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abstract: In this paper, we define the concepts of commute proximally, domi-
nate proximally, weakly dominate proximally and common best proximity point in
fuzzy metric space (abbreviated, FM -space). We prove some common best prox-
imity point and common fixed point theorems for dominate proximally and weakly
dominate proximally mappings in FM -space under certain conditions. Our results
generalize many known results in metric space.
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1. Introduction and preliminaries

The notion of fuzzy sets introduced by Zadeh [25], proved a turning point in the
development of mathematics. This notion laid the foundation of fuzzy mathemat-
ics. Fuzzy set theory has applications in applied sciences such as neural network
theory, stability theory, mathematical programming, modelling theory, engineering
sciences, medical sciences (medical genetics, nervous system), image processing,
control theory, communication etc. Kramosil and Michalek [15] introduced the no-
tion of a fuzzy metric space by generalizing the concept of the probabilistic metric
space to the fuzzy situation. George and Veeramani [12], modified the concept of
fuzzy metric spaces introduced by Kramosil and Michalek [15].
Fixed point theory in fuzzy metric spaces was initiated by Grabiec [13]. Subrah-
manyam [22] gave a generalization of Jungck [14] common fixed point theorem
for commuting mappings in the setting of fuzzy metric spaces, whereas Vasuki
[23] gave a fuzzy version of a result contained in Pant [18]. Thereafter, many au-
thors established fuzzy versions of a host of classical metrical common fixed point
theorems (e.g. [1,20,23]).

In nonlinear analysis, the theory of fixed points is an essential instrument to
solve the equation Tx = x for a self mapping T defined on a subset of an abstract
space such as a metric space, a normed linear space or a topological vector space.
If T is a non-self mapping from A to B, then the aforementioned equation does
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not necessarily admit a solution. However, in such circumstances, it may be spec-
ulated to determine an element x for which the error d(x, Tx) is minimum, where
d is the distance function, in which case x and Tx are in close proximity to each
other. In fact, best approximation theorems and best proximity point theorems
are applicable for solving such problems. In view of the fact that d(x, Tx) is at
least d(A,B), a best proximity point theorem guarantees the global minimization of
d(x, Tx) by the requirement that an approximate solution x satisfies the condition
d(x, Tx) = d(A,B). Such optimal approximate solutions are called best proximity
points of the mapping T . Further, it is interesting to observe that best proximity
theorems also emerge as a natural generalization of fixed point theorems. A best
proximity point reduces to a fixed point if the mapping under consideration is a
self mapping. Investigation of several variants of contractions for the existence of
a best proximity point can be found in [2,3,4,5,7,8,9,10,17,19,21,24]. Eldred et al.
[11] have established a best proximity point theorem for relatively non-expansive
mappings. Further, Anuradha and Veeramani have focussed on best proximity
point theorems for proximal pointwise contraction mappings [6].

In this paper, we establish some definitions and basic concepts of the common
best proximity point in the framework of fuzzy metric spaces.

We first bring notation, definitions and known results, which are related to our
work.

Definition 1.1. A mapping ∗ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm
(abbreviated, t-norm) if the following conditions are satisfied:

(i) a ∗ b = b ∗ a,

(ii) a ∗ (b ∗ c) = (a ∗ b) ∗ c,

(iii) a ∗ b ≥ c ∗ d, whenever a ≥ c and b ≥ d,

(iv) a ∗ 1 = a,

for every a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a∗M b = min{a, b} and a∗P b =
ab.

Lemma 1.2. If ∗ is a t-norm, then a ∗ a ≥ a, for all a ∈ [0, 1], if and only if
∗ = ∗M .

Proof: For an arbitrary t-norm ∗ we get ∗ ≤ ∗M . Let a, b ∈ [0, 1] and a ≤ b ≤ 1,
so

a ≤ a ∗ a ≤ a ∗ b ≤ a ∗M b = a,

then a ∗ b = a ∗M b. ✷

Definition 1.3. (George and Veeramani [12]) The 3-tuple (X,M, ∗) is said to
be a fuzzy metric space (abbreviated, FM -space) if X is a nonempty set, ∗ is a
continuous t-norm and M is a fuzzy set on X ×X× [0,∞) satisfying the following
conditions:
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(FM1) M(x, y, t) > 0, M(x, y, 0) = 0,

(FM2) M(x, y, t) = 1 iff x = y,

(FM3) M(x, y, t) = M(y, x, t),

(FM4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s),

(FM5) M(x, y, .) : (0,∞) → [0, 1] is continuous.

for any x, y, z ∈ X and t, s > 0.

Example 1.4. [12] Let (X, d) be a metric space. Define

M(x, y, t) =
ktn

ktn +md(x, y)
, k,m, n ∈ R

+,

then (X,M, ∗M ) is a fuzzy metric space.

Lemma 1.5. [16] Let (X,M, ∗) be a FM -space. If there exists q ∈ (0, 1) such
that for all t ≥ 0, M(x, y, qt) ≥ M(z, w, t) ≥ M(x, y, t) where x, y, z, w ∈ X, then
x = y and z = w.

