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Spectrum and fine spectrum of the Zweier matrix over the sequence
space cs
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abstract: In this article we have determined the spectrum and fine spectrum
of the Zweier matrix Zs on the sequence space cs. In a further development, we
have also determined the approximate point spectrum, the defect spectrum and the
compression spectrum of the operator Zs on the sequence space cs.
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1. Introduction

By w, we denote the space of all real or complex valued sequences. Throughout
the paper c, c0, bv, cs, bs, ℓ1, ℓ∞ represent the spaces of all convergent, null,
bounded variation, convergent series, bounded series, absolutely summable and
bounded sequences respectively. Also bv0 denotes the sequence space bv ∩ c0.

Fine spectra of various matrix operators on different sequence spaces have been
examined by several authors. Fine spectrum of the operator ∆a,b on the sequence
space c was determined by Akhmedov and El-Shabrawy [1]. The fine spectra of
the Cesàro operator C1 over the sequence space bvp, (1 ≤ p < ∞) was determined
by Akhmedov and Başar [2]. Altay and Başar [3,4] determined the fine spectrum
of the difference operator ∆ and the generalized difference operator B(r, s) on the
sequence spaces c0 and c. The spectrum and fine spectrum of the Zweier Matrix on
the sequence spaces ℓ1 and bv were studied by Altay and Karakuş [5]. Altun [6,7]
determined the fine spectra of triangular Toeplitz operators and tridiagonal sym-
metric matrices over some sequence spaces. Furkan, Bilgiç and Kayaduman [14]
have determined the fine spectrum of the generalized difference operator B(r, s)
over the sequence spaces ℓ1 and bv. Fine spectra of operator B(r, s, t) over the
sequence spaces ℓ1 and bv and generalized difference operator B(r, s) over the se-
quence spaces ℓp and bvp, (1 ≤ p < ∞) were studied by Bilgiç and Furkan [11,12].
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Fine spectrum of the generalized difference operator ∆v on the sequence space ℓ1
was investigated by Srivastava and Kumar [28]. Panigrahi and Srivastava [24,25]
studied the spectrum and fine spectrum of the second order difference operator ∆2

uv

on the sequence space c0 and generalized second order forward difference operator
∆2

uvw on the sequence space ℓ1. Fine spectra of upper triangular double-band ma-
trix U(r, s) over the sequence spaces c0 and c were studied by Karakaya and Altun
[20]. Karaisa and Başar [19] have determined the spectrum and fine spectrum of
the upper traiangular matrix A(r, s, t) over the sequence space ℓp, (0 < p < ∞).
In a further development, they have also determined the approximate point spec-
trum, defect spectrum and compression spectrum of the operator A(r, s, t) on the
sequence space ℓp, (0 < p < ∞).

In this paper, we shall determine the spectrum and fine spectrum of the lower
triangular matrix Zs on the sequence space cs . Also,we determine the approximate
point spectrum, the defect spectrum and the compression spectrum of the operator
Zs on the sequence space cs. Clearly, cs={x=(xn)∈w : limn→∞

∑n

i=0 xi exists}
is a Banach space with respect to the norm ||x||cs = supn|

∑n

i=0 xi|.

2. Preliminaries and Background

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator.
By R(T ), we denote the range of T , i.e.

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.

By B(X) ,we denote the set of all bounded linear operators on X into itself. If
T ∈ B(X), then the adjoint T ∗ of T is a bounded linear operator on the dual X∗

of X defined by (T ∗f)(x) = f(Tx), for all f ∈ X∗ and x ∈ X . Let X 6= {θ} be a
complex normed linear space, where θ is the zero element and T : D(T ) → X be a
linear operator with domain D(T ) ⊆ X . With T , we associate the operator

Tλ = T − λI,

where λ is a complex number and I is the identity operator on D(T ). If Tλ has an
inverse which is linear, we denote it by T−1

λ , that is

T−1
λ = (T − λI)−1,

and call it the resolvent operator of T .
A regular value λ of T is a complex number such that

(R1) T−1
λ exists,

(R2) T−1
λ is bounded

(R3) T−1
λ is defined on a set which is dense in X i.e. R(Tλ) = X .

