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Navier-Stokes equations
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abstract: In this paper we consider the Cauchy problem for the 3D Navier–Stokes

equations for incompressible flows. The initial data are assumed to be smooth and

rapidly decaying at infinity. A famous open problem is whether classical solutions

can develop singularities in finite time. Assuming the maximal interval of exis-

tence to be finite, we give a unified discussion of various known solution properties

as time approaches the blow-up time.
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1. Introduction

In this paper we consider the Cauchy problem for the 3D Navier–Stokes equa-

tions,

ut + u · ∇u+∇p = ∆u, ∇· u = 0, u(x, 0) = f(x) for x ∈ IR3. (1.1)
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Despite recent progress (see, for example, [1,2]), the current mathematical theory

of the problem (1.1) remains fundamentally incomplete: it is known that a weak

solution exists for all time t ≥ 0 if f ∈ L2(IR3), ∇·f = 0, but it is not known if

weak solutions are unique. This is recognized as a major open problem since the

fundamental paper of Leray [3] (for a brief account of Leray’s works, see [4]). On

the other hand, if f is more regular, then a unique classical solution exists in some

maximal interval 0 ≤ t < Tf , but it is not known if Tf can be finite or is always

infinite. In other words, it is not known if classical solutions can break down in

finite time.

The Navier–Stokes equations are of fundamental importance in continuum me-

chanics. When one derives the equations from the balance laws of mass and mo-

mentum and from principle assumptions relating the stresses to velocity gradients,

then smoothness of the solution is assumed. To make the model of the Navier–

Stokes equations self–consistent, one would like to prove that singularities in the

solution do not develop in finite time, from smooth initial data with finite energy.

Thus far, however, this aim has not been achieved. It remains one of the funda-

mental open problems in nonlinear analysis, being included in the Millenium Prize

Problems by the Clay Mathematics Institute [5]. In fact, it has invariably appeared

in all major recent lists of the most important problems of Modern Mathematics,

see e.g. [6,7,8,9,10].

In this paper we consider only classical solutions of the problem (1.1), and

under our assumptions on f these will be C∞ functions. If one normalizes the

pressure so that p(x, t) → 0 as |x | → ∞, then the solution
(

u(x, t), p(x, t)
)

is

unique. Its maximal interval of existence is denoted by 0 ≤ t < Tf . Assuming

Tf to be finite, certain norms of u(·, t) will tend to infinity as t → Tf , while

other norms remain bounded. This issue is well studied in the literature, see e.g.

[3,11,12,13,14,15,16,17,18,19], but the results are somewhat scattered. We will

review some results that we consider to be very important and will also derive

lower bounds for some blow–up rates. The results considered in this review all fit

in our unified discussion that requires only a small selected set of relatively basic

ideas. Thus, in spite of their undisputable importance, many fundamental results

such as [20,21,22,23,24,25] and their recent developments will be left out.1

Another issue is to compare two functionals of u(·, t) that blow up as t → Tf .

Which one will blow up faster? We believe that a better understanding of this issue

is important for further progress on the blow–up question and recall some simple

results in Section 5.

The intent of this paper is to give rather complete proofs of some solution

properties for (1.1) that must hold, as t approaches Tf , if Tf is finite. These

results and their proofs may be helpful if one wants to construct a solution that

1 For a nice discussion of the celebrated Caffarelli–Kohn–Nirenberg’s regularity result, see

[26].
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actually does blow up. They may also be helpful to show that blow–up is ultimately

impossible.

For a treatment of many recent developments regarding the Navier–Stokes

equations using methods of modern analysis, the reader is referred to [27,28,29].

For similar blow–up questions concerning the related Euler equations, see e.g.

[30,31,32,33,34].

For simplicity of presentation (and to avoid unessential complications near

t = 0), we put strong smoothness and spatial decay assumptions on the initial

state f and require (as in [5]) that f is a divergence–free C∞ function with all of

its derivatives in L2(IR3), i.e., we assume that f ∈ Hn(IR3) for all n, with ∇·f = 0.

As to our notation, we will be using the following standard definitions:

|u |2 = u2
1 + u2

2 + u2
3 for u = (u1, u2, u3) ∈ IR3,

|α | = α1 + α2 + α3 for a multi–index α = (α1, α2, α3),

Dα = Dα1
1 Dα2

2 Dα3
3 , Dj = ∂/∂xj, α = (α1, α2, α3),

‖ u(·, t) ‖
Lq =

( 3
∑

i=1

∫

IR3

|ui(x, t) |q dx
)1/q

, 1 ≤ q < ∞, u = (u1, u2, u3),

‖ u(·, t) ‖ = ‖ u(·, t) ‖
L2,

‖ u(·, t) ‖∞ = sup
{

|ui(x, t) | : x ∈ IR3, 1 ≤ i ≤ 3
}

,

‖Dnu(·, t) ‖
Lq =

( 3
∑

i=1

3
∑

j
1
=1

· · ·
3

∑

jn=1

∫

IR3

|Dj
1
· · ·Djnui(x, t) |q dx

)1/q

, 1 ≤ q < ∞,

‖Dnu(·, t) ‖ = ‖Dnu(·, t) ‖
L2,

‖Dnu(·, t) ‖∞ = sup
{

|Dαui(x, t) | : x ∈ IR3, 1 ≤ i ≤ 3, |α | = n
}

,

(u, v) =

3
∑

j =1

∫

IR3

uj(x) vj(x) dx.

(Note that ‖ u(·, t) ‖
Lq →‖ u(·, t) ‖∞, ‖Dnu(·, t) ‖

Lq →‖Dnu(·, t) ‖∞ as q →∞, for

all n.2) We may occasionally write ‖ u ‖
Lq instead of ‖ u(·, t) ‖

Lq , for simplicity.

Constants will be usually denoted by the letters C, c, K; we write Cλ to indicate a

constant whose value may depend on a given parameter λ, etc. As usual, we often

keep the same symbol for constants in spite of possible changes in their numerical

values (so, for example, we write C2 again as C, and so forth).

