

(3s.) **v. 35** 2 (2017): **171–175**. ISSN-00378712 in press doi:10.5269/bspm.v35i2.27451

Generalized Locally- $\tau_g \star$ -closed sets

K. Bhavani

ABSTRACT: In this paper, we define and study a new class of generally locally closed sets called J-locally- τ_g^* -closed sets in ideal topological spaces. We also discuss various characterizations of J-locally- τ_g^* -closed sets in terms of g-closed sets and Jg-closed sets.

Key Words: Ideal topological space, g-open set, g-closed set, g-local function, $(.)_{a}^{*}$ - operator, τ_{a}^{*} -open and τ_{a}^{*} -closed.

Contents

1	Introduction	171
2	Preliminaries	171

3 \mathcal{I} -locally- τ_g^* -closed sets 172

1. Introduction

According to Bourbaki [3], a locally closed set is a intersection of an open set and a closed set. In [6], Levine defined a new class of generalized open and closed sets, and discussed their characterizations in detail. In [1], Balachandran, Sundaram and Maki defined and studied generalized locally closed sets using generalized closed sets and generalized open sets. In this paper, we introduce and study a new class of \mathcal{I} -locally- τ_g^* -closed sets using g-local functions defined in [2] with respect to the family of generalized open sets and ideal. Also we discuss various properties of this operator in detail.

2. Preliminaries

An *ideal* $\mathfrak{I}[5]$ on X is a nonempty collection of subsets of X satisfying the following: (i) If $A \in \mathfrak{I}$ and $B \subset A$, then $B \in \mathfrak{I}$, and (ii) if $A \in \mathfrak{I}$ and $B \in \mathfrak{I}$, then $A \cup B \in \mathfrak{I}$. A topological space (X, τ) together with an ideal \mathfrak{I} is called an *ideal topological space* and is denoted by (X, τ, \mathfrak{I}) . For each subset A of X, $A^*(\mathfrak{I}, \tau) = \{x \in X \mid U \cap A \notin \mathfrak{I} \text{ for every open set } U \text{ containing } x\}$ is called the *local function* of A[5] with respect to \mathfrak{I} and τ . We simply write A^* instead of $A^*(\mathfrak{I}, \tau)$ in case there is no chance for confusion. We often use the properties of the local function stated in Theorem 2.3 of [4] without mentioning it. Moreover, $cl^*(A) = A \cup A^*$ [8] defines a Kuratowski closure operator for a topology τ^* , on X which is finer than τ . A subset A of a topological space (X, τ) is said to be g-closed

Typeset by $\mathcal{B}^{\mathcal{S}}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54A10.

Submitted April 17, 2015. Published December 15, 2015

K. Bhavani

[6], if $cl(A) \subset U$ whenever $A \subset U$ and U is open. The complement of a g-closed set is called a g-open set [6]. The collection of all g-open sets in a topological space (X, τ) is denoted by τ_q . The *g*-closure of A denoted by $cl_q(A)[2]$, defined as the intersection of all g-closed sets containing A and the g-interior of A denoted by $int_q(A)$, defined as the union of all g-open sets contained in A. For every $A \in \wp(X)$, $A^*(\mathfrak{I},\tau_g) = \{x \in X \mid U \cap A \notin \mathfrak{I} \text{ for every } g \text{-open set } U \text{ containing } x\}$ is called the g-local function of A[2] with respect to \mathbb{J} and τ_g and is denoted by A_g^* . Also, $cl_g^{\star}(A) = A \cup A_g^{\star}[2]$ is a Kurotowski closure operator for a topology $\tau_g^{\star} = \{X - A \mid g \in X\}$ $cl_{q}^{\star}(A) = A$ [2] on X which is finer than τ_{g} . A subset A of a topological space (X, τ) is said to be *locally closed* [1], if $A = U \cap V$ where U is open and V is closed. A subset A of a topological space (X, τ) is said to be *g*-locally closed [1], if $A = U \cap V$ where U is g-open and V is g-closed. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I} -locally- \star -closed [7], if $A = U \cap V$ where U is open and V is *-closed.

