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abstract: In this work, we shall give some new results about generalized com-
mon fixed point theorems for two mappings f : X → X and T : Xk

→ X, where X

is dislocated probability quasi Menger metric space (briefly, DPqM-Space) or dislo-
cated probability Menger metric space (briefly, DPM -Space). Our result extends
and generalizes many well known results.
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1. Introduction

An interesting and important generalization of the notion of metric space was
introduced by, Karl Menger [13] in 1942 under the name of statistical metric space,
which is now called probabilistic metric space (PM -space). The idea of K. Menger
was to use distribution functions instead of non-negative real numbers as values
of the metric. The notion of PM -space corresponds to situations when we do not
know exactly the distance between two points, but we know probabilities of possible
values of this distance. In fact the study of such spaces received an impetus with
the pioneering works of Schweizer and Sklar [17,18].

In an interesting paper [8], Hicks observed that fixed point theorems for cer-
tain contraction mappings on a Menger space endowed with a triangular t-norm
may be obtained from corresponding results in metric spaces. In 1989, Kent and
Richardson [11] introduced the class of probabilistic quasi-metric spaces (briefly,
PQM -spaces) and proved common fixed point theorems. The study of fixed points
of mappings in probabilistic quasi metric spaces is in nascent stage.
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Before we proceed we must state some definitions, known facts, and, technical
results to be used in the sequel. The concepts used are that of [6,17].

Definition 1.1. A distribution function is a function F : [−∞,∞] → [0, 1], that
is non-decreasing and left continuous on R, moreover, F (−∞) = 0 and F (∞) = 1.

The set of all the distribution functions (d.f.) is denoted by ∆, and the set of
those distribution functions such that F (0) = 0 is denoted by ∆+. In particular
for every x0 ≥ 0, εx0

is the d.f. defined by

εx0
=

{

1 if x > x0,

0 if x ≤ x0.

The space ∆+ is partially ordered by the usual pointwise ordering of functions, the
maximal element for ∆+ in this order is ε0.

Definition 1.2. A probabilistic metric space (abbreviated, PM -space) is an ordered
pair (X,F ), where X is a non-empty set and F : X ×X → ∆+ (F (p, q) is denoted
by Fp,q) satisfies the following conditions:

(PM1) Fp,q(t) = 1 for all t > 0, iff p = q,

(PM2) Fp,q(t) = Fq,p(t),

(PM3) If Fp,q(t) = 1 and Fq,r(s) = 1, then Fp,r(t+ s) = 1,

for every p, q, r ∈ X and t, s ≥ 0.

Definition 1.3. A mapping τ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm
(abbreviated, t-norm) if the following conditions are satisfied:

(i) τ(a, b) = τ (b, a),

(ii) τ(a, τ (b, c)) = τ (τ (a, b), c),

(iii) τ(a, b) ≥ τ (c, d) whenever a ≥ c and b ≥ d,

(iv) τ(a, 1) = a,

for every a, b, c, d ∈ [0, 1].

Definition 1.4. A Menger space is a triplet (X,F, τ ), where (X,F ) is PM -space
and τ is a t-norm such that for all p, q, r ∈ X and for all t, s ≥ 0,

Fp,r(t+ s) ≥ τ(Fp,q(t), Fq,r(s)).

Definition 1.5. A dislocated probabilistic quasi Menger space (abbreviated, DPqM -
space) is a triplet (X,F, τ ), where X is a non empty set, τ is a t-norm and
F : X ×X → ∆+ (F (p, q) is denoted by Fp,q) satisfies the following conditions:

(i) Fp,q(t) = 1 andFq,p(t) = 1 ⇒ p = q,
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(ii) Fp,r(t+ s) ≥ τ (Fp,q(t), Fq,r(s)),

for every p, q, r ∈ X and t, s ≥ 0.

Example 1.6. Let X = R, define τ (a, b) = a · b and

Fx,y(t) =
1

e

|x− y|+ 2|x|+ |y|
t

,

for all (x, y) ∈ X ×X, t ∈ (0,∞). Then (X,F, τ ) is a DPqM -space.

Definition 1.7. A dislocated probabilistic Menger space (abbreviated, DPM -space)
is a DPqM -space such that for all p, q ∈ X, Fp,q = Fq,p.

