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Fractional Tarig Transform and Mittag-Leffler Function
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abstract: In the present paper the Tarig transform of fractional order is studied
by employing Mittag - Leffler function. Properties of Tarig transform are proved
using the same fractional Tarig transform.
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1. Introduction

One may, among several , can justify efficiencies of the applications of integral
transforms, viz. Fourier, Laplace and Hankel (among other) to solve ordinary and
partial differential equations besides their applications in other areas. Consider a
set A of function f(t) of exponential order, expressed as

A = {f(t) : ∃M,k1, k2 > 0, |f(t)| < Me|t|/kj ; t ∈ (−1)j × [0,∞)},

where M is a constant of finite number and k1 and k2 may be finite or infinite.
The integral transform, known as Tarig transform, is introduced and studied

by Elzaki, et al. [1,2,3], defined by

T [f(t), u] = G(u) =
1

u

∫ ∞

0

e−( t

u2
)f(t)dt , u 6= 0 (1.1)
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Tarig transform that is denoted by the operator T [·] , is defined by

T [f(t)] = G(u) =

∫ ∞

0

f(ut)e−( t
u
)dt , u 6= 0 (1.2)

Properties of the said transform are given as follows :

1. The Tarig transform of derivative and nth order derivative of f(t), respec-
tively, are defined

T [f ′(t)] =
G(u)

u2
− f(0)

u
(1.3)

T [f (n)(t)] = G(n)(u) =
G(u)

u2n
−

n
∑

i=1

u2(i−n)−1f (i−1)(0). (1.4)

2. When f(t) = δ(t) (the Dirac delta function), the Tarig transform becomes

T [δ(t)] =
1

u
, (1.5)

more such for other values are tabulated in [2,3].

When f(t) = 1, the Tarig transform becomes

T (1) = u, (1.6)

and when f(t) = tn,the same yields

T [tn] = n!u2n+1 (1.7)

= Γ(n+ 1)u2n+1 . (1.8)

3. If F (u) and G(u) are Tarig transforms of the functions f(t) and g(t), then
the convolution is given by

T [(f ∗ g)(t)] = u F (u)G(u) . (1.9)

4. If α, β are any constants and f(t) and g(t) are real functions, then the linear
property is defined by

T [αf(t) + βg(t)] = αF (u) + βG(u) . (1.10)

5.The relation between the Laplace transform F (s) and Tarig transform G(u)
is defined by

G(u) =
F
(

1
u2

)

u
. (1.11)

In [12], the Tarig transform is extended to the distribution spaces and some
other properties have been formulated. In [11] the Parseval equation of the Tarig
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transform for distribution spaces is established and solution of Abel integral equa-
tion is obtained related to the distribution spaces.

Tarig transform for fractional integrals and derivatives for distribution spaces
are employed in [13]. The Mittag - Leffler function and its applications with the
integral transforms viz., Fourier, Laplace, Sumudu and Natural transform are given
in [6,7,8,9,10]. Different techniques are employed to solve fractional differential
equations [1,9,15,16,17,18]. Using the Mittag – Leffler function and its properties,
some functions are defined and studied by the researchers [9,15,16,17,18].

The Mittag – Leffler function [15] is a direct generalization of the exponential
function, and has an affinity for fractional calculus.

One parameter representation of the Mittag – Leffler function is given by
[14]

Eα(z) =

∞
∑

k=0

zk

(αk + 1)
, α > 0 (1.12)

Whereas two parameter Mittag – Leffler function [4] is represented as

Eα,β(z) =

∞
∑

k=0

zk

(αk + β)
, α, β, z ∈ C,Re(α, β) > 0 (1.13)

with C being the set of complex numbers.

Special cases of the Mittag – Leffler function are
(i) Eα(z) =

1
1−z , |z| < 1

(ii) E1(z) = ez

(iii) E2(z) = cosh(
√
z), z ∈ C

(iv) E1,1(z) =
∞
∑

k=0

zk

Γ(k+1) =
∞
∑

k=0

zk

(k)! = ez

(v) E1,2(z) =
∞
∑

k=0

zk

Γ(k+2) =
1
z

∞
∑

k=0

zk

Γ(k+1) = ez−1
z .

Following relations, related to the Mittag – Leffler function, may be useful.
(i) dm

dzmEm(zm) = Em(zm)
(ii) Eα,β(z) = zEα,α+β(z) +

1
Γ(β)

(iii) d
dzEα,β(z) =

Eα,β−1(z)−(β−1)Eα,β(z)
αz

Having accommodated possible sources and terminologies on Tarig transform
and the Mittag - Leffler function, in Section 2 we write concepts of fractional
derivative, define modified Riemann - Liouville fractional derivative, and Taylor
series of fractional order. In Section 3, we establish main results.
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2. Preliminaries on Fractional Derivatives

2.1. Fractional derivative via fractional difference

Definition 2.1. Let there be a continuous function f : R → R, t → f(t) (but
not necessarily differentiable). Let h > 0 be a constant discretization span. The
forward operator FW (h) is given by .

