/b|∗ < ε for all x, ε ∈ R
+, |x/a|∗ < δ for δ ∈ R

+.

A function f is *continuous at a point a in R
+ if and only if a is an argument

of f and ∗lim
x→a

f(x) = f(a).

(ii) A topological *vector(linear) space X is a *vector space over the topological
field that endowed with a topology such that *vector addition and scalar mul-
tiplication are *continuos functions.

(iii) A topological *vector space is called *normable if the topology of the space can
be induced by a *norm.

Definition 2.9. A sequence space λ with a *linear topology is called a *K-space
provided each of the maps pi : λ → R

+ defined by pi(x) = xi is *continuous for all
i ∈ N. A *K-space is called a *FK-space provided λ is a complete linear *metric
space. A *FK-space whose topology is *normable is called a *BK-space.
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3. Multiplicative difference sequence spaces of order m

In fact, the development of the different sequence spaces has been taken place
due to the introduction of several new modern techniques in functional analysis
involving topological structures, dual spaces, matrix mappings etc. Now, in this
section we investigate and discuss some interesting properties of the difference
operator ∆m

∗ .

Theorem 3.1.

(i) The operator ∆m
∗ : ω∗ → ω∗ is *linear.

(ii) If X is a *linear space, then X(∆m
∗ ) is also a *linear space.

Proof: The proofs are straightforward, hence omitted. ✷

Theorem 3.2. Let m,n ∈ N and (xk) ∈ ω∗ . The followings hold:

(i) ∆m
∗ (∆n

∗ (xk)) = ∆n
∗ (∆

m
∗ (xk)) = ∆m+n

∗ (xk),

(ii) ∆m
∗ (∆−m

∗ (xk)) = ∆−m
∗ (∆m

∗ (xk)) = xk.

Proof:

(i) By taking into account Theorem 3.1, we have

∆m
∗ (∆n

∗ (xk)) = ∆m
∗

(

xk x
−(n1)
k+1 x

(n2)
k+2 x

−(n3)
k+3 x

(n4)
k+4 . . . x

(−1)n

k+n

)

=
(

xk x
−(n1)
k+1 x

(n2)
k+2 x

−(n3)
k+3 . . . x

(−1)n

k+n

)

(

xk+1 x
−(n1)
k+2 x

(n2)
k+3 x

−(n3)
k+4 . . . x

(−1)n

k+n+1

)−(m1 )

(

xk+2 x
−(n1)
k+3 x

(n2)
k+4 x

−(n3)
k+5 . . . x

(−1)n

k+n+2

)(m2 ) · · ·
(

x
(−1)n

k+m

)(−1)m

= xk x−n−m
k+1 x

(n2)+mn+(m2 )
k+2 x

−(n3)−m(n2)−n(m2 )−(
m

3 )
k+3 . . . x

(−1)m+n

k+m

= xk x
−(m+n)
k+1 x

(m+n

2 )
k+2 x

−(m+n

3 )
k+3 x

(m+n

4 )
k+4 . . . x

(−1)m+n

k+m

= ∆m+n
∗ (xk).

(ii) The proof may be obtained by using similar technique with case (i).

✷

Theorem 3.3. If X is a Banach space with respect to *norm ‖ · ‖∞, then X(∆m
∗ )

is also a Banach space with the *norm ‖ · ‖∆∗
defined by

||x||∆∗
=

(

m
∏

i=1

|xi|
∗

)

· ‖∆m
∗ x‖∞ (3.1)

where ‖∆m
∗ x‖∞ = supk|∆

m
∗ xk|

∗ for all k ∈ N.
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Proof: By using the *linearity of ∆m
∗ , it is clear that X(∆m

∗ ) is a *normed space
with the *norm in (3.1). We must show that X(∆m

∗ ) is *complete. Suppose
(xn) is any *Cauchy sequence in X(∆m

∗ ), where xn = (xn
j ) ∈ X(∆m

∗ ). Assume

‖xn/xk‖∆∗

∗
−→ 1 as k, n → ∞ for all k, n ≥ n0(ǫ), that is ‖xn

j /x
k
j ‖∆∗

∗
−→ 1 as

k, n → ∞. Thus,

‖xn
j /x

k
j ‖∆∗

=

(

m
∏

i=1

|xn
i /x

k
i |

∗

)