Proposition 1.6. [13] Let (X,M, ∗) be a fuzzy metric space. Then for all x, y ∈ X,
M(x, y, ·) is non-decreasing.

Definition 1.7. Let (X,M, ∗) be a FM -space. An open ball with center x and
radius λ (0 < λ < 1) in X is the set Ux(ε, λ) = {y ∈ X : M(x, y, ǫ) > 1 − λ},
for all ε > 0. It is easy to see that U = {Ux(ε, λ) : x ∈ X, ε > 0, λ ∈ (0, 1)}
determines a Hausdorff topology for X [12].

Definition 1.8. Let (X,M, ∗) be a FM -space. For each λ ∈ (0, 1), define the
function

dλ : X ×X → R,

by
dλ(x, y) = sup

t∈R

{t ∈ R : M(x, y, t) ≤ 1− λ}.

Since M(x, y, t) is non-decreasing, continuous with inft∈R M(x, y, t) = 0 and supt∈R

M(x, y, t) = 1, then dλ(x, y) is finite.

Proposition 1.9. Let (X,M, ∗M ) be a FM -space. The function dλ is a pseudo-
metric for each λ ∈ (0, 1). Furthermore dλ(x, y) = 0 for all λ ∈ (0, 1) if and only
if x = y.

Proof: Since M(x, y, 0) = 0 and M(x, y, .) is non-decreasing, it is clear that
dλ(x, y) ≥ 0. Obviously dλ(x, y) = dλ(y, x), since M(x, y, t) = M(y, x, t). Fur-
thermore dλ(x, x) = 0 from (FM2). It remains to verify the triangle inequality.
To this end, assume towards a contradiction that

dλ(x, y) + dλ(y, z) < dλ(x, z),
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for some x, y and z in X. We can choose t > dλ(x, y) and s > dλ(y, z) so that

t+ s < dλ(x, z).

Hence
M(x, y, t) = 1− λ1 > 1− λ,

and
M(y, z, s) = 1− λ2 > 1− λ.

Choose λ̃ = max{λ1, λ2}, then

1− λ̃ ≤ 1− λ̃ ∗M 1− λ̃ ≤ M(x, y, t) ∗M M(y, z, s) ≤ M(x, z, t+ s),

which is a contradiction, since 1− λ̃ > 1− λ. ✷

Proposition 1.10. Let (X,M, ∗M ) be a FM -space. For each (x, y) ∈ X × X,
dλ(x, y) is a left continuous non-increasing function of λ, such that M(x, y, dλ(x, y))
≤ 1− λ.

Proof: Fix (x, y). If λ1, λ2 ∈ (0, 1), λ1 ≤ λ2 and t0 ∈ {t ∈ R : M(x, y, t) ≤ 1−λ2}
then M(x, y, t0) ≤ 1−λ2 ≤ 1−λ1 so t0 ∈ {t ∈ R : M(x, y, t) ≤ 1−λ1}, therefore
dλ(x, y) is non-increasing. Let {tn} be a sequence that tn ∈ {t ∈ R : M(x, y, t) ≤
1 − λ} and tn → dλ(x, y). Since M(x, y, .) is continuous, we have M(x, y, tn) →
M(x, y, dλ(x, y)). Because M(x, y, tn) ≤ 1− λ, then M(x, y, dλ(x, y)) ≤ 1− λ. To
see that dλ(x, y) is left continuous, let, λ ∈ (0, 1) and let {λi} be a non-decreasing
sequence converging to λ, Then {dλi

(x, y)} is a non-increasing sequence bounded
below by zero and hence converges to a number p; since dλi

(x, y) ≥ dλ(x, y), p ≥
dλ(x, y). We complete the proof by showing that p = dλ(x, y). If p > dλ(x, y),
then from the definition of dλ(x, y), M(x, y, p) > 1− λ. Choose an n large enough
so that M(x, y, p) > 1 − λn ≥ 1 − λ. However, since p ≤ dλn

(x, y), M(x, y, p) ≤
M(x, y, dλn

(x, y)) ≤ 1− λn and we have a contradiction. ✷

The family {dλ : λ ∈ (0, 1)} of all such pseudometrics will be called the family
of pseudometrics associated with the fuzzy metric M .

Lemma 1.11. M(x, y, ǫ) > 1− λ, if and only if dλ(x, y) < ǫ.

Proof: Let dλ(x, y) < ǫ, then from the definition of dλ(x, y) we get M(x, y, ǫ) >
1 − λ. If M(x, y, ǫ) > 1 − λ, then dλ(x, y) < ǫ, since if dλ(x, y) ≥ ǫ, from the fact
that M(x, y, dλ(x, y)) ≤ 1− λ and M(x, y, .) is non-decreasing we have

1− λ ≥ M(x, y, dλ(x, y)) ≥ M(x, y, ǫ) > 1− λ,

and we have a contradiction. Therefore dλ(x, y) < ǫ. ✷

From this lemma it is clear that the neighborhood Ux(ε, λ) of x in the M topol-
ogy is the dλ-spherical neighborhood of x of radius ǫ. We thus have immediately
the following basic result.
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Theorem 1.12. Let (X,M, ∗M ) be a FM -space. The topology on X generated by
the family of pseudometrics associated with the fuzzy metric M is the same as the
topology induced by M .