FW (h)f(t) = f(t+ h). (2.11)

With regard to (2.11), the fractional difference of order α, 0 < α < 1, of the
function f(t) is given by

∆αf(t) = (FW − 1)α =

∞
∑

k=0

(−1)k
(

α

k

)

f [t+ (α− k)h],

and the fractional derivative of order α is defined by the limit

f (α)(t) = lim
h→0

∆αf(t)

hα
. (2.12)

2.2. Modified Riemann-Liouville fractional derivative

. To overcome some drawbacks with the Riemann – Liouville fractional derivative,
the modified version is devised [6,7].

Definition 2.2. Let f : R → R, t → f(t) is a continuous function.

(i) When f(t) is constant K, its fractional derivative of order α , is given
by

Dα
t K = K

1

Γ(1− α)
· 1

tα
, α ≥ 0

= 0 , α > 0

(ii) For f(t) being not a constant, we have

f(t) = f(0) + (f(t)− f(0))

and its fractional derivative is defined by

f (α)(t) = Dα
t f(0) +Dα

t (f(t)− f(0)) , (2.21)

which, when α < 0 , is given by

Dα
t (f(t)− f(0)) =

1

Γ(−α)

t
∫

0

(t− ξ)−α−1f(ξ)dξ, α < 0 (2.22)
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whereas for α > 0, we have

Dα
t (f(t)− f(0)) = Dα

t (f(t)) = Dt(f
(α−1)(t)) (2.23)

and

f (α)(t) = (f (α−n)(t))(n) , n ≤ α < n+ 1 . (2.24)

2.3. Taylor series of fractional order

Definition 2.3. The continuous function f : R → R, t → f(t) has a fractional
derivative of order kα . For any positive integer k and for any α, 0 < α ≤ 1, we
have

f(t+ h) =

∞
∑

k=0

hαk

(αk)!
f (αk)(t) , 0 < α ≤ 1, (2.31)

where Γ(1 + αk) = (αk)!.

2.4. Integration with respect to (dt)α

. The integral with respect to (dt)α, is defined as the solution of the fractional
differential equation

dy = f(t)(dt)α , t ≥ 0, y(0) = 0 (2.41)

Lemma 2.4. [6,7] Let f(t)be a continuous function. Then the solution y(t), y(0) =
0 , is given by

y =

∫ t

0

f(ξ)(dξ)α

= α

∫ t

0

(t− ξ)(α−1)f(ξ)dξ, 0 < α < 1 . (2.42)

3. Tarig Transform of Fractional Order and the Mittag-Leffler Function

In this section Tarig transform of fractional order is defined by using the Mittag
– Leffler function, which is the generalization of the exponential function. Prop-
erties and convolution theorem are proved using the Tarig transform of fractional
order.

By virtue of terminologies used in the preceding sections and recalling those
described for Fourier and the Lapalce transforms, respectively , through the Mittag
– Leffler function [6,7], following definition results.

Definition 3.1. Let f(t) be a function that vanishes for negative values of t . Then
the Tarig transform of order α, for finite f(t), is defined by
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Tα[f(t)] = Gα(u) =

∫ ∞

0

f(ut)Eα

(

− t

u

)α

(dt)α (3.1)

=
1

u

∫ ∞

0

Eα

(

− t

u2

)α

f(t)(dt)α (3.2)

= lim
M↑∞

1

u

∫ M

0

Eα

(

− t

u2

)α

f(t)(dt)α (3.3)

where Eα is the Mittag – Leffler function, given by (1.12).

Theorem 3.2. (Tarig Laplace Duality of Fractional order) If the Laplace
transform of fractional order of a function f(t) is Lα{f(t)} = Fα(s) and the Tarig
transform Tα[f(t)] = Gα(u) is of order α, then

Gα(u) =
Fα

(

1
u2

)

u
(3.4)

Proof: Invoking Eqn. (2.42) in the definition of Tarig transform of fractional order
(3.1), we write

Tα[f(t)] = Gα(u) =

∫ ∞

0

f(ut)Eα

(

− t

u

)α

(dt)α

= lim
M↑∞

α

∫ M

0

(M − t)α−1f(ut)Eα

(

− t

u

)α

dt . (3.5)

By using the change of variable ut → w , i.e., dt = dw
u , we get the right hand

side

= lim
M↑∞

α

∫ M

0

(M − w

u
)α−1f(w)Eα

(

− w

u2

)α dw

u

= lim
M↑∞

α

∫ M

0

(Mu− w)α−1f(w)Eα

(

− w

u2

)α dw

uα
.