Let (X,F, τ ) be a DPqM -space and F ‡
p,q(t) = min{Fp,q(t), Fq,p(t)} (p, q ∈ X

and t ∈ [0,∞]), then it is easy to see that, (X,F ‡, τ ) is a DPM -space. In addition,
if (X,F, τ ) is a DPM -space, then F ‡ = F .

Definition 1.8. Let (X,F, τ ) be a DPqM -space (or DPM -space), T : Xk → X
and f : X → X be mappings. A point z ∈ X is said to be a coincidence point of f
and T if T (z, z, . . . , z) = fz. The set of all coincidence points of the mappings f
and T denoted by C(T, f). A point z ∈ X is said to be a common fixed point of f
and T if T (z, z, . . . , z) = fz = z.

Definition 1.9. The mappings T : Xk → X and f : X → X, where (X,F, τ ) is
a DPqM -space, are said to be weakly compatible (wc) if the mappings commuting
at their coincidence points, i.e. T (fz, fz, . . . , fz) = f(T (z, z, . . . , z)), for all z ∈
C(T, f).

Very recently many authors proved some new fixed point theorems in dislocated
quasi metric spaces, see [7,12,16]. In 1996, Jungck [9] introduced the notion of
weakly compatible mappings which is more general than compatibility and proved
fixed point theorems in absence of continuity of the involved mappings. In recent
years, many mathematicians established a number of common fixed point theorems
satisfying contractive type conditions and involving conditions on commutativity,
completeness and suitable containment of ranges of the mappings. Al-Thagafi and
Shahzad [2] introduced the notion of occasionally weakly compatible mappings in
metric space, which is more general than weakly compatible mappings. Recently,
Jungck and Rhoades [10] extensively studied the notion of occasionally weakly com-
patible mappings in semi-metric spaces. The notions of improving commutativity
of self mappings have been extended to PM -spaces by many authors. For exam-
ple, Singh and Jain [19] extended the notion of weak compatibility and Chauhan
et al. [4] extended the notion of occasionally weak compatibility to PM -spaces.
The fixed point theorems for occasionally weakly compatible mappings in different
settings investigated by many researchers (e.g. [1,3,15,14]).

Definition 1.10. The mappings T : Xk → X and f : X → X, where (X,F, τ ) is
a DPqM -space, are said to be occasionally weakly compatible (owc) if the mappings
commuting at least one coincidence point, whenever C(T, f) 6= φ.
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Definition 1.11. Let (X,F, τ ) be a DPqM -space. A left (right) open ball (abbre-
viated, L-open (R-open) ball) with center x and radius r (0 < r < 1) in X is the set
BL(x, r, t) = {y ∈ X : Fx,y(t) > 1− r} (BR(x, r, t) = {y ∈ X : Fy,x(t) > 1 − r}),
for all t ∈ (0, 1). Moreover, a open ball with center x and radius r (0 < r < 1) in
X is the set B(x, r, t) = {y ∈ X : F ‡

x,y(t) > 1− r}, for all t ∈ (0, 1).

Definition 1.12. A sequence (xn) in a DPqM -space (X,F, τ ) is said to be bi-
convergent to a point x ∈ X if and only if limn→∞ F ‡

xn,x
(t) = 1 for all t > 0, in

this case we say that limit of the sequence (xn) is x. A sequence (xn) is said to be
left (right) Cauchy sequence if and only if

lim
n→∞

Fxn,xn+p
(t) = 1 ( lim

n→∞
Fxn+p,xn

(t) = 1)

for all t > 0, p ∈ N. Also, a sequence (xn) is said to be bi-Cauchy if and only if
limn→∞ F ‡

xn,xn+p
(t) = 1 for all t > 0, p ∈ N.

The concept of left (right) Cauchy sequence is inspired from that of G-Cauchy
sequence (it belongs to Grabiec [5]).

Definition 1.13. A DPqM -space (X,F, τ ) is said to be left (or right) complete if
and only if every left (or right) Cauchy sequence in X, is bi-convergent. Also, a
DPqM -space is said to be bi-complete if and only if every bi-Cauchy sequence in
X, is bi-convergent.