Definition 1.13. A sequence (xn) in a FM -space (X,M, ∗) is said to be convergent
to a point x ∈ X if and only if for every ε > 0 and λ ∈ (0, 1), there exists
n0(ε, λ) ∈ N such that M(xn, x, ε) > 1 − λ for all n ≥ n0(ε, λ) or for every
λ ∈ (0, 1), dλ(xn, x) → 0 or limn→∞ M(xn, x, t) = 1 for all t > 0, in this case we
say that limit of the sequence (xn) is x.

Definition 1.14. A sequence (xn) in a FM -space (X,M, ∗) is said to be Cauchy
sequence if and only if for every ε > 0 and λ ∈ (0, 1), there exists n0(ε, λ) ∈ N

such that M(xn+p, xn, ε) > 1− λ for all n ≥ n0(ε, λ) and every p ∈ N or for every
λ ∈ (0, 1), dλ(xn+p, xn) → 0 for all p ∈ N, or limn→∞ M(xn, xn+p, t) = 1, for all
t > 0 and p ∈ N.

Also, a FM -space (X,M, ∗) is said to be complete if and only if every Cauchy
sequence in X, is convergent.

Proposition 1.15. The limit of a convergent sequence in a FM -space (X,M, ∗)
is unique.

Proof: It is obvious. ✷

Proposition 1.16. Let (X,M, ∗) be a FM -space and (xn) be a sequence in X. If
sequence (xn) converges to x ∈ X, then M(x, x, t) = 1 for all t > 0.

Proof: It is obvious. ✷

Definition 1.17. Let A and B be nonempty subsets of a FM -space (X,M, ∗). Let

M(A,B, t) = sup
x∈A,y∈B

M(x, y, t), t ≥ 0,

which is said to be the fuzzy distance of A,B.

Definition 1.18. Let A and B be nonempty subsets of a FM -space (X,M, ∗). We
define the following sets:

A0 = {x ∈ A : ∃ y ∈ B s.t. ∀ t ≥ 0, M(x, y, t) = M(A,B, t)},

B0 = {y ∈ B : ∃ x ∈ A s.t. ∀ t ≥ 0, M(x, y, t) = M(A,B, t)}.

Definition 1.19. Let A and B be nonempty subsets of a FM -space (X,M, ∗) and
T, S : A → B be two mappings. We say that an element x ∈ A is a common best
proximity point of the mappings S and T , if

M(x, Sx, t) = M(A,B, t) = M(x, Tx, t),

for all t ≥ 0.



182 H. Shayanpour and A. Nematizadeh

It is clear that the notion of a common fixed point coincided with the notion of
a common best proximity point when the underlying mapping is a self mapping.
Also, it can be noticed that common best proximity point is an element at which
both function x → M(x, Sx, t) and x → M(x, Tx, t) for all t ≥ 0, attain global
supremum.

Definition 1.20. Let A and B be nonempty subsets of a FM -space (X,M, ∗) and
T, S : A → B be two mappings. We say that T, S are commute proximally if

M(u, Sx, t) = M(A,B, t) = M(v, Tx, t),

for all t ≥ 0, then Sv = Tu, where x, y, u, v ∈ A.

Example 1.21. Let (X,M, ∗) be a FM -space and T, S : X → X be two mappings
such that TS = ST . Clearly M(X,X, t) = 1 for all t ≥ 0 and so if

M(u, Sx, t) = M(X,X, t) = M(v, Tx, t), (x, u, v ∈ X, t ≥ 0),

then by the hypothesis, u = Sx and v = Tx. Therefore Sv = STx = TSx = Tu,
hence T, S are commute proximally.

Definition 1.22. Let A and B be nonempty subsets of a FM -space (X,M, ∗) and
T, S : A → B be two mappings. We say that the mapping T is to dominate the
mapping S proximally if

M(u1, Sx1, t) = M(u2, Sx2, t) = M(A,B, t) = M(v1, T x1, t) = M(v2, T x2, t),

for all t ≥ 0, then there exists a α ∈ (0, 1) such that for all t ≥ 0,

M(u1, u2, αt) ≥ M(v1, v2, t),

where u1, u2, v1, v2, x1, x2 ∈ A.

Example 1.23. Let X = [−2, 2] and M(x, y, t) = t
t+|x−y| for all x, y ∈ X, it is easy

to see that (X,M, ∗M ) is a FM -space. Define non-self mappings S : X → [−1, 1]
and T : X → [−1, 1] as

Sx =
1

8
x, Tx = −

1

2
x, (x ∈ X).