An outline of the paper is as follows. In Section 2, we show that a bound on

the maximum norm ‖ u(·, t) ‖∞ in some interval 0 ≤ t < T implies bounds for all

2 Moreover, it is worth noticing that, under the definitions above, if an inequality of Gagliardo

type ‖ u ‖
Lq

≤K ‖ u ‖1−θ

L
r1

‖∇u ‖θ
L
r2

, 0 ≤ θ ≤ 1, holds for scalar functions u (and some appropriate

constant K), then it will also be valid for vector functions u with the same constant K as

in the scalar case. Similarly, one has ‖Dnu(·, t) ‖
Lq

≤ ‖Dnu(·, t) ‖1−θ

L
q
1
‖Dnu(·, t) ‖θ

L
q
2

if 1/q =

(1− θ)/q1+ θ/q2 , 0 ≤ θ ≤ 1, and so on.
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derivatives of u(·, t) in the same interval. This is a well known result that dates

back to Leray [3] (see also [35]), but since it is the basis for all our blow–up results

we will prove it here. An important implication is the following: if ‖ u(·, t) ‖∞ is

bounded in 0 ≤ t < T for some finite T , then u(·, t) can be continued as a C∞

solution beyond T . This follows from well–known local constructions of solutions.

(See, for example, [35] for an elementary proof. See also [16,36] for the development

of a local theory under much weaker assumptions on the initial state f .) In other

words, we can state the following first blow–up result:

Theorem 1.1. If Tf < ∞, then 3

sup
0≤ t<Tf

‖ u(·, t) ‖∞ = ∞. (1.2)

In Sections 3 and 4 below, we show that boundedness of ‖ u(·, t) ‖
Lq in some

interval 0 ≤ t < T for some q > 3, or that of ‖Du(·, t) ‖
Lq if 3/2 < q ≤ ∞, implies

boundedness of ‖ u(·, t) ‖∞ in the same time interval. In particular, Theorem 1.1

yields the first part of the following result:

Theorem 1.2. (i) Let 3
2 < q ≤ ∞. If Tf < ∞, then

sup
0≤ t<Tf

‖Du(·, t) ‖
Lq = ∞. (1.3)

(ii) For each 3
2 ≤ q < 3, there exists an absolute constant cq> 0, independent of t

and f, with the following property : if Tf < ∞, then

‖Du(·, t) ‖
Lq ≥ cq · (Tf − t)

−
q − 3/2

q ∀ 0 ≤ t < Tf . (1.4)

Regarding (1.3), it will be shown in Section 4 that one actually has, for each
3
2 < q ≤ ∞, the stronger property

lim
tրTf

‖Du(·, t) ‖
Lq = ∞ (if Tf < ∞). (1.5)

For 3
2 < q < 3, the limit relation (1.5) is an obvious consequence of (1.4). For

q = 2, Theorem 1.2 was originally proved in [3]. The estimate (1.4) is only one

of many similar lower bound results for blow-up rates of solution–size quantities

Q(u(·, t)) that have been obtained since Leray [3]. In general, these bounds result

from some form of local control on Q(u(·, t)) that is typically obtained in one of

the following basic ways:

(I) lower bounds for the maximum existence time T of solution u(·, t) given in terms

of Q;

3 Actually, if Tf < ∞ then one has lim
tրTf

‖ u(·, t) ‖
∞

= ∞, cf. Theorem 1.3 below.
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(II) differential or integral inequalities satisfied by Q(u(·, t)) while the solution ex-

ists;

(III) relationships with other functionals Q̃(u), like Sobolev or interpolation in-

equalities.

As to method (I), we observe that lower bound estimates for T are a standard

by–product of construction schemes in existence theory, so that blow–up estimates

like (1.4) are actually very natural and widespread in the literature. Thus, for

example, for the solutions u(·, t) of (1.1), it can be shown (see e.g. [3,13,37]) that

T ≥ C ‖Df ‖−4 (1.6)

for some absolute constant C > 0 independent of f . It follows that, given 0 ≤ t0<Tf
arbitrary, we have Tf − t0 > C ‖Du(·, t0) ‖−4, which is (1.4) in case q = 2. As

noted in [18], this is a two–way route: had we had the estimate (1.4) for q = 2

in the first place, then we could have gotten (1.6) from it just as easily by merely

taking t = 0 in (1.4).
In this review, as we will be bypassing existence theory,4 our approach to ob-

taining the blow–up estimates considered here will be based on the methods (II)

and (III) alone.5 In particular, our derivation of (1.4) for q = 2 in Section 3 uses a

well known differential inequality satisfied by the function ‖Du(·, t) ‖2, which will

give us that c 2
2
≥ 2π

√
2 [43]. One should note that the blow–up rate of ‖Du(·, t) ‖,

as expressed by the estimate (1.4), is clearly consistent with the fundamental upper

bound
∫ Tf

0

‖Du(·, t) ‖2 dt ≤ 1

2
‖ f ‖2 (1.7)

that follows from the energy equality satisfied by u(·, t), which we recall in Theorem

2.1. It then follows from (1.4) and (1.7) that, if Tf < ∞,

2 c2
2
T

1/2
f = c2

2

∫ Tf

0

(Tf − t)−1/2 dt ≤
∫ Tf

0

‖Du(·, t) ‖2 dt ≤ 1

2
‖ f ‖2,

so that we must have

c4
2
‖Df ‖−4 ≤ Tf ≤ 1

16 c4
2

‖ f ‖4 (if Tf < ∞), (1.8)

where, again, the first inequality follows from (1.4) by taking t = 0. Therefore,

recalling that c 2
2
≥ 2π

√
2 , finite–time blow–up at Tf is only possible if we have

‖ u(·, t) ‖ ‖Du(·, t) ‖ ≥ 4π
√
2 ∀ 0 ≤ t < Tf (if Tf < ∞). (1.9)

4 Some standard references for existence results are [3,13,16,19,29,35,37,38,39,40,41,42].
5 The way to obtain lower bound estimates for blow–up rates out of nonlinear differential or

integral inequalities is very simple and is shown in Lemmas 3.6 and 4.3 below, respectively.
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This is only one of many necessary conditions for finite–time blow–up that have

been found since the fundamental paper of Leray [3] (see (1.16) and (4.17) for

other similar examples), the most celebrated of them being the Beale-Kato-Majda

condition [30]

∫ Tf

0

‖∇× u(·, t) ‖
L∞ dt = ∞ (if Tf < ∞), (1.10)

originally obtained for the Euler equations, but which also holds for the Navier–

Stokes equations. Actually, the derivation of (1.10) for Navier-Stokes is much easier

than for Euler, as we will show in Section 6.
The proof of Theorem 1.2 is completed by method (III) after we consider, in

Section 4, the important solution norms

‖ u(·, t) ‖
Lq , 3 < q ≤ ∞.