Clearly a sequence (xn) in a DPqM -space (X,F, τ ) is bi-Cauchy sequence if and
only if sequence (xn) is a Cauchy sequence in the DPM -space (X,F ‡, τ). Also, a
DPqM -space (X,F, τ ) is bi-Complete if and only if the DPM -space (X,F ‡, τ) is
complete.

Proposition 1.1. The limit of a bi-convergent sequence in a DPqM -space (X,F, τ )
is unique.

Proof: Let (xn) be a sequence in X and suppose that u and v are two limits of
(xn). By the hypothesis we have F ‡

u,v(t) ≥ τ (F ‡
u,xn

(t/2), F ‡
xn,v

(t/2)) for all n. Now

taking the limit as n → ∞, so we have F ‡
u,v(t) ≥ τ(1, 1) = 1. Hence u = v, the

result follows. ✷

Proposition 1.2. Let (X,F, τ ) be a DPqM -space (or DPM -space) and (xn) be
a sequence in X. If sequence (xn) bi-converges (or converges) to x ∈ X, then
Fx,x(t) = 1 for all t > 0.

Proof: By using a similar argument as in the proof of the above proposition, the
result follows. ✷

Proposition 1.3. Let (X,F, τ ) be a DPqM -space (or DPM -space). If f, g : X →
X is two mappings such that fz = gz and F ‡

fgz,gfz(t) = 1 (or Ffgz,gfz(t) = 1 ) for
some z ∈ X and t ∈ [0,∞), then Fffz,ffz(t) = 1.
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Proof: Since F ‡
fgz,gfz(t) = 1, so by the hypothesis we have fgz = gfz. Therefore

Fffz,ffz(t) = Ffgz,fgz(t) = Ffgz,gfz(t) = 1. ✷

The following results are immediate.

Lemma 1.14. Let (X,F, τ ) be a DPqM -space (or DPM -space), T : Xk → X and
f : X → X be occasionally weakly compatible mappings. If f and T have a unique
point of coincidence then f and T are weakly compatible.

Thus, if mappings f and T have a unique point of coincidence, then the pair
(f, T ) are weakly compatible if and only if they are occasionally weakly compatible.

Lemma 1.15. Let (X,F, τ ) be a DPqM -space (or DPM -space), T : Xk → X and
f : X → X be occasionally weakly compatible mappings. If pair (f, T ) has a unique
point of coincidence, then it has a unique common fixed point.

The above lemma is also valid for weakly compatible mappings. The next
example shows that if the point of coincidence is not unique, then occasionally
weakly compatible mappings are more general than weakly compatible mappings.

Example 1.16. Take X = [0, 1], fx = x2, T (x1, · · · , xk) =
k
√
x1x2···xk

2 . It is
obvious that {0, 12} ⊆ C(f, T ), fT 0 = Tf0 but fT 1

2 6= Tf 1
2 and so f and T are

occasionally weakly compatible but not weakly compatible. Note that 0 and 1
4 are

two point of coincidence and 0 is the unique common fixed point.

Definition 1.17. The mapping f is said to be coincidentally idempotent (ci) with
respect to T , if and only if f is idempotent at the coincidence points of f and T ,
i.e. ffz = fz, for all z ∈ C(T, f).

Definition 1.18. The mapping f is said to be occasionally coincidentally idempo-
tent (oci) with respect to T , if and only if f is idempotent at least one coincidence
point, whenever C(T, f) 6= φ.

Clearly if f and T are coincidentally idempotent then they are oci. However,
the Example (1.16) shows that the converse is not necessarily true.

Definition 1.19. A function φ : [0, 1]k = [0, 1]× [0, 1]× · · · × [0, 1] → [0, 1] is said
to be a Φk-function if it satisfies the following conditions:

(i) φ is an increasing function, i.e, x1 ≤ y1, x2 ≤ y2, · · · , xk ≤ yk implies

φ(x1, x2, · · · , xk) ≤ φ(y1, y2, · · · , yk),

(ii) φ(t, t, · · · , t) ≥ t, for all t ∈ [0,∞),

(iii) φ is continuous in all variables.

