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Modified Finite Difference Method for Solving Fractional Delay
Differential Equations

B. Parsa Moghaddam and Z. Salamat Mostaghim

ABSTRACT: In this paper, a new numerical scheme for solving fractional delay
differential equations is presented. Finite difference method is extended to study
this problem, where the derivatives are defined in the Caputo fractional sense. The
proposed method is also employed for solving some scientific models. The obtained
results show that the propose method is very effective and convenient.
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1. Introduction

Delay differential equation (DDE) is a generalization of the ordinary differential
equation, which is suitable for physical system that also depends on the past data
[1]. The solution of delay differential equations not only requires information of
current state, but also requires some information about the previous state. Delay
differential equations have numerous applications in mathematical modeling [2,3]:
for example, physiological and pharmaceutical kinetics, chemical kinetics, the nav-
igational control of ships and spacecraft [4], population dynamics and infectious
diseases. During the last decade,several papers have been devoted to the study of
the numerical solution of delay differential equations. Therefore different numeri-
cal methods [5,6,7,8,9] have been developed and applied for providing approximate
solutions.

The fractional delay differential equation (FDDE) is a generalization of the delay
differential equation to arbitrary non-integer order. During the last decade, several
papers have been devoted to the study of the numerical solution of fractional delay
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differential equations. For most of fractional order delay differential equations, ex-
act solutions are not known. Therefore different numerical methods [10,11,12,13,14]
have been developed and applied for providing approximate solutions. Yang and
Cao [15] studied the existence and uniqueness of initial value problems for nonlinear
higher fractional equations with delay by fixed point theory. Wang [16] combined
Adams Bash forth Moulton method with the linear interpolation method to approx-
imate FDDEs. Moghaddam and Mostaghim [17] developed a numerical method
based on finite difference for solving fractional delay differential equations. Also,
Moghaddam and Mostaghim [18] discussed and introduced a novel matrix approach
to fractional finite difference for solving models based on nonlinear fractional delay
differential equations. Recently, there has been increasing interest in the investiga-
tion of fractional delay differential equations with boundary conditions [19,20,21].
Saeed and et. al. [2| developed the Chebyshev wavelet method for solving the
fractional delay differential equations and integro-differential equations. In [22],
the fractional comparison result of order 8 € (1,2) established and investigated the
existence of extremal solutions for a nonlinear fractional differential equation with
three-point nonlinear boundary conditions. Pimenov and Hendy [23] presented a
new method of backward differentiation formula type for solving FDDEs. Further,
Moghaddam and Mostaghim [24] adapted A Matrix scheme based on fractional
finite difference method for solving FDDEs with boundary conditions.

In this paper, we focus on FDDE which has the following form

Dly(t) = f(t,y(t),y(t — 1), DXy(t), Dy (t — 7)) (1.1)

ona<t<b0<a<l 1<pf<2andunder the following interval and boundary
conditions:

y(t) =elt)  —7T<t<aq

y(b) =, (12)

where DZy(t), Dy(t) and D®y(t — ) are the standard Caputo fractional deriva-
tives, ¢ represent smooth function and 7 € R™ denotes the delay.

This paper is organized as follows, we recall some necessary definitions of the frac-
tional calculus in section 2. In section 3, we generalize the finite difference method
and use it for solving FDDEs with boundary conditions. The adaptation of a va-
riety of differential equations in the mathematical modeling process of difference
applications will be considered; for example, the problem of the convection [25],
the problem of the muscle reflex mechanism in during snoring [26], the problem
of the electromechanical systems [27]; the interesting point is that these fractional
version of models are similar to real phenomena in section 4. Finally, we give some
brief conclusions in section 5.

2. Definitions of fractional derivatives and integrals

In this section, we present notation, definitions, and recall well-known results
about fractional differential equations. For more details the interested reader is
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referred to the book by Podlubny [28].

Definition 2.1. The Riemann-Lowville fractional integral operator J of order «
is given by

Jy(t) = ﬁ fot(t —z)* ly(z)dz, a >0, t>0,

JOy(t) = y(t).

Its properties as following
(i) JoJP = Joth, (ii) J*JP = JBJe.

Definition 2.2. The Caputo definition of fractional differential operator is given by

d"y(t) _ +.
T =red )
Dzy(t) = dtl g™ () 7
T'(r—a) fO (t—7)e—r+t dr, 0<r—1<y<r.

The Caputo fractional derivatives of order v is also defined as DJy(t) =
J"YD"y(t), where D7 is the usual integer differential operator of order . Note
that forr —1 <~y <rand k€ N,

DIJ7y(t) = y(t),

r— k
JTDYy(t) = y(t) — e y™ (01) L, t>0.

3. Numerical Method

In this section we will present a numerical method for solving the boundary
value problems in delay differential equations (1-1)-(1-2). If y(¢) is a smooth an-
swer in problem (1.1), it should be verified in the boundary problems of (1.1)-(1.2);
they also should be continuous in the interval [a,b] and be continuously differen-
tiable in the interval (a,b). This numerical method includes the finite difference
operator on a specific consistent mesh. Consider a uniform grid {¢, = nh : n =
—m,—m+1,...,—-1,0,1,..., N} where m and N are integers such that h = b_T“
and h = - in which m = pg and p is an affirmative integer and ¢ is the 7 Mantissa.
This difference method for boundary problem (1.1)-(1.2) is based on the following

relations:

for i=1,....N—1 y(t) = yi (3.1)
for i=1,....N -1 y(t —7) = Yiem (3.2)
for i=-m,—m+1,...,0 Yi = @, (3.3)
YN =7 (3.4)
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From definition 2.2, for r = 1, we get
D2y(t) = —— /t(t )Ly 0<a<l
<Y ST —a) /)y g “=