It is easy to see that M(X, [−1, 1], t) = 1. If for all t ≥ 0

M(u1, Sx1, t) = M(u2, Sx2, t) = M(X, [−1, 1], t) = 1 = M(v1, Tx1, t) = M(v2, Tx2, t),

where u1, u2, v1, v2, x1, x2 ∈ A. Then ui = Sxi and vi = Txi (i = 1, 2) and so for
α = 1/4 we have M(u1, u2, αt) = M(v1, v2, t), hence T dominates S proximally for
α = 1/4.
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Definition 1.24. Let A and B be nonempty subsets of a FM -space (X,M, ∗) and
T, S : A → B be two mappings. We say that the mapping T is to weakly dominate
the mapping S proximally if

M(u1, Sx1, t) = M(u2, Sx2, t) = M(A,B, t) = M(v1, T x1, t) = M(v2, T x2, t),

for all t ≥ 0, then there exists a α ∈ (0, 1) such that for all t ≥ 0,

M(u1, u2, αt) ≥ min{M(v1, v2, t),M(v1, u1, t),M(v1, u2, t),M(v2, u1, t)},

where u1, u2, v1, v2, x1, x2 ∈ A.

Obviously, if T dominates S proximally, then T weakly dominates S proximally.
The following example shows that the converse is not true, in general.

Example 1.25. Let X = [0, 1] × [0, 1] and d : X × X → [0,∞) be given by
d((x1, x2), (y1, y2)) =

√

(x1 − y1)2 + (x2 − y2)2 and define

M((x1, x2), (y1, y2), t) =
t

t+ d((x1, x2), (y1, y2))
.

Clearly, (X,M, ∗M ) is a FM -space. Let A = {(0, x) : x ∈ [0, 1]}, B = {(1, x) :
x ∈ [0, 1]} and S, T : A → B be defined as T (0, x) = (1, x) for all x ∈ [0, 1] and

S(0, x) =

{

(1, 13 ) ; x < 1,

(1, 12 ) ; x = 1,
(∀ x ∈ [0, 1]).

It is easy to see that M(A,B, t) = t
t+1 . We show that T does not dominate S

proximally. To show the claim, suppose that there exists α ∈ (0, 1) such that for all
t ≥ 0,

M(U1, U2, αt) ≥ M(V1, V2, t),

where U1 = (0, u1), U2 = (0, u2), V1 = (0, v1), V2 = (0, v2), X1 = (0, x1) and
X2 = (0, x2) be elements in A satisfying

M(U1, SX1, t) =M(U2, SX2, t) = M(A,B, t) = M(V1, TX1, t)

=M(V2, TX2, t),
(1.1)

for all t ≥ 0. Let U1 = (0, 1
3 ), U2 = (0, 1

2 ), V1 = (0, x), V2 = (0, 1), X1 = (0, x)
and X2 = (0, 1) where 0 ≤ x < 1. Then U1, U2, V1, V2, X1 and X2 satisfy (1.1)
and then, we have

M(U1, U2, αt) =
t

t+ 1
α6

≥ M(V1, V2, t) =
t

t+ (1 − x)
, (∀ x ∈ [0, 1)),

a contradiction. Then we show that T weakly dominates S proximally for α = 1/4,
to verify this, let x1, x2, u1, u2, v1, v2 ∈ [0, 1] and

M((0, u1), S(0, x1), t) =M((0, u2), S(0, x2), t) = M(A,B, t)

=M((0, v1), T (0, x1), t) = M((0, v2), T (0, x2), t).
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Now we need to consider several possible cases.
Case 1. Let x1, x2 ∈ [0, 1). Then u1 = u2 = 1

3 and

M((0, u1), (0, u2),
1

4
t) = 1 ≥ min{M((0, v1), (0, v2), t),M((0, v1), (0, u1), t),

M((0, v1), (0, u2), t),M((0, v2), (0, u1), t)}.

Case 2. Let x1 = 1 = x2. Then u1 = u2 = 1
2 and

M((0, u1), (0, u2),
1

4
t) = 1 ≥ min{M((0, v1), (0, v2), t),M((0, v1), (0, u1), t),

M((0, v1), (0, u2), t),M((0, v2), (0, u1), t)}.

Case 3. Let x1 ∈ [0, 1) and x2 = 1. Then u1 = 1
3 , u2 = 1

2 , v2 = 1 and
M((0, u1), (0, u2),

1
4 t) =

t
t+ 2

3

= M((0, v2), (0, u1), t), so

M((0, u1), (0, u2),
1

4
t) ≥ min{M((0, v1), (0, v2), t),M((0, v1), (0, u1), t),

M((0, v1), (0, u2), t),M((0, v2), (0, u1), t)}.

Case 4. Let x1 = 1 and x2 ∈ [0, 1). Then u1 = 1
2 , u2 = 1

3 , v1 = 1 and
M((0, u1), (0, u2),

1
4 t) =

t
t+ 2

3

= M((0, v1), (0, u2), t), so

M((0, u1), (0, u2),
1

4
t) ≥ min{M((0, v1), (0, v2), t),M((0, v1), (0, u1), t),

M((0, v1), (0, u2), t),M((0, v2), (0, u1), t)}.

In this article, we introduce two new classes of mappings, called dominate proxi-
mally and weakly dominate proximally in fuzzy metric space. We provide sufficient
conditions for the existence and uniqueness of common best proximity points and
common fixed points for weakly dominate proximally mappings in FM -space. Our
results generalize many known results in metric space. Examples are given to sup-
port our main results.