In this paper, we establish some coincidence point theorems for certain maps
and common fixed point theorems for weakly compatible maps in DPM -space
(DPqM -space) under strict contractive conditions. Our results generalize many
known results in DPM -space (DPqM -space).
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2. Coincidence and common fixed points in DPqM-space and

DPM-space

In this section we prove some coincidence and common fixed point results for
two mappings f : X → X and T : Xk → X in a DPqM -space or DPM -space.
Now, we state our first main theorem.

Theorem 2.1. Let (X,F, τ ) be a DPM -space, k ≥ 2 be an integer, f : X → X
and T : Xk → X be mappings, such that f(X) is complete and T (Xk) ⊆ f(X). If

FT (x1,x2,...,xk),T (x2,x3,...,xk+1)(qt) ≥ φ
(

Ffx1,fx2
(t), Ffx2,fx3

(t), . . . , Ffxk,fxk+1
(t)
)

,

where x1, x2, . . . , xk+1 are arbitrary elements in X, 0 < q < 1, t ∈ [0,∞) and φ is
Φk-function. Then the sequence (yn) defined by

yn = f(xn+k) = T (xn, xn+1, . . . , xn+k−1) (2.1)

for arbitrary elements x1, x2, . . . , xk in X, converges to a point of coincidence of f
and T .

Proof: If αn = Fyn,yn+1
(qt), then by the hypothesis, it is easy to see that

αn+k ≥ φ (αn, αn+1, . . . , αn+k−1) .

Clearly, if α1 = α2 = · · · = αk = 1, then the sequence (yn)
∞
n=1 is constant and so

it is a Cauchy sequence in f(X). Otherwise, by induction on n, we will prove that

αn ≥
(

K − θn

K + θn

)2

(2.2)

where θ = 1
q

and K = min

{

θ(1 +
√
α1)

(1−√
α1)

,
θ2(1 +

√
α2)

(1 −√
α2)

, . . . ,
θk(1 +

√
αk)

(1 −√
αk)

}

. We

can see that (2.2) is true for n = 1, 2, . . . , k by the definition of K. Assume that
(2.2) is true for n, n+ 1 to n+ k − 1. Then by the hypothesis, we have

αn+k ≥ φ (αn, αn+1, . . . , αn+k−1)

≥ φ





(

K − θn

K + θn

)2

,

(

K − θn+1

K + θn+1

)2

, . . . ,

(

K − θn+k−1

K + θn+k−1

)2




≥ φ





(

K − θn+k−1

K + θn+k−1

)2

,

(

K − θn+k−1

K + θn+k−1

)2

, . . . ,

(

K − θn+k−1

K + θn+k−1

)2




≥
(

K − θn+k−1

K + θn+k−1

)2

≥
(

K − θn+k

K + θn+k

)2

.
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Thus inductive proof of (2.2) is complete. Now for p ∈ N and t ∈ [0,∞), we have

Fyn+1,yn+p+1
(t) ≥τ

(

Fyn+1,yn+2

( t

2

)

, τ

(

Fyn+2,yn+3

( t

22

)

,

τ

(

· · · , τ
(

Fyn+p−1,yn+p

( t

2p−1

)

, Fyn+p,yn+p+1

( t

2p−1

)

)

· · ·
)))

≥τ

(

(K − 2n

K + 2n

)2

, τ

(

(K − 22(n+1)

K + 22(n+1)

)2

,

τ

(

· · · , τ
(

(K − 2(p−1)(n+p−2)

K + 2(p−1)(n+p−2)

)2

,

(K − 2(p−1)(n+p−1)

K + 2(p−1)(n+p−1)

)2
)

· · ·
)))

≥τ(1, τ (1, τ(· · · , τ(1, 1) · · · ))) = 1, as n → ∞.

Hence (yn) is a Cauchy sequence in f(X) and so there exists v in f(X) such
that limn→∞ yn = v. Let v = f(u) for some u ∈ X . Then we have

FT (u,u,...,u),fu (t) = lim
n→∞

FT (u,u,...,u),yn
(t) = lim

n→∞
FT (u,u,...,u),T (xn,xn+1,...,xn+k−1)(t)

≥ lim
n→∞

τ

(

FT (u,u,...,u),T (u,u,...,xn)

( t

2

)

,

τ

(

FT (u,u,...,xn),T (u,u,...,xn,xn+1)

( t

22

)