The resolvent set of T , denoted by ρ(T,X), is the set of all regular values λ
of T . Its complement σ(T,X) = C − ρ(T,X) in the complex plane C is called
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the spectrum of T . Furthermore, the spectrum σ(T,X) is partitioned into three
disjoint sets as follows:

The point(discrete) spectrum σp(T,X) is the set of all λ ∈ C such that T−1
λ

does not exist. Any such λ ∈ σp(T,X) is called an eigenvalue of T .
The continuous spectrum σc(T,X) is the set of all λ ∈ C such that T−1

λ exists
and satisfies (R3), but not (R2), that is, T−1

λ is unbounded.
The residual spectrum σr(T,X) is the set of all λ ∈ C such that T−1

λ exists (and
may be bounded or not), but does not satisfy (R3), that is, the domain of T−1

λ is
not dense in X .

From Goldberg [17], if X is a Banach space and T ∈ B(X) , then there are
three possibilities for R(T ) and T−1 :

(I) R(T ) = X ,

(II) R(T ) 6= R(T ) = X

(III) R(T ) 6= X

and

(1) T−1 exists and is continuous,

(2) T−1 exists but is discontinuous,

(3) T−1 does not exist.

If these possibilities are combined in all possible ways, nine different states are
created which may be shown as in the Table 1.

I II III
1 ρ(T,X) σr(T,X)
2 σc(T,X) σc(T,X) σr(T,X)
3 σp(T,X) σp(T,X) σp(T,X)

Table 1: Subdivisions of spectrum of a linear operator

These are labeled by: I1, I2, I3, II1, II2, II3, III1, III2 and III3 . If λ is a
complex number such that Tλ ∈ I1 or Tλ ∈ I2 ,then λ is in the resolvent set ρ(T,X)
of T . The further classification gives rise to the fine spectrum of T . If an operator
is in state II2 , then R(Tλ) 6= R(Tλ) = X and T−1

λ exists but is discontinuous and
we write λ ∈ II2σ(T,X). The state II1 is impossible as if Tλ is injective, then
from Kreyszig

[

[22], Problem 6, p.290
]

T−1
λ is bounded and hence continuous if

and only if R(Tλ) is closed.
Again, following Appell et al. [8], we define the three more subdivisions of the

spectrum called as the approximate point spectrum, defect spectrum and compres-
sion spectrum.

Given a bounded linear operator T in a Banach space X , we call a sequence
(xk) in X as a Weyl sequence for T if ||xk|| = 1 and ||Txk|| → 0 as k → ∞ .
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The approximate point spectrum of T , denoted by σap(T,X) , is defined as the
set

σap(T,X) = {λ ∈ C : there exists a Weyl sequence for T − λI} (2.1)

The defect spectrum of T , denoted by σδ(T,X) , is defined as the set

σδ(T,X) = {λ ∈ C : T − λI is not surjective} (2.2)

The two subspectra given by equations (2.1) and (2.2) form a (not necessarily
disjoint) subdivisions

σ(T,X) = σap(T,X) ∪ σδ(T,X) (2.3)

of the spectrum. There is another subspectrum

σco(T,X) = {λ ∈ C : R(T − λI) 6= X}

which is often called the compression spectrum of T . The compression spectrum
gives rise to another (not necessarily disjoint) decomposition

σ(T,X) = σap(T,X) ∪ σco(T,X) (2.4)

Clearly, σp(T,X) ⊆ σap(T,X) and σco(T,X) ⊆ σδ(T,X) . Moreover, it is easy to
verify that σr(T,X) = σco(T,X) \ σp(T,X) and σc(T,X) = σ(T,X) \ [σp(T,X)∪
σco(T,X)].

By the definitions given above, we can illustrate the subdivisions of spectrum
of a bounded linear operator in the Table 2.