If any of these norms stays bounded in some interval 0 ≤ t < T , we show that

‖Du(·, t) ‖ will also be bounded in that interval. As this implies boundedness for

‖ u(·, t) ‖∞ as well, it follows that

sup
0≤ t< Tf

‖ u(·, t) ‖
Lq = ∞, 3 < q ≤ ∞ (1.11)

if Tf < ∞. In fact, one can again derive an algebraic lower bound for the blow–up

rate:

Theorem 1.3. For each 3 ≤ q ≤ ∞, there is a constant cq > 0, independent of t

and f, such that the following holds: if Tf < ∞, then

‖ u(·, t) ‖
Lq ≥ cq · (Tf − t)−κ ∀ 0 ≤ t < Tf , (1.12a)

with

κ =
q − 3

2q
if 3 ≤ q < ∞, κ =

1

2
if q = ∞. (1.12b)

In particular, from (1.12), we have lim
tրTf

‖ u(·, t) ‖
Lq =∞ if Tf < ∞, for each

3 < q ≤ ∞.

Remark: The property (1.11) is also valid for the limit case q = 3, as shown in

[44]. The proof, however, is very involved and will not be covered here. More

recently, it has been shown by G. Seregin [1] the stronger result

lim
tրTf

‖ u(·, t) ‖
L3 = ∞ (if Tf < ∞). (1.13)

It then follows from (1.13) and the 3D Sobolev inequality ‖ u ‖
L3 ≤ K ‖ ∇u ‖

L3/2

that the properties (1.3) and (1.5) above are both valid for q = 3/2 as well.



Incompressible Navier–Stokes 133

The estimates (1.12) were originally given in [3] and reobtained in a more gen-

eral setting using semigroup ideas in [14]. They immediately imply lower bounds

for the existence time of u(·, t) of the form

T ≥ Cq ‖ f ‖
−

2q
q−3

Lq , 3 < q ≤ ∞, (1.14)

where Cq = c

2q
q−3
q . The estimates (1.14) are obtained directly from existence anal-

ysis in [3] (for q = ∞) and in [17] (for 3 < q < ∞), thus providing another proof

for (1.12). Again, our derivation of (1.12), which is carried out in Section 4, follows

the method (II), first along the lines of [14] using some well established integral

inequalities satisfied by the quantities ‖ u(·, t) ‖
Lq to obtain the result, and then by

deriving some less known differential inequalities that can be used for this purpose

just as easily. We also obtain from the latter analysis another proof of the follow-

ing result (see e.g. [3,13,14,17]) on the global existence of smooth solutions for the

Navier–Stokes problem (1.1).

Theorem 1.4. For each 3 ≤ q ≤ ∞, there exists a number ηq> 0, depending only

on q, such that

‖ f ‖
2q−6
3q−6

L2
‖ f ‖

q
3q−6

Lq
< ηq =⇒ Tf = ∞. (1.15)

In particular, finite–time blow–up of a smooth solution u(·, t) can only occur if we

have

‖ u(·, t) ‖
2q−6
3q−6

L2
‖ u(·, t) ‖

q
3q−6

Lq
≥ ηq ∀ 0 ≤ t < Tf (if Tf < ∞) (1.16)

for every 3 ≤ q ≤ ∞, where ηq > 0 is the value given in (1.15) above. If blow–up

happens, using the 3D Sobolev inequality

‖ u ‖
Lr(q)

≤ Kq ‖∇u ‖
Lq , r(q) =

3q

3− q
,

3

2
≤ q < 3, (1.17)

we obtain, from (1.12), the blow–up estimate (1.4) in Theorem 1.2 above. This

illustrates the use of method (III) to derive these results. Other examples are found

in Sections 4, 5 and 6 below, including the following general blow–up property for

arbitrary high order derivatives of smooth solutions of (1.1).

Theorem 1.5. Let n ≥ 2 be an integer. If Tf < ∞, we have

lim
tրTf

‖Dnu(·, t) ‖
Lq = ∞ (1.18)

for every 1 ≤ q ≤ ∞.

It is also worth noticing here that, from (1.12), we clearly have
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∫ Tf

0

‖ u(·, t) ‖r
Lq dt = ∞ (if Tf < ∞)

for any r ≥ 2q/(q − 3), or, equivalently, for any r ≥ 2 satisfying 2/r + 3/q ≤ 1. It

is therefore natural to expect that the so-called Prodi-Serrin condition,

∫ T

0

‖ u(·, t) ‖r
Lq dt < ∞,

2

r
+

3

q
≤ 1, (1.19)

for some 2 ≤ r < ∞, 3 < q ≤ ∞ (arbitrary), imposed on less regular weak solu-

tions, may be sufficient to guarantee strong regularity and uniqueness properties.

This is indeed the case, as shown in [23,24,25,40] (see also [13,14,16,29,45,46]),

but it requires a more advanced analysis and will not be discussed here. Similar

observations apply to the other blow-up quantities considered in (1.5), (1.10) or

(1.13), see e.g. [1,3,13,17,44].

If there is blow–up, one can ask: do certain norms blow up faster than others?

The answer is yes. For example, if 3 ≤ q < r ≤ ∞, we show in Section 5 that the

Lr norm blows up faster than the Lq norm, with

‖ u(·, t) ‖
Lr

‖ u(·, t) ‖
Lq

≥ c(q, r) · ‖ f ‖−λ· (Tf − t)
−γ
, γ =

r − 3

r − 2

(

1

q
− 1

r

)

(1.20)

for all 0 ≤ t < Tf, where c(q, r) > 0 depends only on q,r, and λ = 2(r/q−1)/(r−2).

These relations are typically obtained by the approach (III). A further result of

this kind, which is related to (1.13) above, is also included in Section 5, and given

a direct proof that is independent of (1.13).

In Section 6, we briefly examine some related properties for the vorticity ω(·, t) =
∇× u(·, t). Our main goal in Section 6 is to provide a short and simple proof of

the Beale-Kato-Majda blow–up condition (1.10) for smooth solutions of the Navier–

Stokes equations. This particular proof is not valid for the inviscid Euler equations.

Besides the famous major problems, there are still many other open questions

related to our discussion and some are indicated in the text. For additional lower

bound estimates and results concerning other blow–up quantities, the reader is

referred to [11,18,38,47,48].
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2. A bound for ‖ u(·, t) ‖∞ implies bounds for all derivatives

Under our assumptions on f stated in the introduction, the Cauchy problem

(1.1) has a unique C∞ solution
(

u(x, t), p(x, t)
)

, defined in some interval 0 ≤ t < Tf,

with D
α
u(·, t) ∈ L2(IR3) for all multi-indices α and all 0 ≤ t < Tf. (Also, recall

that we always require p(x, t) → 0 as |x | → ∞ to make p(·, t) unique.)

As in [3], we set

J2
n(t) =

∑

|α |=n

‖Dαu(·, t) ‖2, n = 0, 1, 2, . . .