,

τ

(

· · · , τ
(

FT (u,u,xn,...,xn+k−3),T (u,xn,...,xn+k−2)

( t

2k−1

)

,

FT (u,xn,...,xn+k−2),T (xn,xn+1,...,xn+k−1)

( t

2k−1

)

)

· · ·
)))

≥ lim
n→∞

τ

(

φ
(

Ffu,fu(t), Ffu,fu(t), . . . , Ffu,fxn
(t)
)

,

τ

(

φ
(

Ffu,fu(t), . . . , Ffu,fxn
(t), Ffxn,fxn+1

(t)
)

,

τ

(

· · · , τ
(

φ
(

Ffu,fu(t), Ffxn,fxn+1
(t), . . . , Ffxn+k−3,fxn+k−2

(t)
)

,

φ
(

Ffu,fxn
(t), Ffxn,fxn+1

(t), . . . , Ffxn+k−2,fxn+k−1
(t)
)

)

· · ·
)))

= 1,

hence, FT (u,u,...,u),fu(t) = 1. Therefore C(f, T ) 6= φ and v is a point of coincidence
of f and T , as required. ✷

Corollary 2.2. With the same hypotheses of the Theorem 2.1, if T and f are
occasionally weakly compatible mappings, 0 < q < 1

2 and lim
t→∞

Fx,y(t) = 1 for all
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x, y ∈ X. Then the sequence (yn) defined by (2.1) converges to a unique common
fixed point of f and T .

Proof: By the Theorem 2.1, we see that the sequence (yn) converges to v = f(u)
which is a point of coincidence of f and T . Then by the hypothesis, we have

Ffu,fu (qt) = FT (u,u,...,u),T (u,u,...,u)(qt)

≥ φ

(

Ffu,fu(t), Ffu,fu(t), . . . , Ffu,fu(t)

)

≥ Ffu,fu(t) = FT (u,u,...,u),T (u,u,...,u)(t)

≥ φ

(

Ffu,fu(
t

q
), Ffu,fu(

t

q
), . . . , Ffu,fu(

t

q
)

)

≥ Ffu,fu(
t

q
) ≥ . . . . . . ≥ Ffu,fu(

t

qn−1
).

As n → ∞ we get Ffu,fu(qt) = 1. Suppose there exists v∗ ∈ X such that
f(u∗) = T (u∗, u∗, . . . , u∗) = v∗ for some u∗ in C(f, T ). Similarly, we can show
that Ffu∗,fu∗(qt) = 1.

Therefore, we have

Fv,v∗(q
t

2
) =FT (u,u,u,...,u),T (u∗,u∗,u∗,...,u∗)(q

t

2
) ≥ τ

(

FT (u,u,u,...,u),T (u,u,u,...,u∗)(
qt

22
),

τ

(

FT (u,u,u,...,u∗),T (u,u,u,...,u∗,u∗)(
qt

23
),

τ

(

· · · , τ
(

FT (u,u,u∗,...,u∗),T (u,u∗,u∗,...,u∗)(
qt

2k
),

FT (u,u∗,u∗,...,u∗),T (u∗,u∗,u∗,...,u∗)(
qt

2k
)

)

· · ·
)))

≥τ

(

φ
(

Ffu,fu(
t

22
), Ffu,fu(

t

22
), . . . , Ffu,fu∗(

t

22

)

,

τ

(

φ
(

Ffu,fu(
t

23
), Ffu,fu(

t

23
), . . . , Ffu,fu∗(

t

23
), Ffu∗,fu∗(

t

23
)
)

,

τ

(

· · · , τ
(

φ
(

Ffu,fu(
t

2k
), Ffu,fu∗(

t

2k
), . . . , Ffu∗,fu∗(

t

2k
)
)

,

φ
(

Ffu,fu∗(
t

2k
), Ffu∗,fu∗(

t

2k
), . . . , Ffu∗,fu∗(

t

2k
)
)

)

· · ·
)))

≥τ

(

Ffu,fu∗(
t

22
), τ

(

Ffu,fu∗(
t

23
), τ

(

· · · ,

τ

(

Ffu,fu∗(
t

2k
), Ffu,fu∗(

t

2k
)

)