· ‖∆m
∗ (xn

j /x
k
j )‖∞

∗
−→ 1

where

‖∆m
∗
(xn

j /x
k
j )‖∞=sup

j

∣

∣(xn
j /x

k
j )(x

n
j+1/x

k
j+1)

−m(xn
j+2/x

k
j+2)

m(m−1)
2 · · · (xn

j+m/xk
j+m)(−1)m

∣

∣

∗

.

Therefore (x1
i , x

2
i , · · · ) and (∆m

∗ (x1
j ),∆

m
∗ (x2

j ), · · · ) are *Cauchy sequences in real
field R and X∗, respectively. By using the completeness of R and X∗, we have that
they are *convergent and suppose that xn

i

∗
−→ xi in R and (∆m

∗ (xn))
∗
−→ yj in X∗

as n → ∞. Let yj = ∆m
∗ (xj) so that

xj =

j−m
∏

p=1

y
(−1)m(j−p−1

m−1 )
p

=

j
∏

p=1

y
(−1)m(j+m−p−1

m−1 )
p−m , (y1−m = y2−m = · · · = y0 = 1)

for sufficiently large j, i.e. j > 2m. Then (∆m
∗ (xn)) = (∆m

∗ (x1
j ),∆

m
∗ (x2

j ), · · · )

*converges to (∆m
∗ (xj)) in X∗. Thus ‖xn/x‖∆∗

∗
−→ 1, as k → ∞. This shows that

X(∆m
∗ ) is a Banach space. ✷

Theorem 3.4. The sequence spaces X(∆m
∗ ) for X = {ℓ∞, c1, c} are *linearly

isomorphic to the spaces ℓ∗∞, c∗1 and c∗, respectively.

Proof: We prove this theorem for the space ℓ∞(∆m
∗ ). To prove this, we should

show the existence of a *norm preserving *linear bijection between the spaces
ℓ∞(∆m

∗ ) and ℓ∗∞. Consider the transformation T defined from ℓ∞(∆m
∗ ) to ℓ∗∞ by

u 7→ v = Tu =
∏k

j=0 ∆
m
∗ (uj). The *linearity of T is trivial. Further, it is clear

that u = θ∗ whenever Tu = θ∗ and hence T is injective.
Let v=(vk) ∈ ℓ∗∞ and define the sequence u=(uk) ∈ ω∗ by uk=∆−m

∗ (vk/vk−1)
for each k ∈ N and v−1 = 1. By taking into account Theorem 3.2(ii), we observe
that

k
∏

j=0

∆m
∗ (uj) =

k
∏

j=0

∆m
∗ (∆−m

∗ (vj/vj−1))

=

k
∏

j=0

vj
vj−1

= vk
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Since supk∈N

∣

∣

∏k
j=0 ∆

m
∗ (uj)

∣

∣

∗
= supk∈N |vk|

∗ < ∞ then u ∈ ℓ∞(∆m
∗ ). Hence T is

surjective and *norm preserving. ✷

Lemma 3.5. If X∗ ⊂ Y ∗, then X(∆m
∗ ) ⊂ Y (∆m

∗ ).

Proof: Let X∗ ⊂ Y ∗ and x = (xk) ∈ X(∆m
∗ ). It is trivial that (∆m

∗ xk) ∈ X∗

implies that (∆m
∗ xk) ∈ Y ∗. Hence x ∈ Y (∆m

∗ ) and X(∆m
∗ ) ⊂ Y (∆m

∗ ). ✷

Theorem 3.6. Let X be a Banach space and K, a *closed subset of X. Then
K(∆m

∗ ) is also *closed subset of X(∆m
∗ ).