The most basic estimate for the solution of the Navier–Stokes equations is the

following well known energy estimate. The proof follows from multiplying the

equation for ui(·, t) by ui(·, t) and integrating by parts (see e.g. [13,19,29,35,39,41]).

Theorem 2.1. We have

1

2

d

dt
J2
0 (t) = − J2

1 (t), ∀ 0 ≤ t < Tf, (2.1a)

so that, in particular,

J0(t) ≤ ‖ f ‖ for 0 ≤ t < Tf and

∫ t

0

J2
1 (s) ds ≤ 1

2
‖ f ‖2. (2.1b)

Note that the integral bound in (2.1b) proves (1.7). To prove the next result,

we will use the 3D Sobolev inequality

‖ v ‖∞ ≤ C ‖ v ‖
H2 ∀ v ∈ H2(IR3), (2.2)

which implies

‖Dju(·, t) ‖∞ ≤ Cj ·
(

Jm(t) + J0(t)
)

for m ≥ j + 2. (2.3)

(The bound J2
n(t) ≤ Cn·

(

J2
m(t) + J2

0 (t)
)

for m > n follows by Fourier transform.)

Theorem 2.2. Assume that

sup
0≤ t<T

‖ u(·, t) ‖∞ =: M < ∞. (2.4)

Then each function Jn(t), n = 1, 2, . . ., is bounded in 0 ≤ t < T by some quantity

Kn> 0 depending only on n, M , T and ‖ f ‖
Hn, that is, Kn = K(n,M, T, ‖ f ‖

Hn ).

Proof: Using (2.4), we will first prove that J1(t), J2(t) are bounded in 0 ≤ t <

T , and then make an induction argument in n. We have, for any multi–index α,

Dαut + Dα(u · ∇u) + ∇Dαp = ∆Dαu
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and, because ∇· u = 0,

1

2

d

dt
J2
n(t) =

∑

|α |=n

(Dαu,Dαut)

≤ −
∑

|α |=n

(Dαu,Dα(u · ∇u)) − J2
n+1(t)

=: Sn(t) − J2
n+1(t).

It is convenient to use the short notation

(Diu,DjuDku)

for any integral ∫

IR3

Dαuν
1
Dβuν

2
Dγuν

3
dx

with ν1, ν2, ν3 ∈ {1, 2, 3} and |α | = i, |β | = j, | γ | = k.

Let n = 2 and consider the terms appearing in S2,

(Dαu,Dα(u · ∇u)), |α | = 2.

Thus S2 is a sum of terms of the form

(D2u, uD3u) and (D2u, DuD2u).

Using integration by parts, a term (D2u, DuD2u) can also be written as a sum of

terms (D2u, uD3u). Since, by (2.4),

| (D2u, uD3u) | ≤ MJ2(t)J3(t),

we obtain that
d

dt
J2
2 (t) ≤ CMJ2(t)J3(t) − 2J2

3 (t)

≤ C2M2J2
2 (t)

for some constant C > 0. Boundedness of J2(t) in 0 ≤ t < T follows. Similarly, we

get

d

dt
J2
1 (t) ≤ CMJ1(t)J2(t) − 2J2

2 (t)

≤ C2M2J2
1 (t),

so that the result is true for J1(t) as well.

Now, let n ≥ 2 and assume Jn(t) to be bounded in 0 ≤ t < T . We have, from

(1.1),

1

2

d

dt
J2
n+1(t) ≤ Sn+1(t) − J2

n+2(t),
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where Sn+1(t) is a sum of terms

Tj(t) = (Dn+2u, DjuDn+1−ju), 0 ≤ j ≤ n.

There are three cases to consider:

(i) Let 0 ≤ j ≤ n− 2. We have, by (2.3),

|Tj(t) | ≤ Cn ‖Dju(·, t) ‖∞Jn+2(t) (Jn+1(t) + J0(t))

≤ Cn Jn+2(t) (Jn+1(t) + J0(t)).

In the latter estimate we have used (2.3) and the induction hypothesis.

(ii) Let j = n− 1. We have, by (2.3),

|Tn−1(t) | ≤ Cn ‖Dn−1u(·, t) ‖∞Jn+2(t)J2(t)

≤ Cn ‖Dn−1u(·, t) ‖∞Jn+2(t)

≤ Cn (Jn+1(t) + J0(t))Jn+2(t).

In the second estimate we have used that a bound for J2(t) is already shown.

(iii) Let j = n. We have, by (2.3),

|Tn(t) | ≤ Cn Jn(t)Jn+2(t) ‖Du(·, t) ‖∞
≤ Cn Jn+2(t) (J3(t) + J0(t))

≤ Cn Jn+2(t) (Jn+1(t) + J0(t)).

In the last estimate we have used that n ≥ 2.

These bounds prove that

d

dt
J2
n+1(t) ≤ CnJn+2(t) (Jn+1(t) + J0(t)) − 2J2

n+2(t),

and boundedness of Jn+1(t) in 0 ≤ t < T follows. ⋄

If ‖ u(·, t) ‖∞ is bounded in some interval 0 ≤ t < T , then all functions Jn(t)

are also bounded in 0 ≤ t < T and, using (2.3), all space derivatives of u(·, t) are

therefore bounded in maximum norm. Estimates for the pressure and its deriva-

tives follow from the Poisson equation satisfied by p(·, t),

− ∆p =
3

∑

i, j =1

DiDj(uiuj). (2.5)

Time derivatives and mixed derivatives of u can be expressed by space derivatives,

using the differential equation (1.1). Hence, if ‖ u(·, t) ‖∞ is bounded in some

interval 0 ≤ t < T , then all derivatives of u are bounded in the same interval, and
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therefore the solution (u, p) can be continued as a C∞ solution beyond T . This

proves Theorem 1.1.

3. Blow–up of ‖Du(·, t) ‖
Lq for 3

2 < q ≤ 2

A physically important quantity is the vorticity, ω(·, t) = ∇× u(·, t), and the

total enstrophy of the flow, given by

∫

IR3

|ω(x, t) |2 dx.

If
û(k) = (2π)−3/2

∫

IR3

e−i k ·xu(x) dx

denotes the Fourier transform of a 3D incompressible field u(x), then we have

ω̂(k, t) = ik × û(k, t), k · û(k, t) = 0,

and, therefore,
| ω̂(k, t) | = | k | | û(k, t) |.

Using Parseval’s relation, one finds that
∫

IR3

| ω(x, t) |2 dx =

∫

IR3

| ω̂(k, t) |2 dk

=

3
∑

i, j =1

∫

IR3

k2i | ûj(k, t) |2 dk

= ‖Du(·, t) ‖2.