1 2 3

T−1
λ exists T−1

λ exists and T−1
λ does not

and is bounded is not bounded exist
I R(T − λI) = X λ ∈ ρ(T,X) · · · λ ∈ σp(T,X)

λ ∈ σap(T,X)
λ ∈ σc(T,X) λ ∈ σp(T,X)

II R(T − λI) = X λ ∈ ρ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σδ(T,X) λ ∈ σδ(T,X)

λ ∈ σr(T,X) λ ∈ σr(T,X) λ ∈ σp(T,X)

III R(T − λI) 6= X λ ∈ σδ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σco(T,X) λ ∈ σδ(T,X) λ ∈ σδ(T,X)

λ ∈ σco(T,X) λ ∈ σco(T,X)

Table 2: Subdivisions of spectrum of a linear operator

Proposition 2.1. [Appell et al. [8], Proposition 1.3, p. 28] Spectra and
subspectra of an operator T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) are related by the
following relations:
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(a) σ(T ∗, X∗) = σ(T,X).

(b) σc(T
∗, X∗) ⊆ σap(T,X).

(c) σap(T
∗, X∗) = σδ(T,X).

(d) σδ(T
∗, X∗) = σap(T,X).

(e) σp(T
∗, X∗) = σco(T,X).

(f) σco(T
∗, X∗) ⊇ σp(T,X).

(g) σ(T,X) = σap(T,X) ∪ σp(T
∗, X∗) = σp(T,X) ∪ σap(T

∗, X∗).

The relations (c)-(f) show that the approximate point spectrum is in a certain
sense dual to defect spectrum, and the point spectrum dual to the compression
spectrum. The equality (g) implies, in particular, that σ(T,X) = σap(T,X) if X
is a Hilbert space and T is normal. Roughly speaking, this shows that normal (in
particular, self-adjoint) operators on Hilbert spaces are most similar to matrices in
finite dimensional spaces (Appell et al. [8]).

Let λ and µ be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank, where n, k ∈ N0 = {0, 1, 2, ...}. Then, we say that
A defines a matrix mapping from λ into µ, and we denote it by A : λ → µ , if for
every sequence x = (xk) ∈ λ, the sequence Ax = {(Ax)n}, the A-transform of x,
is in µ, where

(Ax)n =

∞
∑

k=0

ankxk, n ∈ N0. (2.5)

By (λ : µ), we denote the class of all matrices such that A : λ → µ. Thus,
A ∈ (λ : µ) if and only if the series on the right hand side of equation (2.5)
converges for each n ∈ N0 and every x ∈ λ and we have Ax = {(Ax)n}n∈N0

∈ µ for
all x ∈ λ.

The Zweier matrix Zs is an infinite lower triangular matrix of the form

Zs =















s 0 0 0 · · ·
1− s s 0 0 · · ·
0 1− s s 0 · · ·
0 0 1− s s · · ·
...

...
...

...
. . .















where s 6= 0, 1.
The following results will be used in order to establish the results of this article.

Lemma 2.1. [Wilansky [35] Example 6B, Page 130] The matrix A = (ank)
gives rise to a bounded linear operator T ∈ B(cs) from cs to itself if and only if:

(i) sup

m

∑

k |
∑m

n=1(ank − an,k−1)| < ∞.

(ii)
∑

n ank is convergent for each k.
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Lemma 2.2. [Goldberg [17], Page 59] T has a dense range if and only if T ∗

is one to one.

Lemma 2.3. [Goldberg [17], Page 60] T has a bounded inverse if and only if
T ∗ is onto.

3. Spectrum and fine spectrum of the operator Zs over the sequence
space cs

Theorem 3.1. Zs : cs → cs is a bounded linear operator and

‖ Zs ‖(cs:cs)≤ |s|+ |1− s|.