2. Main Results

Now we state and prove our main theorem about existence and uniqueness
of a common best proximity point for dominate proximally and weakly dominate
proximally mappings in FM -space under certain conditions.

Theorem 2.1. Let A and B be nonempty subsets of a complete fuzzy metric space
(X,M, ∗M ) such that A0 and B0 are nonempty and A0 is closed. If the mappings
T, S : A → B satisfy the following conditions:

(i) T weakly dominates S proximally,
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(ii) S and T commute proximally,

(iii) S and T are continuous,

(iv) S(A0) ⊂ B0 and S(A0) ⊂ T (A0).

Then, there exists a unique element x ∈ A such that

M(x, Sx, t) = M(A,B, t) = M(x, Tx, t),

for all t ≥ 0.

Proof: First, suppose that there exists an element u ∈ A0 such that Su = Tu. By
the hypothesis, there exists an element x ∈ A0 such that

M(x, Su, t) = M(A,B, t) = M(x, Tu, t), ∀t ≥ 0, (2.1)

so, Sx = Tx. Once again, by the hypothesis, there exists an element v ∈ A0 such
that

M(v, Sx, t) = M(A,B, t) = M(v, Tx, t), ∀t ≥ 0. (2.2)

Since T weakly dominates S, then from (2.1) and (2.2), for all t ≥ 0, we get

M(x, v, αt) ≥ min{M(x, v, t),M(x, x, t),M(x, v, t),M(v, v, t)} = M(x, v, t),

which implies x = v, by Lemma 1.5. Therefore, it follows that

M(x, Sx, t) = M(v, Sx, t) = M(A,B, t) = M(v, Tx, t) = M(x, Tx, t), ∀t ≥ 0.

So, x is a common best proximity point of the mappings S and T . If x′ is another
common best proximity point of the mappings S and T , in other words

M(x′, Sx′, t) = M(A,B, t) = M(x′, T x′, t), ∀t ≥ 0,

then by using the same argument as above we can show that x = x′.
Second, we claim that there exists an element u ∈ A0 such that Su = Tu. To

support the claim, let x0 be a fixed point element in A0. By the hypothesis, there
exists an element x1 ∈ A0 such that Sx0 = Tx1. This process can be carried on.
Having chosen xn ∈ A0, by the hypothesis, we can find an element xn+1 ∈ A0 such
that Sxn = Txn+1. By the condition (iv), there exists an element un ∈ A0 such
that M(un, Sxn, t) = M(A,B, t) for all t ≥ 0 and n ∈ N.

Further, it follows from the choice xn and un that

M(un+1, Sxn+1, t) = M(A,B, t) = M(un, T xn+1, t), ∀ t ≥ 0.

So, by the condition (i), we have

M(un, un+1, αt) ≥ min{M(un−1, un, t),M(un−1, un, t),M(un−1, un+1, t),

M(un, un, t)},
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for all t ≥ 0. Thus, we have

M(un, un+1, αt) ≥ min{M(un−1, un, t),M(un−1, un+1, t)}, (2.3)

for all t ≥ 0. In the following we show by induction that for each n ∈ N and for
each t ≥ 0, there exists 1 ≤ m ≤ n+ 1 such that

M(un, un+1, t) ≥ M(u0, um, α−nt). (2.4)

If n = 1, then by (2.3), we have

M(u1, u2, αt) ≥ min{M(u0, u1, t),M(u0, u2, t)} = M(u0, um, t),

for some 1 ≤ m ≤ 2 and for all t ≥ 0. Thus (2.4) holds for n = 1. Assume
towards a contradiction that (2.4) is not true and take n0 > 1, be the least natural
number such that (2.4) does not hold. So there exists t0 > 0, such that for all
1 ≤ m ≤ n0 + 1, we have

M(un0
, un0+1, t0) < M(u0, um, α−n0t0). (2.5)

If min{M(un0−1, un0
, α−1t0), M(un0−1, un0+1, α

−1t0)} = M(un0−1, un0
, α−1t0),

then by the hypothesis we have

M(un0
, un0+1, t0) ≥ M(un0−1, un0

, α−1t0) ≥ M(u0, um, α−n0t0),

for some 1 ≤ m ≤ n0, a contradiction. Thus

min{M(un0−1, un0
, α−1t0),M(un0−1, un0+1, α

−1t0)} = M(un0−1, un0+1, α
−1t0),

and form (2.3), we have

M(un0
, un0+1, t0) ≥ M(un0−1, un0+1, α

−1t0). (2.6)

By the condition (i), we get

M(un0−1, un0+1, α
−1t) ≥ min{M(un0−2, un0

, α−2t),M(un0−2, un0−1, α
−2t),

M(un0−2, un0+1, α
−2t),M(un0

, un0−1, α
−2t)},

for all t ≥ 0. If

min{M(un0−2, un0
, α−2t0),M(un0−2, un0−1, α

−2t0),M(un0−2, un0+1, α
−2t0),

M(un0
, un0−1, α

−2t0)} = M(un0
, un0−1, α

−2t0),

then from (2.6) and the above, we have

M(un0
, un0+1, t0) ≥M(un0−1, un0+1, α

−1t0) ≥ M(un0
, un0−1, α

−2t0)