In this section, we establish the blow–up of ‖Du(·, t) ‖
Lq , for 3

2 < q ≤ 2, with

emphasis on q = 2. The remaining case q > 2 is covered in Section 4.

3.1. Boundedness of ‖Du(·, t) ‖ implies boundedness of ‖ u(·, t) ‖∞

The basic result here is the following.

Theorem 3.1. If

sup
0≤ t< T

‖Du(·, t) ‖ =: C
2
< ∞, (3.1a)

then
sup

0≤ t <T
‖ u(·, t) ‖∞ ≤ K (3.1b)

for some bound K that depends only on C
2
, T and ‖ f̂ ‖

L1 , where f̂ denotes
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the Fourier transform of the initial state f . In particular, if Tf < ∞, then

sup
0≤ t< Tf

‖Du(·, t) ‖ = ∞.

Proof: Taking the Fourier transform of the Navier–Stokes equations, we get6

ût + (u · ∇u )̂ + (∇p )̂ = − | k |2 û,

or, setting Q(x, t) = −u · ∇u − ∇p,

ût = − | k |2 û + Q̂(k, t),

with û(·, 0) = f̂ . Since
(u · ∇u )̂ = − Q̂(k, t) − (∇p )̂

is the orthogonal decomposition of the vector (u ·∇u)̂ into a vector orthogonal to

k and a vector parallel to k, it follows that | Q̂(k, t) | ≤ | (u · ∇u )̂ |. One obtains,

for each k,

û(k, t) = e−|k |2 tf̂(k) +

∫ t

0

e−|k |2 (t−s) Q̂(k, s) ds,

and so,

| û(k, t) | ≤ e−|k |2 t | f̂(k) | +
∫ t

0

e−| k |2 (t−s) | (u · ∇u )̂ (k, s) | ds.

Integrating in k ∈ IR3 one finds that

(2π)3/2 ‖ u(·, t) ‖∞ ≤
∫

IR3

| û(k, t) | dk

≤ ‖ f̂ ‖
L1 +

∫ t

0

∫

IR3

e−|k |2 (t−s) | (u · ∇u )̂ (k, s) | dk ds.

We then apply the Cauchy–Schwarz inequality to bound the inner integral on the

right-hand side by
I
1/2
1 I

1/2
2 ,

where
I1 =

∫

IR3

e−2 | k |2 (t−s) dk = C · (t− s)−3/2

and
I2 =

∫

IR3

| (u · ∇u)(x, s) |2 dx

≤ C · ‖ u(·, s) ‖2∞ ‖Du(·, s) ‖2

≤ C · C 2
2 · ‖ u(·, s) ‖2∞,

using Parseval’s relation and (3.1a). Thus we have shown the estimate

6 For more applications of Fourier transforms to (1.1) along these lines, see Section 3.2 and

[43,49].
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(2π)3/2 ‖ u(·, t) ‖∞ ≤ ‖ f̂ ‖
L1 + C ·C2

∫ t

0

(t− s)−3/4 ‖ u(·, s) ‖∞ ds for 0 ≤ t < T

for some constant C > 0. By the singular Gronwall’s lemma given in Lemma 3.2

below, boundedness of ‖ u(·, t) ‖∞ in the interval 0 ≤ t < T follows, as claimed. ⋄

Remark. By the previous argument and Lemma 3.3 below, we can see that con-

dition (3.1a) also implies

sup
0<t<T

t 3/4 ‖ u(·, t) ‖∞ ≤ K
2
(T ) ‖ f ‖

L2 (3.2)

for some bound K
2
(T ) > 0 that depends on the values of C

2
, T only.

The following result is an important version of Gronwall’s lemma frequently

used for partial differential equations, as in the proof of Theorem 3.1 above.

Lemma 3.2. Let A ≥ 0, B > 0, 0 < κ < 1. Let φ ∈ C0([ 0, T [ ) satisfy

0 ≤ φ(t) ≤ A + B

∫ t

0

(t− s)−κ φ(s) ds for 0 ≤ t < T. (3.3)

Then φ(t) ≤ K(T )A for all 0 ≤ t < T, where K(T ) > 0 depends on B, κ, T only.

Proof: For convenience, we provide a proof for Lemma 3.2 that can be easily ex-

tended to other useful similar statements like Lemma 3.3 below. To this end, we

choose ǫ > 0 with

∫ ǫ

0

ξ−κ dξ =
ǫ1−κ

1− κ
≤ 1

2B

and, given t ∈ [ 0, T [ arbitrary, we take t0 ∈ [ 0, t ] such that φ(t0) = max
0≤ s≤ t

φ(s).

Case I: t0 ≥ ǫ. Then we have

φ(t0) ≤ A + B

∫ t0− ǫ

0

(t0 − s)−κφ(s) ds + B

∫ t0

t0− ǫ

(t0 − s)−κφ(s) ds

≤ A + Bǫ−κ

∫ t0

0

φ(s) ds + B
1

2B
φ(t0),

so that

φ(t) ≤ φ(t0) ≤ 2A + 2Bǫ−κ

∫ t

0

φ(s) ds.

Case II: 0 ≤ t0 ≤ ǫ. We have
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φ(t0) ≤ A + B

∫ t0

0

(t0 − s)−κφ(s) ds

≤ A + B φ(t0)

∫ ǫ

0

ξ−κ dξ

≤ A +
1

2
φ(t0),

and so,
φ(t) ≤ φ(t0) ≤ 2A.

We have thus shown that

φ(t) ≤ 2A + 2Bǫ−κ

∫ t

0

φ(s) ds for 0 ≤ t < T.

This gives, by standard Gronwall, φ(t) ≤ 2A exp
{

2Bǫ−κT
}

for all 0 ≤ t < T . ⋄

In a similar way, the following generalization of Lemma 3.2 can be easily ob-

tained.

Lemma 3.3. Let A ≥ 0, B
1
, ..., Bn > 0. Let φ ∈ C0([ 0, T [ ) satisfy

0 ≤ φ(t) ≤ A +

n
∑

j =1

Bj

∫ t

0

s−αj (t− s)− βj φ(s) ds for 0 ≤ t < T, (3.4)

with αj ≥ 0, βj ≥ 0 satisfying αj + βj < 1 for all 1 ≤ j ≤ n. Then φ(t) ≤K(T )A

for all 0 ≤ t < T, with the quantityK(T ) > 0 depending only on T, n andBj ,αj ,βj,

1 ≤ j ≤ n.