Proof: From Lemma 2.1, it is easy to show that Zs : cs → cs is a bounded linear
operator.
Now,

|Zs(x)| =

∣

∣

∣

∣

∣

n
∑

i=0

sxi +

n−1
∑

i=0

(1 − s)xi

∣

∣

∣

∣

∣

≤ |s|

∣

∣

∣

∣

∣

n
∑

i=0

xi

∣

∣

∣

∣

∣

+ |1− s|

∣

∣

∣

∣

∣

n−1
∑

i=0

xi

∣

∣

∣

∣

∣

≤ (|s|+ |1− s|) ‖ x ‖cs

and hence,‖ Zs ‖(cs:cs)≤ |s|+ |1− s|. Hence the result. ✷

From Theorem 2.1 in [4], we get the spectrum of the operator B(r, s) on the
sequence space c0 is σ(B(r, s), c0) = {α ∈ C : |α − r| ≤ |s|}, where the operator
B(r, s) is given by the lower triangular matrix

B(r, s) =















r 0 0 0 · · ·
s r 0 0 · · ·
0 s r 0 · · ·
0 0 s r · · ·
...

...
...

...
. . .















where s 6= 0. The lower triangular matrix Zs is a special case of B(r, s).Also the
sequence space cs is a subspace of c0. Therefore we can expect that

σ(Zs, cs) ⊆ {α ∈ C : |α− s| ≤ |1− s|}.

In the following theorem we give an independent proof of our expectation.

Theorem 3.2. The spectrum of the operator Zs over cs is given by

σ(Zs, cs) = {α ∈ C : |α− s| ≤ |1− s|}.
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Proof: We prove this theorem by showing that (Zs−αI)−1 exists and is in (cs : cs)
for |α− s| > |1− s| , and then show that the operator Zs −αI is not invertible for
|α− s| ≤ |1− s|.

Let α be such that |α−s| > |1−s|. Since s 6= 1 we have α 6= s and so Zs−αI is
a triangle, therefore (Zs−αI)−1 exists. Let y = (yn) ∈ cs . Solving (Zs−αI)x = y
for x in terms of y we get

(Zs − αI)−1 = (ank)

=



















1
s−α

0 0 0 · · ·
s−1

(s−α)2
1

s−α
0 0 · · ·

(s−1)2

(s−α)3
s−1

(s−α)2
1

s−α
0 · · ·

(s−1)3

(s−α)4
(s−1)2

(s−α)3
s−1

(s−α)2
1

s−α
· · ·

...
...

...
...

. . .



















It is easy to show that for all m,

∑

k

∣

∣

∣

∣

∣

m
∑

n=1

(ank − an,k−1)

∣

∣

∣

∣

∣

≤
1

|s− α|
+

|s− 1|

|s− α|2
+

|s− 1|2

|s− α|3
+ · · ·+

|s− 1|m

|s− α|m+1

and hence, sup
m

∑

k

∣

∣

∣

∣

∣

∑m

n=1(ank − an,k−1)

∣

∣

∣

∣

∣

< ∞, as |α− s| > |1− s|.

Since |α− s| > |1− s|, so for all k, the series

∑

n

ank =
1

r − α
−

s

(r − α)2
+

s2

(r − α)3
− · · · (3.1)

is also convergent. So, by Lemma 2.1, (Zs − αI)−1 is in (cs : cs).
This shows that σ(Zs, cs) ⊆ {α ∈ C : |α− s| ≤ |1− s|}.

Now, let α ∈ C be such that |α − s| ≤ |1 − s|. If α 6= s, then Zs − αI is a
triangle and hence, (Zs − αI)−1 exists.
Let y = (1, 0, 0, 0, ...). Then y ∈ cs.
Now, (Zs − αI)−1y = x gives

xn =
(s− 1)n

(s− α)n+1
.

Since |α− s| ≤ |1− s|, so the series

∞
∑

n=0

xn =

∞
∑

n=0

(s− 1)n

(s− α)
n+1 =

1

s− α

∞
∑

n=0

(

−
s− 1

s− α

)n

is not convergent and hence, x = (xn) /∈ cs. Therefore, (Zs − αI)−1 is not in
(cs : cs) and so α ∈ σ(Zs, cs).
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If α = s, then the operator Zs − αI is represented by the matrix

Zs − sI =















0 0 0 0 · · ·
1− s 0 0 0 · · ·
0 1− s 0 0 · · ·
0 0 1− s 0 · · ·
...