=M(un0−1, un0
, α−2t0) ≥ M(u0, um, α−(n0+1)t0)

≥M(u0, um, α−n0t0),
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for some 1 ≤ m ≤ n0 ≤ n0 + 1, a contradiction. Therefore

M(un0−1, un0+1, α
−1t0) ≥ min{M(un0−2, un0

, α−2t0),M(un0−2, un0−1, α
−2t0),

M(un0−2, un0+1, α
−2t0)},

from (2.6) and the above, we get

M(un0
, un0+1, t0) ≥M(un0−1, un0+1, α

−1t0)

≥min{M(un0−2, un0
, α−2t0),M(un0−2, un0−1, α

−2t0),

M(un0−2, un0+1, α
−2t0)}

=M(un0−2, um, α−2t0),

(2.7)

for some 1 ≤ m ∈ {n0 − 1, n0, n0 + 1} ≤ n0 + 1. Again by the condition (i), we
have

M(un0−2, um, α−2t) ≥ min{M(un0−3, um−1, α
−3t),M(un0−3, un0−2, α

−3t),

M(un0−3, um, α−3t),M(un0−2, um−1, α
−3t)},

for all t ≥ 0. If m = n0 − 1, then

min{M(un0−3, um−1, α
−3t0),M(un0−3, un0−2, α

−3t0),M(un0−3, um, α−3t0),

M(un0−2, um−1, α
−3t0)}

=min{M(un0−3, um−1, α
−3t0),M(un0−3, un0−2, α

−3t0),M(un0−3, um, α−3t0)}.

If m = n0, m 6= n0 − 1 and

min{M(un0−3, um−1, α
−3t0),M(un0−3, un0−2, α

−3t0),M(un0−3, um, α−3t0),

M(un0−2, um−1, α
−3t0)}

=M(un0−2, um−1, α
−3t0) = M(un0−2, un0−1, α

−3t0),

then from (2.7) and the above, we have

M(un0
, un0+1, t0) ≥M(un0−2, um, α−2t0) ≥ M(un0−2, un0−1, α

−3t0)

≥M(u0, um′ , α−(n0−2)(α−3t0))

≥M(u0, um′ , α−n0t0),

for some 1 ≤ m′ ≤ n0 + 1, a contradiction. Therefore

min{M(un0−3, um−1, α
−3t0),M(un0−3, un0−2, α

−3t0),M(un0−3, um, α−3t0),

M(un0−2, um−1, α
−3t0)}

=min{M(un0−3, um−1, α
−3t0),M(un0−3, un0−2, α

−3t0),M(un0−3, um, α−3t0)}.

If m = n0 + 1, m 6= n0 − 1 and m 6= n0, then

M(un0−2, un0
, α−2t0) ≥ M(un0−2, um, α−2t0).
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Now if

min{M(un0−3, um−1, α
−3t0),M(un0−3, un0−2, α

−3t0)M(un0−3, um, α−3t0),

M(un0−2, um−1, α
−3t0)}

=M(un0−2, um−1, α
−3t0) = M(un0−2, un0

, α−3t0),

then from the above, we have

M(un0−2, un0
, α−2t0) ≥M(un0−2, um, α−2t0) ≥ M(un0−2, un0

, α−3t0)

≥M(un0−2, un0
, α−2t0),

a contradiction, since if the above inequality becomes equality, then we can assume
that m = n0. Therefore from the above, we get

M(un0
, un0+1, t0) ≥M(un0−2, um, α−2t0)

≥min{M(un0−3, um−1, α
−3t0),M(un0−3, un0−2, α

−3t0),

M(un0−3, um, α−3t0)}

=M(un0−3, um′ , α−3t0),

for some 1 ≤ m′ ≤ n0 + 1. Therefore by continuing this process, we see that for
each 1 ≤ k ≤ n0, there exists 1 ≤ m ≤ n0 + 1 such that

M(un0
, un0+1, t0) ≥ M(un0−k, um, α−kt0). (2.8)

If k = n0 in (2.8), then this is a contradiction by (2.5). So (2.4) holds for all
n ∈ N. Suppose that (dλ)λ∈(0,1) is the family of pseudometrics in Definition 1.8,
by Theorem 1.12 the family of pseudometrics (dλ)λ∈(0,1) generates the topology
induced by M on X . We obtain by (2.4) that for un and every λ ∈ (0, 1),

dλ(un, un+1) ≤ αn max
1≤m≤n+1

{dλ(u0, um)}. (2.9)

Indeed, if max1≤m≤n+1{dλ(u0, um)} < r, then M(u0, um, r) > 1 − λ, for all m ∈
{1, · · · , n + 1} and (2.4) implies M(un, un+1, α

nr) > 1 − λ, which means that
dλ(un, un+1) < αnr. From (2.9) we get

dλ(un, un+1) ≤ αn (dλ(u0, u1) + dλ(u1, u2) + · · ·+ dλ(un, un+1)) .