3. \mathcal{I} -locally- τ_q^{\star} -closed sets

Definition 3.1. Let (X, τ, J) be an ideal topological space. A subset A of an ideal topological space (X, τ, \mathfrak{I}) is said to be an \mathfrak{I} -locally- τ_a^* -closed set if there exists a τ_q^{\star} -open set U and a τ_q^{\star} -closed set V such that $A = U \cap V$.

The following Theorem 3.2 gives a characterization of \mathcal{I} -locally- τ_q^* -closed sets in terms of τ_q^* -open sets.

Theorem 3.2. Let (X, τ, J) be an ideal topological space and $A \subset X$. Then the following are equivalent.

(a) A is an \mathbb{J} -locally- τ_g^{\star} -closed set.

(b) $A = U \cap cl_g^*(A)$ for some τ_g^* -open set U.

(c) $A_g^* - A$ is a τ_g^* -closed set.

(d) $(X - A_g^*) \cup A = A \cup (X - cl_g^*(A))$ is a τ_g^* -open set.

(e) $A \subset int_q^*(A \cup (X - A_q^*)).$

Proof: $(a) \Rightarrow (b)$. If A is an J-locally- τ_q^* -closed set, then there exists a τ_q^* -open set U and a τ_q^{\star} -closed set F such that $A = U \cap F$. Clearly, $A \subset U \cap cl_q^{\star}(A)$. Since F is τ_g^* -closed, $cl_g^*(A) \subset cl_g^*(F) = F$ and so $U \cap cl_g^*(A) \subset U \cap F = A$. Therefore, $A = U \cap cl_g^*(A)$ for some τ_g^* -open set U. (b) \Rightarrow (c). Now $A_g^* - A = A_g^* \cap (X - A) = A_g^* \cap (X - (U \cap cl_g^*(A))) = A_g^* \cap (X - U)$. Therefore, $A_g^* = A$ is σ^* aloned Therefore, $A_g^{\star} - A$ is τ_g^{\star} -closed. $(c) \Rightarrow (d).$ Since $X - (A_g^{\star} - A) = (X - A_g^{\star}) \cup A, (X - A_g^{\star}) \cup A$ is τ_g^{\star} -open. Clearly, $(X - A_g^*) \cup A = A \cup (X - cl_g^*(A)).$ $(d) \Rightarrow (e)$. The proof is clear. $\begin{array}{l} (e) \Rightarrow (a). \text{ Since } A_g^{\star} \text{ is a } g\text{-closed set, } X - A_g^{\star} = int_g^{\star}(X - A_g^{\star}) \subset int_g^{\star}(A \cup (X - A_g^{\star})). \\ \text{Then by hypothesis, } A \cup (X - A_g^{\star}) \subset int_g^{\star}(A \cup (X - A_g^{\star})) \text{ and so } A \cup (X - A_g^{\star}) \text{ is } \\ \tau_g^{\star}\text{-open. Since } A = (A \cup (X - A_g^{\star})) \cap cl_g^{\star}(A), A \text{ is an J-locally-} \tau_g^{\star}\text{-closed set.} \quad \Box \end{array}$

172

Clearly, every open subset of an ideal topological space (X, τ, \mathfrak{I}) is always an J-locally- τ_{q}^{\star} -closed, since every open set is a τ_{q}^{\star} -open set and X is τ_{q}^{\star} -closed. The following Example 3.3 shows that the converse is not true in general. Also, every τ_q^* -closed set is an J-locally- τ_q^* -closed set, since X is τ_q^* -open. Example 3.4 below shows that the converse is not true in general.

Example 3.3. Let (X, τ) be a non-discrete topology. If $\mathcal{I} = \wp(X)$, then every subset of X is \star -closed and so every subset of X is τ_q^{\star} -closed and hence I-locally- τ_a^{\star} -closed. So there exists \mathbb{J} -locally- τ_a^{\star} -closed sets which are not open.