...
...

...
. . .















Since, the range of Zs − αI is not dense, so α ∈ σ(Zs, cs). Hence,

{α ∈ C : |α− s| ≤ |1− s|} ⊆ σ(Zs, cs).

This completes the proof. ✷

Theorem 3.3. The point spectrum of the operator Zs over cs is given by

σp(Zs, cs) = φ.

Proof: Let α be an eigenvalue of the operator Zs . Then there exists x 6= θ =
(0, 0, 0, ...) in cs such that Zsx = αx. Then, we have

sx0 = αx0

(1− s)x0 + sx1 = αx1

(1− s)x1 + sx2 = αx2

· · ·

(1− s)xn + sxn+1 = αxn+1, n ≥ 0

If xk is the first non-zero entry of the sequence (xn) , then α = s . Then from the
relation
(1 − s)xk + sxk+1 = αxk+1 , we have (1 − s)xk = 0. But s 6= 1 and hence, xk = 0
, a contradiction. Hence,σp(Zs, cs) = φ. ✷

If T : cs → cs is a bounded linear operator represented by a matrix A, then it
is known that the adjoint operator T ∗ : cs∗ → cs∗ is defined by the transpose At

of the matrix A. It should be noted that the dual space cs∗ of cs is isometrically
isomorphic to the Banach space bv of all bounded variation sequences normed by
‖ x ‖bv=

∑∞
n=0 |xn+1 − xn|+ limn→∞ |xn|.

Theorem 3.4. The point spectrum of the operator Z∗
s over cs∗ is given by

σp(Z
∗
s , cs

∗ ∼= bv) = {α ∈ C : |α− s| < |1− s|}.
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Proof: Let α be an eigenvalue of the operator Z∗
s . Then there exists x 6= θ =

(0, 0, 0, ...) in bv such that Z∗
sx = αx. Then, we have

Zt
sx = αx

⇒ sx0 + (1− s)x1 = αx0

sx1 + (1− s)x2 = αx1

sx2 + (1− s)x3 = αx2

· · ·

sxn + (1− s)xn+1 = αxn, n ≥ 0

Then, we have

xn =

(

α− s

1− s

)n

x0.

Since x = (xn) ∈ bv , so x = (xn) ∈ c . The sequence (xn) is convergent if and
only if |α− s| < |1− s| . Hence, σp(Z

∗
s , cs

∗ ∼= bv) = {α ∈ C : |α− s| < |1− s|} . ✷

Theorem 3.5. The residual spectrum of the operator Zs over cs is given by

σr(Zs, cs) = {α ∈ C : |α− s| < |1− s|}.

Proof: Since,

σr(Zs, cs) = σp(Z
∗
s , cs

∗) \ σp(Zs, cs),

so we get the required result by using Theorem 3.3 and Theorem 3.4. ✷

Theorem 3.6. The continuous spectrum of the operator Zs over cs is given by

σc(Zs, cs) = {α ∈ C : |α− s| = |1− s|}.

Proof: Since, σ(Zs, cs) is the disjoint union of σp(Zs, cs), σr(Zs, cs) and σc(Zs, cs)
, therefore, by Theorem 3.2, Theorem 3.3 and Theorem 3.5, we get

σc(Zs, cs) = {α ∈ C : |α− s| = |1− s|}.

✷

Theorem 3.7. If α = s, then α ∈ III1σ(Zs, cs).

Proof: If α = s, the range of Zs−αI is not dense. So, from Table 2 and Theorem
3.3, we have α ∈ σr(Zs, cs).
From Table 2,

σr(Zs, cs) = III1σ(Zs, cs) ∪ III2σ(Zs, cs).
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Therefore, α ∈ III1σ(Zs, cs) or α ∈ III2σ(Zs, cs).
Also for α = s,

Zs − αI =















0 0 0 0 · · ·
1− s 0 0 0 · · ·
0 1− s 0 0 · · ·
0 0 1− s 0 · · ·
...

...
...

...
. . .