3.2. Blow–up of ‖Du(·, t) ‖
Lq for 3

2 < q ≤ 2

We now extend the proof of Theorem 3.1 by using Hölder’s inequality instead of

the Cauchy–Schwarz inequality and the Hausdorff–Young inequality (see e.g. [50],

p. 104) instead of Parseval’s relation.

Theorem 3.4. Let 3
2 < q ≤ 2. If

sup
0≤ t<T

‖Du(·, t) ‖
Lq =: Cq < ∞, (3.5a)

then
sup

0≤ t< T
‖ u(·, t) ‖∞ ≤ K (3.5b)

for some bound K that depends only on q, Cq , T and ‖ f̂ ‖
L1, where f̂ denotes the

Fourier transform of the initial state f . In particular, if Tf < ∞, then

sup
0≤ t< Tf

‖Du(·, t) ‖|
Lq = ∞. (3.6)
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Proof: We use the same notation as in the proof of Theorem 3.1. Applying

Hölder’s inequality to the integral

I =

∫

IR3

e− | k |2 (t−s) | (u · ∇u )̂ (k, s) | dk,

we obtain the bound
I ≤ I

1/q
1 I

1/q′

2 ,
1

q
+

1

q′
= 1,

with

I1 =

∫

IR3

e−q | k |2 (t−s) dk =
( π

q

)3/2

(t− s)−3/2

and
I
1/q′

2 = ‖ (u · ∇u)̂ (·, s) ‖
Lq′

≤ 3 ‖ u · ∇u (·, s) ‖
Lq

≤ C ‖ u(·, s) ‖∞ ‖Du(·, s) ‖
Lq ,

where in the first estimate we have used the Hausdorff–Young inequality, since

q ≤ 2. We obtain that

(2π)3/2 ‖ u(·, t) ‖∞ ≤ ‖ f̂ ‖
L1 + C

∫ t

0

(t− s)−κ ‖ u(·, s) ‖∞ ‖Du(·, s) ‖
Lq ds,

where κ = 3
2q < 1, in view that q > 3

2 . By Lemma 3.2, the result now readily

follows. ⋄

Remarks. (i) By the argument above and Lemma 3.3, we see that (3.5a) also

gives

sup
0<t<T

t 3/4 ‖ u(·, t) ‖∞ ≤ Kq(T ) ‖ f ‖L2 (3.7)

for some coefficient Kq(T ) > 0 that depends on the values of q, Cq, T only.

(ii) The Navier–Stokes equations on the whole IR3 enjoy the following scaling in-

variance: If
(

u(x, t), p(x, t)
)

solves the Navier–Stokes equations, then, for every

scaling parameter λ > 0,
(

λu(λx, λ2t), λ2p(λx, λ2 t)
)

solves the same equations.

The norms ‖ u ‖
L3 and ‖Du ‖

L3/2
, which appear in the limiting values q = 3 in

Theorem 1.3 and q = 3/2 in Theorem 3.4, are also invariant under such λ scalings.

Better understanding of the scale invariant norms, ‖ u(·, t) ‖
L3 and ‖Du(·, t) ‖

L3/2
,

as t → Tf , is likely to be important for further progress on the blow–up question.

(iii) Theorem 3.4 can also be deduced from the results of Section 4 on ‖ u(·, t) ‖
Lq ,

q > 3, using the Sobolev inequality (1.17).

3.3. A differential inequality for ‖Du(·, t) ‖

Here we derive the estimate (1.4) for ‖Du(·, t) ‖ from a nonlinear differential in-

equality satisfied by ‖Du(·, t) ‖ whether Tf is finite or not. This method dates back
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to Leray [3].

Theorem 3.5. There is an absolute constant 0 <K <
1

32
such that

d

dt
‖Du(·, t) ‖2 ≤ K ‖Du(·, t) ‖6, ∀ 0 ≤ t < Tf . (3.8)

Proof: We have, using ∇· u = 0,

1

2

d

dt
‖Du(·, t) ‖2 =

3
∑

j =1

(Dju,Djut)

= −
3

∑

j =1

(Dju,Dj(u ·∇u)) − ‖D2u(·, t) ‖2

=: S(t) − ‖D2u(·, t) ‖2.

Since (Dju, u ·∇Dju) = 0, because ∇·u = 0, the nonlinear term S(t) can be esti-

mated by C ‖Du(·, t) ‖3
L3

, for some constant C. Using the 3D Gagliardo–Nirenberg

inequality

‖ v ‖
L3 ≤ Γ ‖ v ‖1/2 ‖Dv ‖1/2 ∀ v ∈ H1(IR3)

for v = Dju, where Γ < 0.59, and then the Young’s inequality ab ≤ 1/4 a4

+3/4 b4/3, one obtains (3.8), with K < 1/32, as claimed. ⋄

Remark: A more involved derivation of (3.8) in [43], p.11-14, gives that 0 < K ≤
1

16π2
.

The next lemma shows how nonlinear differential inequalities such as (3.8) above

can be used to derive lower bound estimates in case of finite–time blow–up.

Lemma 3.6. Let w ∈ C1([ 0, Tf [ ) be a positive function satisfying a differential

inequality

w′(t) ≤ K w(t)
α ∀ 0 ≤ t < Tf (3.9a)

for some given constants K > 0, α > 1. If Tf < ∞ and sup
0≤ t<Tf

w(t) = ∞, then

we have

w(t) ≥
(

1

K · (α− 1)

)

1
α−1

·
(

Tf − t
)

− 1
α−1

∀ 0 ≤ t < Tf . (3.9b)

Proof: Given t0 ∈ [ 0, Tf [ arbitrary, and determining v = v(t) by v
′(t) = Kv(t)

α
,

v(t0) = w0, where w0 := w(t0), we have v(t) defined for all t0 ≤ t < t∗ := t0
+1/

(

K(α − 1)wα−1
0 ). Moreover, one has w(t) ≤ v(t) for all t0 ≤ t < t∗, with v(t)

given by
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v(t) = w0 ·
(

1 − K · (α− 1)wα−1
0

(

t− t0
)

)

− 1
α−1

, t0 ≤ t < t∗,

so that, in particular, v(t)ր∞ as tր t∗. This gives t∗ ≤ Tf , which implies (3.9b)

above. ⋄

From (3.8), we see that w′(t) ≤ K w(t)3 for all 0 ≤ t < Tf , where w(t) :=

‖Du(·, t) ‖2, 0 <K ≤ 1/(16π2). Assuming Tf <∞, we have sup0≤ t<Tf
w(t) = ∞

by Theorem 3.1. Therefore, by Lemma 3.6, we get the following result (which dates

back to Leray [3]).