Proof: From Lemma 3.5 it is clear that K(∆m
∗ ) ⊂ X(∆m

∗ ). Now we must show
that K(∆m

∗ ) = K(∆m
∗ ). Let x ∈ K(∆m

∗ ), then there exists a sequence (xn) ∈

K(∆m
∗ ) such that ‖xn/x‖∆∗

∗
−→ 1 as n → ∞. Hence

‖xn/x‖∆∗
=

(

m
∏

i=1

|xn
i /xi|

∗

)

· ‖∆m
∗ (xn

j /xj)‖∞
∗
−→ 1

as n → ∞ in K and implies that x ∈ K(∆m
∗ ).

Conversely, let x ∈ K(∆m
∗ ), then x ∈ K(∆m

∗ ). Since K is *closed K(∆m
∗ ) =

K(∆m
∗ ). Hence K(∆m

∗ ) is *closed subset of X(∆m
∗ ). ✷

Theorem 3.7. If X is a *BK-space with the *norm ‖ · ‖∞, then X(∆m
∗ ) is also

*BK-space with the *norm given in (3.1).

Proof: It is obvious that X(∆m
∗ ) is Banach space (see Thm. 3.3). Suppose that

‖xn
j /xj‖∆∗

∗
−→ 1 which implies that ‖∆m

∗ (xn
j /xj)‖∞

∗
−→ 1 as n → ∞ for each j ∈ N.

Thus

sup
j

∣

∣(xn
j /xj)(x

n
j+1/xj+1)

−m(xn
j+2/xj+2)

m(m−1)
2 · · · (xn

j+m/xj+m)(−1)m
∣

∣

∗ ∗
−→ 1

and |xn
j /xj |

∗ ∗
−→ 1 as n → ∞ for each j ∈ N. Therefore X(∆m

∗ ) is a Banach space
with *continuous coordinates. Hence X(∆m

∗ ) is *BK-space. ✷

4. Dual properties

In this section, following [19] we give the α-, β- and γ-duals of a set λ ⊂ ω∗

which are respectively denoted by λα, λβ and λγ , as follows:

λα :=

{

x = (xk) ∈ ω∗ : (xk ⊙ yk) ∈ ℓ∗1 for all y = (yk) ∈ λ

}

,

λβ :=

{

x = (xk) ∈ ω∗ : (xk ⊙ yk) ∈ cs∗ for all y = (yk) ∈ λ

}

,

λγ :=

{

x = (xk) ∈ ω∗ : (xk ⊙ yk) ∈ bs∗ for all y = (yk) ∈ λ

}

.
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A multiplicative infinite matrix A = (aij) of positive real numbers is defined by a
function A from the set N×N into R

+. The addition (⊕) and scalar multiplication
(⊙) of the infinite matrices A = (aij) and B = (bij) are defined by

A⊕B = (aij ⊕ bij) = (aij · bij) and λ⊙A = (λ⊙ aij) = (aij
λ)

for all i, j ∈ N. Also, the product (A ⊙ B)ij of A = (aij) and B = (bij) can be
interpreted as

(A⊙B)ij =

∞
∏

k=0

(aik ⊙ bkj),

(

=

∞
∏

k=0

baik

kj

)

(4.1)

and provided the infinite product on the right hand side *converge when the *limit
exists. Further the product (4.1) may *diverge for some, or all, values of i, j; the
product A⊙B may not exist.

Let µ1, µ2 ⊂ w∗ and A = (ank) be a multiplicative infinite matrix. Then, we
say that A defines a matrix mapping from µ1 into µ2, and denote it by writing
A : µ1 → µ2, if for every sequence x = (xk) ∈ µ1 the sequence A ⊙ x = {(Ax)n},
the multiplicative A-transform of x, exists and is in µ2. In this way, we transform
the sequence x = (xk) into the sequence {(Ax)n} defined by

(Ax)n =

∞
∏

k=0

(ank ⊙ xk) (4.2)

for all k, n ∈ N. Thus, A ∈ (µ1 : µ2) if and only if the infinite product on the right
side of (4.2) *converges for each n ∈ N. A sequence z is said to be A-*summable
to γ if A⊙ x *converges to γ ∈ R

+ which is called as the A- ∗lim of z.