Let an = dλ(un−1, un) and let sn =
∑n

i=1 an. So we have

an ≤ αn−1sn. (2.10)

We now show that
∑∞

n=1 an = limn→∞ sn < ∞. Assume towards a contradiction
that limn→∞ sn = ∞. By the hypothesis we can assume without loss of generality
that sn 6= 0 for all n ∈ N. So by the hypothesis the series

∞
∑

n=1

an
sn

< ∞, (2.11)
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is convergent. From (2.11), we get there exists n ∈ N such that for every m ∈ N,

1−
sn

sn+m

=
sn+m − sn

sn+m

=
an+1 + · · ·+ an+m

sn+m

≤

m
∑

j=1

an+j

sn+j

<
1

2
,

taking the limit as m → ∞, we get 1 ≤ 1
2 , a contradiction. Therefore for every

λ ∈ (0, 1) and p ∈ N, we have

lim
n→∞

dλ(un, un+p) = 0.

Then (un) is a Cauchy sequence and by the hypothesis there exists some element
u ∈ A0 such that limn→∞ un = u. By the hypothesis it is easy to see that Sun =
Tun+1, for all n ∈ N, now by the continuity of the mappings S and T we get
Su = Tu, so the desired result is obtained. ✷

The following corollary, is immediate.

Corollary 2.2. Let A and B be nonempty subsets of a complete FM -space (X,
M, ∗M ) such that A0 and B0 are nonempty and A0 is closed. If the mappings
T, S : A → B satisfy the following conditions:

(i) T dominates S proximally,

(ii) S and T commute proximally,

(iii) S and T are continuous,

(iv) S(A0) ⊂ B0 and S(A0) ⊂ T (A0).

Then, there exists a unique element x ∈ A such that

M(x, Sx, t) = M(A,B, t) = M(x, Tx, t),

for all t ≥ 0.

Corollary 2.3. Let (X,M, ∗M ) be a complete FM -space, S be a self mapping
on X and T be a continuous self mapping on X such that commutes with S. If
S(X) ⊆ T (X) and there exists a constant α ∈ (0, 1) such that

M(Sx, Sy, αt) ≥ min{M(Tx, T y, t),M(Tx, Sx, t),M(Tx, Sy, t),

M(Ty, Sx, t)},
(2.12)

for every x, y ∈ X and t ≥ 0. Then S and T have a unique common fixed point.

Proof: We used the assumption of continuity of S in Theorem 2.1 to show that

lim
n→∞

un = u, Tun = Sun−1, & lim
n→∞

Tun = Tu, ∀n ∈ N,

⇒ lim
n→∞

Sun−1 = Su.
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By (2.12), for all t ≥ 0 we have

M(Sun, Su, αt) ≥ min{M(Tun, Tu, t),M(Tun, Sun, t),M(Tun, Su, t),M(Tu, Sun, t)}.

Since limn→∞ Sun = limn→∞ Tun+1 = Tu, then M(Tu, Su, αt) ≥ M(Tu, Su, t) for
all t ≥ 0. By Lemma 1.5, we get Tu = Su or

lim
n→∞

Sun = lim
n→∞

Tun+1 = Tu = Su.

Also, it is easy to see that M(X,X, t) = 1 for all t ≥ 0, X0 = X, S and T satisfy the
condition (i) and (ii) of Theorem 2.1. So there exists x ∈ X such that

M(x, Sx, t) = M(x, Tx, t) = M(X,X, t) = 1,

for all t ≥ 0 or Sx = x = Tx, as required. ✷

If we take T to be the identity mapping in the above corollary, we get the
following:

Corollary 2.4. Let (X,M, ∗M ) be a complete FM -space and S be a self mapping
on X. If there exists a constant α ∈ (0, 1) such that

M(Sx, Sy, αt) ≥ min{M(x, y, t),M(x, Sx, t),M(x, Sy, t),M(y, Sx, t)}, (2.13)

for every x, y ∈ X and t ≥ 0. Then S has a unique fixed point.

In what follows, we present some illustrative examples which demonstrate the
validity of the hypotheses and degree of utility of our results proved in this paper.

Example 2.5. Let X = [0, 1]× [0, 1] and d : X×X → [0,∞) be given by d((x1, x2),
(y1, y2)) =

√

(x1 − y1)2 + (x2 − y2)2 and

M((x1, x2), (y1, y2), t) =
t

t+ d((x1, x2), (y1, y2))
.

Clearly, (X,M, ∗M) is a complete fuzzy metric space. Let A = {(0, x) : x ∈ [0, 1]},
B = {(1, x) : x ∈ [0, 1]} and S, T : A → B be defined as T (0, x) = (1, x) for all
x ∈ [0, 1] and

S(0, x) =

{

(1, 13 ) ; x < 1,

(1, 12 ) ; x = 1,
(∀ x ∈ [0, 1]).

It is easy to see that A0 = A, B0 = B, S, T commute proximally and by Example
1.25, T weakly dominates S proximally for α = 1/4. Therefore, all the hypothesis
of Theorem 2.1 are satisfied, then there exist unique element x ∈ X such that

M(x, Sx, t) = M(A,B, t) =
t

t+ 1
= M(x, Tx, t),

for all t ≥ 0.
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Example 2.6. Let X = [0, 1] × [0, 1] and M(x, y, t) = t
t+d(x,y) for all x, y ∈ X,

where d(x, y) is the Euclidean metric. Then (X,M, ∗M ) is a complete FM-space.
Suppose that

A = {(0, x) : 0 ≤ x ≤ 1}, B = {(1, y) : 0 ≤ y ≤ 1}.