Therefore, we take the following finite difference approximation for time fractional
derivative:

‘ ) — oyt TR g
Dy(t) = i 1_ P> y(taﬂ)h y(t;) /jh 0 ilT)a +O(h)
_ bt : y(ti—jr1) —ylti=j) . 1—a 1—a
then
hl—oz i ) . o
Dy(t) ~ T2 o) (G+1)% =3 " Dsyi—j. (3.5)
=0

Also, from definition 2.2, we have

1 t d?
B B
Dly(t) = = [ (¢ =)' ulrlar, 1<p<2,
Therefore
8 _ y(tise) = 2y(tien) Tylty) [OFD" dr O(h?2
Dly(t) g L [ o
_ h>P : y(tz +2)*2y(z +1)+y(tz ) 2-8 .28
S AB-P) = : h2] LlG+27 -
+O(h?),
then
hp & ,
Dly(t) = TG 5 [(j +2) 7> PID D_y;_;, (3.6)
pary
«@ hl*a ' . 11—« -
Diy(t — 1) =~ T(2=a) 4 ((G+1) " =3 Dy Yimm—y- (3.7)
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Table 1: Approximate solutions with different values «, 8 and 7 = 1 for Model 1.

t |a=02508=15

a=05,3=175

a=0.9558=185

1

0.2 | —0.06935648085

0.4 | —0.01396181245

0.6 | —0.005461778382

0.8 | —0.003863134010
1 | —0.002767405544

1
—0.4676735321
0.1560783015
—0.06378143359
0.01793320380
—0.008975557245

1
—0.6663489350
0.3740576937
—0.2232814045
0.1250802883
—0.07399244528

In which
Yij+2 — 2Wi—j+1 + Yi—j
D+D—yi—j: ! }ZQJ Z]7
Yieit1 — Vi
Dyyij = %
and
Diyim—j = Yigomil yi_j_m-

h

By substituting relations (3.1)-(3.7) in the equation (1.1), we obtain generalized-
form fractional difference quotient formula. It should be noted that when using the
generalized-form fractional difference quotient formula, special attention should
be paid to the applicability of different approximation schemes and sometimes
modifications needs to be made.

4. Numerical results

In this section, three models are considered and solved by using the proposed
method. Then, the graphs and tables will be shown according to different amounts
of a and f with step size h = 0.01.

Model 1. This model which is related to equation of the convection with de-
lay in the convection term and its equation is as [25]:

eDly(t) = DYy(t—7) —y(t), 0<t<1, (4.1)
under the boundary conditions:
y(t) =1 —7<t<0 y(1) =0,

where £ = 0.01.
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----- =025, p=1.25 ——a=05,=15
— = =075,p=175——0=09,p=18

Figure 1: The numerical solution of Model 1 with different values «, 8 and 7 = 1.

Model 2. Huang and Williams [26] coupled snoring mechanics with neuro-
logical responses. If the elastic forces are insufficient to maintain the stability
of the airway, neuromuscular functions become crucial. However, these functions
are very much reduced during sleep, and the muscle reflex mechanism may have
a time delay of several cycles of oscillations experienced during snoring. Huang
and Williams assumed that following a delayed signal from the neural receptors,
the muscle opposes the collapsing tendency by increasing the walls stiffness by an
amount proportional to the negative pressure at time (¢t — 7). Its equation is as:

2
a q
DIy(t) = =DSy(0) = y(t) + 5 ) — (= 7), 0<t<1 (42)
under the boundary conditions:

y(t) =1 —7<t<0 y(1) =3,

where § = 0.3, p =1, ¢ =04 and v = 0.2.
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Table 2: Approximate solutions with different values «, 5 and 7 = 5 for Model 2.

t [a=0508=15]a=0.758=1.7 | a=0.955=1.95
0 1 1 1
0.2 | 1.230053053 1.212958460 1.229225020
04 | 1521339669 1.497033332 1.519859723
0.6 | 1.882538740 1.847562711 1.878952412
0.8 | 2.330459527 2.280021417 2.322731560

1 2.917052561 3.018221882 2.974566072

0.1 02

04 05 06 07

0.9

——0=06,p=155="—0=07,B=168
— a=09,p=19

1.0

Figure 2: The numerical solution of Model 2 with different values «, 8 and 7 = 5.
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Table 3: Approximate solutions with different values «, 8 and 7 = 3 for Model 3.

B. PARSA MOGHADDAM AND Z. SALAMAT MOSTAGHIM

t |a=058=125]a=07,8=15]a=08,3=19
0 0.5 0.5 0.5

2 | 0.1804719309 0.0625380460 | 0.05463796349
4 | 0.4279463895 0.1931450691 0.2213159498
6 | 0.7138737783 0.4480035882 0.6688060172
8 1.269600334 1.056835698 1.134553314
10 | 2.477536643 2.515526144 2.507524849

=025,p=125——a=075,p=16
—0=8,B=18

Figure 3: The numerical solution of Model 3 with different values «, 8 and 7 = 3.

Model 3. Johnson and Moon [27] investigated experimentally an electrome-
chanical system. Their experiments were compared to the numerical solutions of
the following equation:

DPy(t) = —aD%y(t) — bDy(t — 7) + by(t), 0 <t <10, (4.3)

where a = 2.623, b = 2.6, under the boundary conditions:

y(t) =0.5 —7<t<0 y(10) = 2.5,
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5. Conclusions

The fundamental goal of this work was to construct a numerical method to
find the solution of linear and nonlinear delay differential equations of fractional
order with boundary values. According to this scheme, which is based on the finite
difference method, an approximate solution for solving different kinds of boundary
problems with fractional order was obtained. The figures of the solutions of the
considered examples for different values of delay «, 8 and 7 were plotted and the
effect of delay in producing fluctuations has been examined.
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