Using the definition of Laplace transform, we have

Tα[f(t)] = Gα(u) =
Fα

(

1
u2

)

uα
(3.6)

which, proves the theorem. ✷

Theorem 3.3. (Change of Scale Property) Let f(at) be a function in the set
A , where a is non – zero constant. Then

Tα[f(at)] =
1

aα
Gα

(u

a

)

. (3.7)

Conditions as mentioned above, are applicable.
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Proof: Using (3.3), we have

Tα[f(at)] = lim
M↑∞

1

u

∫ M

0

Eα

(

− t

u2

)α

f(at)(dt)α

= lim
M↑∞

1

u
α

∫ M

0

(M − t)α−1 f(at)Eα

(

− t

u2

)α

dt (3.8)

By using the change of variable at → t′, dt = dt′

a , we get

= lim
M↑∞

1

u
α

∫ Ma

0

(M − t′

a
)α−1 f(t′)Eα

(

− t′

au2

)α
dt′

a

=

∫ Ma

0

(Ma− t′)α−1

aα
f(t′)Eα

(

− t′

au2

)α

dt′

i.e.

Tα[f(at)] =
1

aα
Gα

(u

a

)

. (3.9)

Theorem is proved. ✷

Theorem 3.4. Let f(t− b) is a function of fractional Tarig transform. Then

Tα[f(t− b)] = Eα

(

− b

u2

)α

Gα (u) . (3.10)

Proof: By (3.3) of Definition 3.1, we have.

Tα[f(t− b)] = lim
M↑∞

1

u

∫ M

0

Eα

(

− t

u2

)α

f(t− b)(dt)α

= lim
M↑∞

α

∫ M

0

(M − t)α−1v f(t− b)Eα

(

− t

u2

)α

dt . (3.11)

Considering t− b = x, we have the right hand side .

= lim
M↑∞

α
1

u

∫ M−b

0

(M − b− x)α−1 f(x)Eα

(

− (b+ x)

u2

)α

dx

= lim
M↑∞

α
1

u

∫ M−b

0

(M − b− x)α−1 f(x)Eα

(

− x

u2

)α

Eα

(

− b

u2

)α

dx

i.e.

Tα[f(t− b)] = Eα

(

− b

u2

)α

Gα (u) , (3.12)

which is due to Eα(λ(x+ y)α) = Eα(λx
α)Eα(λy

α). ✷
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Theorem 3.5. If f(t) is Eα(a
αtα)f(t), then the Tarig transform is given by

Tα[Eα(a
αtα)f(t)] =

(

1

1− au2

)α

Gα

(

u

1− au2

)

. (3.13)

Proof: Using (3.3) again of Definition 3.1, we have.

Tα[Eα(a
αtα)f(t)] = lim

M↑∞

1

u

∫ M

0

Eα

(

− t

u2

)α

Eα(a
αtα)f(t)(dt)α

= lim
M↑∞

α
1

u

∫ M

0

(M − t)α−1 f(t)Eα(a
αtα)Eα

(

− t

u2

)α

dt

i.e.

= lim
M↑∞

α
1

u

∫ M

0

(M − t)α−1v f(t)Eα

(

−
(

t− avt

u2

))α

dt

Setting (1− au2)t = w, we have the right hand side, reduced to .

= lim
M↑∞

α
1

u

∫ M−au2

0

(

M − w

1− au2

)α−1

f

(

w

1− au2

)

Eα

(

− w

u2

)α dw

(1− au2)

=

∫ M−au2

0

(

1

1− au2

)α

(M(1− au2)− w))α−1 f

(

w

1− au2

)

Eα

(

− w

u2

)α

dw ,

i.e.

Tα[Eα(a
αtα)f(t)] =

(

1

1− au2

)α

Gα

(

u

1− au2

)

. (3.14)

Hence, the theorem is proved. ✷

Theorem 3.6. Let the convolution of two functions f(t) and g(t) of order α is
given by

(f(t) ∗ g(t))α =

∞
∫

0

f(t− ξ)g(ξ)(dξ)α. (3.15)

Then the convolution of Tarig transform of order α is

Tα[(f(t) ∗ g(t))α] = uαMα(v)Nα(v) . (3.16)

Proof: The convolution of Laplace transform of order α is given by

Lα[(f(t) ∗ g(t))α] = Lα{f(t)}Lα{g(t)} (3.17)
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Now using Tarig – Laplace duality (Theorem 3.1, (3.4)), we have

Tα[(f(t) ∗ g(t))α] =
1

uα
Lα{f(t)}Lα{g(t)}

=
1

uα

[

Fα

(

1

u2

)

Gα

(

1

u2

)]

, as Mα(u) =
Fα

(

1
u2

)

uα

=
1

uα
[uαMα(u) · uαNα(u)] .

i.e.

Tα[(f(t) ∗ g(t))α] = uαMα(v)Nα(v) . (3.18)

The theorem is proved. ✷
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