Then M(A,B, t) = t
t+1 , A0 = A and B0 = B. Let S and T be define as T (0, y) =

(1, y
4 ) and S(0, y) = (1, y

32 ). Thus all of the assumptions of Corollary 2.2 are
satisfied, so there exist unique element x ∈ X such that

M(x, Sx, t) = M(A,B, t) =
t

t+ 1
= M(x, Tx, t),

for all t ≥ 0.

Example 2.7. Let X = R
2 and M(x, y, t) = t

t+d(x,y) for all x, y ∈ X, where d(x, y)

is the Euclidean metric. Then (X,M, ∗M ) is a complete FM-space. Suppose that

A = {(x, y) : x ≤ −1}, B = {(x, y) : x ≥ 1}.

Then M(A,B, t) = t
t+2 , A0 = {(−1, y) : y ∈ R} and B0 = {(1, y) : y ∈ R}. Let S

and T be define as T (x, y) = (−x, y
4 ) and S(x, y) = (−x, y

5 ). Further, the non-self
mappings S and T commute proximally, and T dominates S proximally.
It is easy to see that the other hypotheses of the Corollary 2.2 are satisfied, so there
exist unique element x ∈ X such that

M(x, Sx, t) = M(A,B, t) =
t

t+ 2
= M(x, Tx, t),

for all t ≥ 0.

Example 2.8. Consider X = [0, 3] and define M(x, y, t) = t
t+|x−y| for all x, y ∈ X.

Then (X,M, ∗M ) is a complete FM -space. Define continuous self mappings S and
T on X as

Sx =
1

6
x+ 1, T x =

1

3
(x+

12

5
), (x ∈ X).

It is easy to see that the condition (2.12) in Corollary 2.3 for α = 1/2 hold, ST =
TS and S(X) ⊆ T (X). Therefore, all the hypothesis of Corollary 2.3 are satisfied,
then S and T have a unique common fixed point x = 6

5 .

Example 2.9. Consider X = [−1, 1] and define M(x, y, t) = t
t+|x−y| for all x, y ∈

X. Then (X,M, ∗M ) is a complete FM -space. Define self mapping S on X as
follows:

Sx =











0 ; −1 ≤ x < 0,
x

16(1+x) ; 0 ≤ x < 4
5 or 7

8 < x ≤ 1,
x
16 ; 4

5 ≤ x ≤ 7
8 .

To verify condition (2.13) in Corollary 2.4 we need to consider several possible
cases.
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Case 1. Let x, y ∈ [−1, 0). Then

d(Sx, Sy) = |Sx− Sy| = 0 ≤
1

8
|x− y| =

1

8
d(x, y).

Case 2. Let x ∈ [−1, 0) and y ∈ [0, 4
5 ) ∪ (78 , 1]. Then

d(Sx, Sy) = |Sx− Sy| =
y

16(1 + y)
≤

1

8
|y − 0| =

1

8
d(y, Sx).

Case 3. Let x ∈ [−1, 0) and y ∈ [ 45 ,
7
8 ]. Then

d(Sx, Sy) = |Sx− Sy| =
y

16
≤

1

8
|y − 0| =

1

8
d(y, Sx).

Case 4. Let x, y ∈ [0, 45 ) ∪ (78 , 1]. Then

d(Sx, Sy) = |Sx− Sy| = |
x

16(1 + x)
−

y

16(1 + y)
| ≤

1

8
|x− y| =

1

8
d(x, y).

Case 5. Let x ∈ [0, 4
5 ) ∪ (78 , 1] and y ∈ [ 45 ,

7
8 ]. Then

d(Sx, Sy) = |Sx− Sy| = |
x

16(1 + x)
−

y

16
| ≤

1

16
(

x

1 + x
+ y) ≤

1

16
(
1

2
+

7

8
) ≤

11

128
,

and
123

160
=

4

5
−

1

16

1

2
≤ y −

x

16(1 + x)
≤ |y −

x

16(1 + x)
| = d(y, Sx).

Thus

d(Sx, Sy) ≤
11

128
≤

123

1280
=

1

8
×

123

160
≤

1

8
d(y, Sx).

Case 6. Let x, y ∈ [ 45 ,
7
8 ]. Then

d(Sx, Sy) = |Sx− Sy| = |
x

16
−

y

16
| ≤

1

8
|x− y| =

1

8
d(x, y).

Hence, we obtain

d(Sx, Sy) ≤
1

8
max{d(x, y), d(x, Sx), d(x, Sy), d(y, Sx)}, (x, y ∈ [−1, 1]),

or in other words

M(Sx, Sy,
1

8
t) ≥ min{M(x, y, t),M(x, Sx, t),M(x, Sy, t),M(y, Sx, t)},

for every x, y ∈ X and t ≥ 0. Then S has a unique fixed point 0 in X, by Corollary
2.4.
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