Lemma 4.1. Let F be the collection of all finite subsets of N and K ∈ F. Then,
we have

(i) (cf. [16]) A = (ank) ∈ (ℓ∗∞ : ℓ∗∞) if and only if

sup
n∈N

∏

k

|ank|
∗ < ∞. (4.3)

(ii) A = (ank) ∈ (ℓ∗∞ : ℓ∗1) if and only if

sup
K∈F

∏

n

∣

∣

∣

∣

∏

k∈K

ank

∣

∣

∣

∣

∗

< ∞. (4.4)

(iii) A = (ank) ∈ (ℓ∗∞ : c∗) if and only if there exists (δk) ∈ ω∗ such that

∗lim
n→∞

ank = δk for all k, and (4.5)

∗lim
n→∞

∏

k

|ank|
∗ =

∏

k

|δk|
∗. (4.6)
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Proof:

(ii) Let A ∈ (ℓ∗∞ : ℓ∗1) and x = (xk) ∈ ℓ∗∞. Then, the infinite product
∏

k(ank⊙xk)
is *convergent for each fixed n ∈ N, since A ⊙ x exists. Thus, the sequence
{ank}

∞
k=0 ∈ {ℓ∗∞}β = ℓ∗1 (see. [9]) for all n ∈ N and A⊙ x ∈ ℓ∗1 which yields

that

∞
∏

n=0

|(Ax)n|
∗ =

∞
∏

n=0

∣

∣

∣

∣

∏

k∈K

(ank ⊙ xk)

∣

∣

∣

∣

∗

=
∞
∏

n=0

(

∣

∣

∣

∣

∏

k∈K

ank

∣

∣

∣

∣

∗

⊙ |xk|
∗

)

Thus, the sequence
{

∣

∣

∏

k∈K ank
∣

∣

∗
⊙ |xk|

∗
}

is *bounded (see Def 2.2) and

the condition (4.4) holds.

Conversely suppose that (4.4) holds and x = (xk) ∈ ℓ∗∞. Then, since
{ank}

∞
k=0 ∈ {ℓ∗∞}β for each n ∈ N, A ⊙ x exists. Therefore, one can ob-

serve by using (4.3) that

∞
∏

n=0

|(Ax)n|
∗ =

∞
∏

n=0

(

∣

∣

∣

∣

∏

k∈K

ank

∣

∣

∣

∣

∗

⊙ |xk|
∗

)

≤ sup
K∈F

|xk|
∗ ⊙ sup

K∈F

{

∞
∏

n=0

∣

∣

∣

∣

∏

k∈K

ank

∣

∣

∣

∣

∗
}

< ∞.

Hence A⊙ x ∈ ℓ∗1.

(iii) The necessary and sufficient conditions can be obtained by taking into account
[20, Theorem 10, pp. 223-225] and [16, Theorem 23], respectively.

✷

Define the matrices B = (bnk) and C = (cnk) as follows:

bnk =

{ (
∏m

i=0(−1)i
(

−m
i

))

⊙ xk , (k ≥ n),
1 , (k < n).

cnk =

{

(
∏m

i=0(−1)i
(

−m
i

))

⊙
(

∏k
j=n xj

)

, (k ≥ n),

1 , (k < n).

where
∏m

i=0(−1)i
(

−m
i

)

= m
(

m(m+1)
2

)(

m(m+1)(m+2)
3!

)

· · · (−1)m
(

−m
m

)

for each m ∈

N.
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Theorem 4.2. Consider the sets h1 and h2 defined by

h1 :=

{

(xk) ∈ ω∗ : sup
K∈F

∏

n

∣

∣

∣

∣

∣

∏

k∈K

[(

m
∏

i=0

(−1)i
(

−m

i

)

)

⊙ xn

]∣

∣

∣

∣

∣

∗

< ∞

}

,

h2 :=

{

(xk) ∈ ω∗ :
∏

n

∣

∣

∣

∣

∣

∏

k

[(

m
∏

i=0

(−1)i
(

−m

i

)

)

⊙ xn

]∣

∣

∣

∣

∣

∗

< ∞

}

.

Then, {ℓ∞(∆m
∗ )}α = h1, {c1(∆

m
∗ )}α = h1 and {c(∆m

∗ )}α = h1 ∩ h2 .