Example 3.4. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $\mathbb{J} = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. If $A = \{b\}$, then $A_g^* = \{b, c, d\} \not\subseteq A$ and so A is not a τ_g^* -closed set. Besides, since A is τ_g^* -open, A is an \mathbb{J} -locally- τ_g^* -closed set.

Theorem 3.5. Let (X, τ, \mathfrak{I}) be an ideal topological space and $A \subset X$. If A is an \exists -locally- τ_a^{\star} -closed set and $A_a^{\star} = X$, then A is a τ_a^{\star} -open set.

Proof: If A is an J-locally- τ_q^* -closed set, then by Theorem 3.2(e), $A \subset int_q^*(A \cup$ $(X - A_q^*)$). Since $A_q^* = X$ and so $A \subset int_q^*(A)$ which implies that A is τ_q^* -open. \Box

Corollary 3.6. Let (X, τ, \mathfrak{I}) be an ideal topological space and $A_g^* = X$, where $A \subset X$. Then A is an \Im -locally- τ_q^* -closed set if and only if A is a τ_q^* -open set.

Theorem 3.7. Let (X, τ, \mathfrak{I}) be an ideal topological space and A be an \mathfrak{I} -locally- τ_a^* closed subset of X, Then, the following hold.

(a) If B is a τ_g^* -closed set, then $A \cap B$ is an J-locally- τ_g^* -closed set. (b) If B is a τ_g^* -open set, then $A \cap B$ is an J-locally- τ_g^* -closed set.

(c) If B is either a g-open or a g-closed set, then $A \cap B$ is an \exists -locally- τ_g^* -closed set.

(d) If B is either an open or a closed set, then $A \cap B$ is an \exists -locally- τ_a^* -closed set.

Proof: Since A is J-locally- τ_q^* -closed, there exists a τ_q^* -open set U and a τ_q^* -closed set F such that $A = U \cap F$.

(a) Let B be τ_q^{\star} -closed. Then $A \cap B = (U \cap F) \cap B = U \cap (F \cap B)$, where $F \cap B$

is τ_g^* -closed. Hence, $A \cap B$ is \mathfrak{I} -locally- τ_g^* -closed. (b) If B is a τ_g^* -open set, then $A \cap B = (U \cap F) \cap B = (U \cap B) \cap F$, where $U \cap B$ is τ_q^* -open. Therefore, $A \cap B$ is an \mathcal{I} -locally- τ_q^* -closed set.

(c) If B is either a g-open or a g-closed set, then B is either τ_q^* -open or τ_q^* -closed. Therefore, by (a) and (b), $A \cap B$ is an \mathcal{I} -locally- τ_q^* -closed set.

(d) Since every open and closed set is τ_g^* -open and τ_g^* -closed respectively, the proof is clear.

Theorem 3.8. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then the intersection of two \mathbb{J} -locally- τ_q^{\star} -closed sets is an \mathbb{J} -locally- τ_q^{\star} -closed set.

Proof: Let A and B be \mathcal{I} -locally- τ_q^{\star} -closed subsets of (X, τ, \mathcal{I}) . Then $A = U_1 \cap V_1$ and $B = U_2 \cap V_2$ for some τ_q^* -open sets U_1 and U_2 and τ_q^* -closed sets V_1 and V_2 . K. Bhavani

Now $A \cap B = (U_1 \cap V_1) \cap (U_2 \cap V_2) = (U_1 \cap U_2) \cap (V_1 \cap V_2)$, where $U_1 \cap U_2$ is τ_g^* -open and $V_1 \cap V_2$ is τ_g^* -closed. This implies that $A \cap B$ is an \mathcal{I} -locally- τ_g^* -closed set. \Box

Corollary 3.9. The family of all \mathfrak{I} -locally- τ_g^* -closed sets in any ideal topological space (X, τ, \mathfrak{I}) is closed under arbitrary intersection.