Theorem 3.7. Assuming that Tf < ∞, we have

‖Du(·, t) ‖ ≥ c

(Tf − t)1/4
∀ 0 ≤ t < Tf , (3.10)

for some constant c ≥
{

2π
√
2
}
1/2

> 2.98 (independent of f, u, Tf ).

As with the other bounds for u(·, t) discussed in the text, the optimal (= largest,

here) value of the absolute constant c in (3.10) above is not known.

4. Blow–up of ‖ u(·, t) ‖
Lq for 3 < q ≤ ∞

Using the Helmholtz projector PH (see e.g. [32,51,52]), one can write the

incompressible Navier–Stokes equations as

ut = ∆u − PH(u · ∇u), PH(u · ∇u) = u · ∇u + ∇p, (4.1a)

and, if e∆t denotes the heat semigroup, then one obtains, by Duhamel’s principle,

u(·, t) = e∆tf(·) −
∫ t

0

e∆(t−s)PH(u · ∇u)(·, s) ds. (4.1b)

It is not difficult to show that the linear operators PH and e∆t commute, and these

operators also commute with differentiation, Dj = ∂/∂xj. Using the Calderon–

Zygmund theory of singular integrals (see e.g. [53], Ch. 2), one shows the funda-

mental property that the Helmholtz projector is bounded in Lq if 1 < q < ∞. That

is, for each 1 < q < ∞ there exists some constant Cq > 0 such that

‖PHv ‖Lq ≤ Cq ‖ v ‖Lq ∀ v = (v
1
, v

2
, v

3
) ∈ L

q
(IR3) (1 < q < ∞). (4.2)

We will also need here the following well known estimate for solutions of the heat

equation: given any 1 ≤ r ≤ q ≤ ∞, and any multi–index α, we have, for all t > 0:

‖Dαe∆tv ‖
Lq ≤ C ‖ v ‖

Lr t
−λ−|α |/2

, λ =
3

2

(

1

r
− 1

q

)

(4.3)

for all v ∈ Lr(IR3), with C > 0 a constant depending only on the values of q, r and

|α |.
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4.1. Boundedness of ‖ u(·, t) ‖
Lq implies boundedness of ‖Du(·, t) ‖

The basic result here is the following.

Theorem 4.1. Let 3 < q ≤ ∞. If

sup
0≤ t <T

‖ u(·, t) ‖
Lq =: Cq < ∞, (4.4a)

then
sup

0≤ t <T
‖Du(·, t) ‖ ≤ Kq(T ) ‖Df ‖, (4.4b)

where Kq(T ) > 0 depends on the values of q, Cq, T only. In particular, if Tf < ∞,

then

sup
0≤ t< Tf

‖ u(·, t) ‖
Lq = ∞. (4.5)

Proof: (Note that the result for q = ∞ was already shown in Section 2, and we

provide another proof here.) Given 3 < q ≤ ∞, let 6
5 < r ≤ 2 be defined by

1

q
+

1

2
=

1

r
.

From (4.1b), we have, for each 1 ≤ j ≤ 3:

Dju(·, t) = e∆tDjf −
∫ t

0

Dj

[

e∆(t−s)PH(u · ∇u)(·, s)
]

ds.

Therefore, with

κ =
3

2

(1

r
− 1

2

)

+
1

2
,

the following estimates hold:

‖Dju(·, t) ‖ ≤ ‖ e∆tDjf ‖ + C

∫ t

0

(t− s)−κ ‖PH(u · ∇u)(·, s) ‖
Lr ds

≤ ‖Djf ‖ + C

∫ t

0

(t− s)−κ ‖ u · ∇u(·, s) ‖
Lr ds

≤ ‖Djf ‖ + C

∫ t

0

(t− s)−κ ‖ u(·, s) ‖
Lq ‖Du(·, s) ‖ ds

In the first estimate, we have applied (4.3); the second estimate follows from (4.2),

and the third estimate uses Hölder’s inequality. We thus have

‖Du(·, t) ‖ ≤
3

∑

j =1

‖Djf ‖ + C

∫ t

0

(t− s)−κ ‖ u(·, s) ‖
Lq ‖Du(·, s) ‖ ds.

Let us note that
κ =

3

2q
+

1

2
< 1,
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since q > 3. Therefore, recalling Lemma 3.2, we see that (4.4a) implies (4.4b),

as claimed. By Theorem 3.1, this gives (4.5) if Tf is finite, and the proof is now

complete. ⋄

4.2. An Integral Inequality for ‖ u(·, t) ‖
Lq , 3 < q ≤ ∞

We now show a simple nonlinear integral inequality for the scalar function

‖ u(·, t) ‖
Lq that gives some local control on the growth of ‖ u(·, t) ‖

Lq . This local

control together with Theorem 4.1 imply a lower bound for ‖ u(·, t) ‖
Lq if Tf < ∞,

cf. Lemma 4.3 below.

Theorem 4.2. Let 3 < q ≤ ∞ and set

κ =
3

2q
+

1

2
< 1. (4.6a)

Then, there is a constant Cq > 0 (depending only on q ) such that, for any

0 ≤ t0 < Tf, we have

‖ u(·, t) ‖
Lq ≤ ‖ u(·, t0) ‖Lq + Cq

∫ t

t0

(t− s)−κ ‖ u(·, s) ‖2
Lq ds, ∀ t0 ≤ t < Tf.

(4.6b)

Proof: In the case 3 < q < ∞, we use the following argument (adapted from [14]).

Let r =
q

2
and note that

κ =
3

2

(1

r
− 1

q

)

+
1

2
.

We also have ‖ uiuj ‖Lr ≤ ‖ u ‖2
Lq , since 2 r = q . Using (4.1a) and Duhamel’s

principle, we get

u(·, t) = e∆(t−t0)u(·, t0) −
3

∑

j =1

∫ t

t0

e∆(t−s)PH

[

Dj(uj u)(·, s)
]

ds, t0 ≤ t < Tf,

which gives, by (4.2) and (4.3) above,

‖ u(·, t) ‖
Lq ≤ ‖ u(·, t0) ‖Lq + Cq

3
∑

j =1

∫ t

t0

(t− s)−κ ‖PH (uj u)(·, s) ‖Lr ds

≤ ‖ u(·, t0) ‖Lq + Cq

3
∑

j =1

∫ t

t0

(t− s)−κ ‖ uju(·, s) ‖Lr ds

≤ ‖ u(·, t0) ‖Lq + Cq

∫ t

t0

(t− s)−κ ‖ u(·, s) ‖2
Lq ds

for all t0 ≤ t < Tf . This shows the result if 3 < q < ∞, as claimed. The proof in

the case q = ∞ is due to Leray and is developed in Chapters 2 and 3 of [3]. ⋄
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The following lemma shows how (4.6) is used to yield the fundamental lower

bound (1.12) for ‖ u(·, t) ‖
Lq , 3 < q ≤ ∞, in case of finite–time blow–up.