· · ·
)))
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=τ

(

FT (u,u,...,u),T (u∗,u∗,...,u∗)(
t

22
), τ

(

FT (u,u,...,u),T (u∗,u∗,...,u∗)(
t

23
),

τ

(

· · · , τ
(

FT (u,u,...,u),T (u∗,u∗,...,u∗)(
t

2k
),

FT (u,u,...,u),T (u∗,u∗,...,u∗)(
t

2k
)

)

· · ·
)))

≥τ

(

Ffu,fu∗(
t

22q
), τ

(

Ffu,fu∗(
t

23q
),

τ

(

· · · , τ
(

Ffu,fu∗(
t

2kq
), Ffu,fu∗(

t

2kq
)

)

· · ·
)))

.

Repeating the above process n times we get

Fv,v∗(qt) ≥τ

(

Ffu,fu∗(
t

2n+1qn
), τ

(

Ffu,fu∗(
t

2n+2qn
),

τ

(

· · · , τ
(

Ffu,fu∗(
t

2n+k−1qn
), Ffu,fu∗(

t

2n+k−1qn
)

)

· · ·
)))

.

Taking the limit as n → ∞ we get Fv,v∗(qt) ≥ 1 and so v = v∗ i.e. v is the unique
point of coincidence of f and T . Finally, by the Lemma 1.15, v is a unique common
fixed point of f and T . ✷

Note that the condition limt→∞ Fx,y(t) = 1 ensures the uniqueness of the
point of coincidence. However in the next result we will remove the condition
limt→∞ Fx,y(t) = 1 and also increase the range of q.

Corollary 2.3. With the same hypotheses of the Theorem 2.1, if one of the fol-
lowing two conditions are satisfied:

(i) f is oci with respect to T and the pair (f, T ) is weakly compatible,

(ii) f is coincidentally idempotent with respect to T and the pair (f, T ) is owc.

Then f and T have a common fixed point.

Proof: By the Theorem 2.1, it follows that C(T, f) 6= φ. Now suppose that
(i) is satisfied. So there will exist z ∈ C(f, T ) such that ffz = fz and also
f(T (z, z, . . . , z)) = T (fz, fz, . . . , fz). Thus we have fz=ffz=f(T (z, z, . . . , z)) =
T (fz, fz, . . . , fz), i.e., fz is a common fixed point of f and T . The proof follows
on the same lines in the other case also. ✷

Theorem 2.4. Let (X,F, τ ) be a DPqM -space, k ≥ 2 be an integer, f : X → X
and T : Xk → X be mappings, such that f(X) is R-complete (L-complete) and
T (Xk) ⊆ f(X). If

FT (x1,x2,...,xk),T (xk+1,x1,x2,...,xk−1)(qt) ≥ φ

(

Ffx1,fxk+1
(t), Ffx2,fx1

(t), . . . , Ffxk,fxk−1
(t)

)

,
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where x1, x2, . . . , xk+1 are arbitrary elements in X, 0 < q < 1, t ∈ [0,∞) and φ

is Φk-function. Then the sequence (yn) defined by (2.1) converges to a point of
coincidence of f and T .

Proof: By modifying the proof of the Theorem 2.1, we can show that C(f, T ) 6= φ.
✷

Corollary 2.5. With the same hypotheses of the Theorem 2.4, if T and f are
weakly compatible mappings, 0 < q < 1

2 and lim
t→∞

Fx,y(t) = 1 for all x, y ∈ X.

Then the sequence (yn) defined by (2.1) converges to a unique common fixed point
of f and T .

Proof: By modifying the proof of the Corollary 2.2, we can show that the sequence
(yn) defined by (2.1) converges to a unique common fixed point. ✷

Proof of the following corollary follows on the same lines as that of the Corollary
2.3.

Corollary 2.6. With the same hypotheses of the Theorem 2.4, if one of the fol-
lowing two conditions are satisfied:

(i) f is oci with respect to T and the pair (f, T ) is weakly compatible,

(ii) f is coincidentally idempotent with respect to T and the pair (f, T ) is owc.

Then f and T have a common fixed.

Taking k = 1 in the previous results, we get the following.