Proof: Since the proof can also be obtained in the similar way for other cases, we
prove only case {ℓ∞(∆m

∗ )}α = h1.
For a sequence v = (vk) ∈ ℓ∗∞ and u = (uk) =

(
∏m

i=0(−1)i
(

−m
i

))

⊙ (vk/vk−1) ∈
ℓ∞(∆m

∗ ). Then we obtain

xk ⊙ uk =

k
∏

j=0

{(

m
∏

i=0

(−1)i
(

−m

i

)

)

⊙ (vk/vk−1)

}

⊙ xk

= (B ⊙ v)k

for each k ∈ N and v−1 = 1. Therefore, we observe that (xk ⊙ uk) ∈ ℓ∗1 whenever
u ∈ ℓ∞(∆m

∗ ) if and only if B ⊙ v ∈ ℓ∗1 whenever v ∈ ℓ∗∞. This yields that x =
(xk) ∈ {ℓ∞(∆m

∗ )}α if and only if B ∈ (ℓ∗∞ : ℓ∗1). By using Lemma 4.1(ii), we have
{ℓ∞(∆m

∗ )}α = h1. ✷

Theorem 4.3. Consider the sets h3, h4, h5 and h6 defined by

h3 :=

{

(xk) ∈ ω∗ : ∗lim
n→∞

∏

k

∣

∣cnk
∣

∣

∗
=
∏

k

∣

∣

∗lim
n→∞

cnk
∣

∣

∗

}

,

h4 :=
{

(xk) ∈ ω∗ : ∗lim
n→∞

(

cnk/ℓk
)

= 1 for all k
}

, (ℓ = (ℓk) ∈ ω∗)

h5 :=

{

(xk) ∈ ω∗ : ∗lim
n→∞

(

∏

k

cnk/ℓ
′

)

= 1

}

, (ℓ′ ∈ R
+)

h6 :=

{

(xk) ∈ ω∗ : sup
n

∏

k

∣

∣cnk
∣

∣

∗
< ∞

}

.

Then

(i) {ℓ∞(∆m
∗ )}β = h3 ∩ h4, {c0(∆

m
∗ )}β = h4 ∩ h6, {c(∆

m
∗ )}β = h4 ∩ h5 ∩ h6.

(ii) {ℓ∞(∆m
∗ )}γ = h6, {c0(∆

m
∗ )}γ = h4 ∩ h6, {c(∆

m
∗ )}γ = h6.

Proof: We give the proof only for the space ℓ∞(∆m
∗ ), since other part can be

obtained similarly.
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(i) To prove the β-dual, we must show that (xk ⊙ uk) ∈ cs∗ ⊂ c∗ for all x ∈
{ℓ∞(∆m

∗ )}β. For this, we can write

k
∏

p=0

(xp ⊙ up) =

k
∏

p=0





p
∏

j=0

{(

m
∏

i=0

(−1)i
(

−m

i

)

)

⊙ (vk/vk−1)

}

⊙ xp





= (C ⊙ v)k

Thus, we observe that (xk ⊙ uk) ∈ cs∗ whenever u ∈ ℓ∞(∆m
∗ ) if and only if

C ⊙ v ∈ c∗ whenever v ∈ ℓ∗∞. This implies that x ∈ {ℓ∞(∆m
∗ )}β if and only

if C ∈ (ℓ∗∞ : c∗). By using Lemma 4.1(iii) we get {ℓ∞(∆m
∗ )}β = h3 ∩ h4.

(ii) Again for the proof of γ-dual may be obtained by using similar techniques in
case (i). Hence, omitted.

✷

Concluding Remarks

The main results given in the present paper will base on examining the concept
of multiplicative difference sequence spaces using a multiplicative linear operator
∆m

∗ . This is a new development of the difference sequence spaces over real num-
bers. In particular using the inverse operator ∆−m

∗ some new classes of matrix
transformations can be extended and the table on the characterizations of the ma-
trix transformations between certain spaces can be investigated. Finally, we should
note from now on that our next papers will be devoted to the corresponding table
for multiplicative difference sequence spaces of order m.
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