Theorem 3.10. Let (X, τ, \mathfrak{I}) be an ideal topological space and $A \subset X$. If A is a g-locally-closed set, then A is an \mathfrak{I} -locally- τ_q^* -closed set.

Proof: If A is g-locally-closed, then there exists a g-open set U and a g-closed set V such that $A = U \cap V$. Since every g-closed set is τ_g^* -closed and every g-open set is τ_g^* -open, A is J-locally- τ_g^* -closed.

Theorem 3.11. Let (X, τ, \mathfrak{I}) be an ideal topological space and $A \subset X$ where $\mathfrak{I} = \{\emptyset\}$. Then A is a g-locally closed set if and only if A is an \mathfrak{I} -locally- τ_a^* -closed set.

Proof: By Theorem 3.10, every g-locally closed set is an J-locally- τ_g^* -closed set. Conversely, since $\mathcal{I} = \{\emptyset\}$, $A_g^* = cl_g(A)$ which implies that τ_g^* -closed sets coincide with g-locally-closed sets when $\mathcal{I} = \{\emptyset\}$.

Clearly, every \star -closed set is an J-locally- τ_g^{\star} -closed set. The following Example 3.12 shows that the converse is not true in general.

Example 3.12. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $\Im = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. If $A = \{b, c, d\}, cl^*(A) = X$ and so A is not \star -closed. But $A_g^* = \{b, c, d\} = A$ which implies that A is τ_g^* -closed and so \Im -locally- τ_g^* -closed set.

In ideal topological spaces, locally closed sets are \mathcal{I} -locally- τ_g^* -closed sets, since closed sets are τ_g^* -closed sets. The following Example 3.13 shows that the converse is not true in general.

Example 3.13. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. If $\Im = \wp(X)$, then every subset of X is τ_g^* -closed. If $A = \{b, c, d\}$, then A is \Im -locally- τ_g^* -closed. Since X is the only open set containing A and A is not closed, A is not a locally closed set.

Theorem 3.14. Let (X, τ, J) be an ideal topological space and $A \subset X$. If A is J-locally- \star -closed, then A is J-locally- τ_q^{\star} -closed.

Proof: If A is J-locally-*-closed, then there exists an open set U and a *-closed set V such that $A = U \cap V$. Since every *-closed set is τ_g^* -closed, A is J-locally- τ_g^* -closed.

The following Example 3.15 shows that the converse of Theorem 3.13 is not true in general.

Example 3.15. Consider Example 3.12, if $A = \{a\}$, $cl^*(A) = \{a, d\}$, then A is not \star -closed, but $cl_g^*(A) = A$ implies that A is τ_g^* -closed. Hence A is \exists -locally- τ_g^* -closed. Since X is the only open set containing A and A is not \exists -locally- \star -closed.

174

Acknowledgments

I wish to thank the referees for their valuable suggestions for the development of this paper.

References

- K. Balachandran, P. Sundaram and H. Maki, Generalized locally closed sets and GLCcontinuous functions, Indian J. Pure Appl. Maths., 27 (1996), 235-244.
- 2. K. Bhavani, g-Local Functions, J. Adv. Stud. Topol., 5 (1) (2013), 1 5.
- 3. N. Bourbaki, General topology, Part I, Addison-Wesley, Reading, Mass, 1966.
- 4. D. Jankovic and T. R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295 310.
- 5. K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- 6. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89 96.
- M. Navaneethakrishnan and D. Sivaraj, Generalized locally closed sets in ideal topological spaces, Bull. Allahabad Math. Soc., Vol. 24, Part 1, 2009, 13 - 19.
- 8. R. Vaidyanathaswamy, The localization theory in Set Topology, Proc. Indian Acad. Sci., 20 (1945), 51 61.

K. Bhavani Department of Mathematics, SRM University, Ramapuram Chennai, Tamil Nadu, India. E-mail address: bhavanidhurairaj@gmail.com