Theorem 2.7. Let (X,F, τ ) be a DPqM -space, f : X → X and T : X → X be
mappings, such that f(X) is R-complete (L-complete) and T (X) ⊆ f(X). If

FTx,Ty(qt) ≥ φ

(

Ffx,fy(t)

)

, (2.3)

where x, y are arbitrary elements in X, 0 < q < 1
2 , t ∈ [0,∞) and φ is Φ1-function.

Then f and T have a coincidence point, i.e., C(f, T ) 6= φ. Moreover, if f and T
are weakly compatible and lim

t→∞
Fx,y(t) = 1 for all x, y ∈ X, or one of the following

two conditions are satisfied:

(i) f is oci with respect to T and the pair (f, T ) is weakly compatible,

(ii) f is coincidentally idempotent with respect to T and the pair (f, T ) is owc.

Then the pair (f, T ) have a unique common fixed point.

The above theorem is also valid for complete f(X) in DPM -space. If we take
f to be the identity mapping in the above corollaries, we get the following
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Corollary 2.8. Let (X,F, τ ) be a R-complete (L-complete) DPqM -space, T : X →
X be a mapping, such that

FTx,Ty(t) ≥ Fx,y(t),

where x, y ∈ X , 0 < q < 1 and t ∈ [0,∞). Then T has a fixed point.

In what follows, we present some illustrative examples which demonstrate the
validity of the hypotheses and degree of utility of our results proved in this paper.

Example 2.9. Let X = [0, 2] and d : X×X → X be given by d(x, y) = |x−y|+x+y
and define Fx,y : [−∞,∞] → [0, 1] by

Fx,y(t) =
t

t+ d(x, y)
,

for every x, y ∈ X. Clearly, d is dislocated metric on X and (X,F, τ ) is DPM -
space with τ (a, b) = ab for all a, b ∈ [0,∞). Let k ≥ 2 be an integer and T : Xk → X

and f : X → X be defined by T (x1, x2, · · · , xk) =
(x2

1+x2
2+···+x2

k)
2k and f(x) = x2.

Then we have

F T (x1,x2,··· ,xk),T (x2,x3,··· ,xk+1)(qt)

=
qt

qt+ 1
2k

|x2
1 − x2

k+1|+
1
2k
(x2

1 + 2x2
2 + · · ·+ 2x2

k + x2
k+1)

≥
qt

qt+ 1
2k

|x2
1 − x2

2|+
1
2k

x2
1 +

1
2k
x2
2 + · · ·+ 1

2k
|x2

k − x2
k+1|+

1
2k

x2
k + 1

2k
x2
k+1

(q =
1

2
)

≥
t

t+ 1
k
|x2

1 − x2
2|+

1
k
x2
1 +

1
k
x2
2 + · · ·+ 1

k
|x2

k − x2
k+1|+

1
k
x2
k + 1

k
x2
k+1

≥ min

{

t

t+ |x2
1 − x2

2|+ x2
1 + x2

2

, · · · ,
t

t+ |x2
k − x2

k+1|+ x2
k + x2

k+1

}

= φ
(

Ffx1,fx2
(t), Ffx2,fx3

(t), . . . , Ffxk,fxk+1
(t)

)

.

Therefore, f and T satisfy conditions of the Theorem 2.1 with φ(t1, · · · , tk) =

min{t1, · · · , tk} and q = 1
2
. So we see that C(T, f) = {0}, f and T commute at

0. Finally 0 is the unique common fixed point of f and T .

Example 2.10. Let X = R and d : X ×X → X be given by

d(x, y) = |x− y|+ 2|x|+ |y|

and define Fx,y : [−∞,∞] → [0, 1] by

Fx,y(t) =









1

e

d(x, y)

t









1
2

,
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for every x, y ∈ X. Clearly, d is R-complete dislocated quasi metric on X and
(X,F, τ ) is R-complete DPqM -space with τ(a, b) = ab for all a, b ∈ [0,∞). Let
T : X2 → X and f : X → X be defined by T (x, y) = −x+y

4 and f(x) = x. It is
obvious f and T are weakly compatible mappings and f is coincidentally idempotent
with respect to T . Also it is easy to see that f and T satisfy conditions of the
Theorem 2.4 whit φ(t1, t2) =

√
t1 · t2 and q = 1

4 . So we see that C(T, f) = {0}.
Finally 0 is the unique common fixed point of f and T .
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