To prove the result, it is enough to show that the operator Zs − αI is bounded
below. It is easy to verify that for all x ∈ cs , we have

‖ (Zs − αI)x ‖≥
|1− s|

2
‖ x ‖

which shows that the operator Zs − αI is bounded below and so Zs − αI has a
bounded inverse. This completes the theorem. ✷

Theorem 3.8. If α 6= s and α ∈ σr(Zs, cs) , then α ∈ III2σ(Zs, cs).

Proof: Since,α ∈ σr(Zs, cs), therefore,from Table 2,

α ∈ III1σ(Zs, cs) or α ∈ III2σ(Zs, cs).

Now, α ∈ σr(Zs, cs) implies that |α − s| < |1 − s| . Therefore, the series (3.1) in
Theorem 3.2 is not convergent and hence, the operator Zs − αI has no bounded
inverse.
Therefore, α ∈ III2σ(Zs, cs). ✷

Theorem 3.9. If α ∈ σc(Zs, cs) , then α ∈ II2σ(Zs, cs).

Proof: If α ∈ σc(Zs, cs), then |α − s| = |1 − s|. Therefore, the series (3.1) in
Theorem 3.2 is not convergent and hence, the operator Zs − αI has no bounded
inverse. So, α satisfies Goldberg’s condition 2.
Now we shall show that the operator Zs − αI is not onto.
Let y = (yn) = (1, 0, 0, 0, ...). Clearly,(yn) ∈ cs.
Let x = (xn) be a sequence such that (Zs − αI)x = y.
On solving, we get

xn =
(s− 1)n

(s− α)n+1
.

Now,the series

∞
∑

n=0

xn =

∞
∑

n=0

(s− 1)n

(s− α)n+1
=

1

s− α

∞
∑

n=0

(

s− 1

s− α

)n

is not convergent as |α− s| = |1 − s| and hence the operator Zs − αI is not onto.
So, α satisfies Goldberg’s condition II.
This completes the proof. ✷
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Theorem 3.10. The approximate point spectrum of the operator Zs over cs is
given by

σap(Zs, cs) = {α ∈ C : |α− s| ≤ |1− s|} \ {s}.

Proof: From Table 2,

σap(Zs, cs) = σ(Zs, cs) \ III1σ(Zs, cs).

By Theorem 3.7, III1σ(Zs, cs) = {s} .This completes the proof. ✷

Theorem 3.11. The compression spectrum of the operator Zs over cs is given by

σco(Zs, cs) = {α ∈ C : |α− s| < |1− s|}.

Proof: By Proposition 2.1(e), we get

σp(Z
∗
s , cs

∗) = σco(Zs, cs).

Using Theorem 3.4, we get the required result. ✷

Theorem 3.12. The defect spectrum of the operator Zs over cs is given by

σδ(Zs, cs) = {α ∈ C : |α− s| ≤ |1− s|}.

Proof: From Table 2, we have

σδ(Zs, cs) = σ(Zs, cs) \ I3σ(Zs, cs).

Also,
σp(Zs, cs) = I3σ(Zs, cs) ∪ II3σ(Zs, cs) ∪ III3σ(Zs, cs).

By Theorem 3.3, we have σp(Zs, cs) = φ and so I3σ(Zs, cs) = φ.
Hence, σδ(Zs, cs) = {α ∈ C : |α− s| ≤ |1− s|}. ✷

Corollary 3.1. The following statements hold:

(i) σap(Z
∗
s , cs

∗ ∼= bv) = {α ∈ C : |α− s| ≤ |1− s|}.

(ii) σδ(Z
∗
s , cs

∗ ∼= bv) = {α ∈ C : |α− s| ≤ |1− s|} \ {s}.

Proof: Using Proposition 2.1 (c) and (d), we get

σap(Z
∗
s , cs

∗ ∼= bv) = σδ(Zs, cs)

and
σδ(Z

∗
s , cs

∗ ∼= bv) = σap(Zs, cs).

Using Theorem 3.10 and Theorem 3.12, we get the required results. ✷
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