Lemma 4.3. Let w ∈C0([0, Tf [ ) be some positive function such that we have, for

certain B > 0, α > 1, κ < 1 constant,

w(t) ≤ w(t0) + B

∫ t

t0

(t− s)−κ w(s)α ds ∀ t0 ≤ t < Tf (4.7a)

for each 0 ≤ t0 < Tf . If, in addition, Tf < ∞ and sup
0≤ t <Tf

w(t) = ∞, then it

follows that

w(t) >
(

α− 1
)

·
(

1− κ

B αα

)

1
α−1

·
(

Tf − t
)

− 1−κ
α−1

∀ 0 ≤ t < Tf . (4.7b)

Proof: Let λ > 1. Given t0 ∈ [ 0, Tf [ arbitrary, by (4.7a) we must have

w(t) < λ w(t0) if t > t0 is close to t0. In fact, setting τ∗ > 0 by

τ∗ := min

{

Tf , t0 +

[

(1− κ) (λ− 1)

λ
α
B w(t0)

α−1

]

1
1− κ }

,

we have w(t) < λ w(t0) for all t0 ≤ t < τ∗. Because, if this were false, we could then

find t1 ∈ ] t0, τ∗ [ such that w(t) < λ w(t0) for all t0 ≤ t < t1, while w(t1) = λ w(t0).

This would give, by (4.7a) and the choice of τ∗ above,

λ w(t0) = w(t1) ≤ w(t0) + B

∫ t1

t0

(t1 − s)−κ
w(s)α ds

< w(t0) + B

∫ t1

t0

(t1 − s)−κ λα w(t0)
α ds

< w(t0) + B λα w(t0)
α (τ∗ − t0)

1−κ

1− κ
≤ λ w(t0),

which could not be. Hence, we have w(t) < λ w(t0) for all t0 ≤ t < τ∗, as claimed,

and in particular w is bounded on [ t0, τ∗ [. Since, by assumption, w is unbounded

in [ t0, Tf [, we must have Tf > τ∗, that is,

w(t0) > c(λ) ·
(

Tf − t0
)

− 1−κ
α−1

, c(λ) =
(

1− κ

B

)

1
α−1

·
(

λ− 1

λ
α

)

1
α−1

for t0 ∈ [ 0, Tf [ arbitrary. The largest value of c(λ) is obtained by choosing

λ = α/(α− 1), which yields the estimate (4.7b). ⋄

From (4.6) and Lemma 4.3, we get for 3 < q ≤ ∞ the lower bound estimate

‖ u(·, t) ‖
Lq ≥ cq ·

(

Tf − t
)

−
q−3
2q

∀ 0 ≤ t < Tf (4.8a)
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if Tf < ∞, where

cq =
q − 3

8q Cq
if 3 < q < ∞, c∞ =

1

8C∞
if q = ∞,

(4.8b)

with Cq > 0 given in (4.6b) above. This proves Theorem 1.3 of Section 1 for

3 < q ≤ ∞. (Another proof for 3 ≤ q < ∞ is given in Subsection 4.3.) Using the

Gagliardo inequality

‖ u ‖∞ ≤ K(q) ‖ u ‖1−θ

L2
‖ ∇u ‖θ

Lq , θ =
3q

5q − 6
(3 < q ≤ ∞), (4.9)

which holds for arbitrary u ∈ L2(IR3)∩W 1,q(IR3), we obtain, from (2.1) and (4.8),

‖Du(·, t) ‖
Lq ≥ ĉq ‖ f ‖

−
2q−6
3q

L2 (Tf − t)
−

5q−6
6q ∀ 0 ≤ t < Tf (if T < ∞)

(4.10)

for each 3 < q ≤ ∞, and some constant ĉq > 0 that depends only on q. For q = 3,

we can similarly obtain

‖Du(·, t) ‖
L3 ≥ c(ǫ)‖ f ‖− 4ǫ

L2
(Tf−t)

− 1
2 +ǫ ∀ 0 ≤ t < Tf (if T < ∞) (4.11)

for each 0 < ǫ ≤ 1/2, and some constant c(ǫ) > 0 depending only on ǫ, using (2.1),

(4.8) and the 3D inequalities

‖ u ‖
Lr ≤ K(r) ‖ u ‖2/r

L2
‖ ∇u ‖1−2/r

L3
(3 ≤ r < ∞). (4.12)

This completes the proof of (1.5). (For Theorem 1.2, see also (1.13), (1.17) and

(4.16).)

4.3. A Differential Inequality for ‖ u(·, t) ‖
Lq , 3 < q < ∞

We recall the fundamental estimate for the pressure p(·, t) obtained by the

Calderon–Zygmund theory applied to the Poisson equation (2.5),

‖ p(·, t) ‖
Lr ≤ Cr ‖ u(·, t) ‖

2

L2r ∀ 0 ≤ t < Tf (1 < r < ∞), (4.13)

see e.g. [32,52]. The basic result in this subsection is the following differential

inequality.

Theorem 4.4. Let Tf ≤ ∞ and 3 < q < ∞. Then there exists an absolute

constant Kq (depending only on q) such that

d

dt
‖ u(·, t) ‖q

Lq ≤ Kq ·
(

‖ u(·, t) ‖q

Lq

)

q−1
q−3 ∀ 0 ≤ t < Tf . (4.14)
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Proof: Given δ > 0, let L′
δ(·) be a regularized sign function (see e.g. [35], p. 136),

and let Φδ(u) := Lδ(u)
q
. Multiplying the equation for ui(·, t) by Φ′

δ(ui(·, t)), inte-

grating on IR3 and letting δ → 0, we get

d

dt
‖ ui(·, t) ‖

q

Lq + q · (q − 1)

∫

IR3

|ui(x, t) |
q−2 | ∇ui |

2
dx ≤

≤ q · (q − 1)

∫

IR3

| p(x, t) | |ui(x, t) |
q−2 | ∇ui | dx

for all 1 ≤ i ≤ 3, 0 ≤ t < Tf . Using (4.13) and Hölder’s inequality, we have

∫

IR3

| p(x, t) | |ui(x, t) |
q−2 | ∇ui(x, t) | dx ≤

≤ C(q) ‖ u(·, t) ‖2
Lq+2

‖ ui(·, t) ‖
q−2
2

Lq+2

(
∫

IR3

|ui(x, t) |
q−2 | ∇ui |

2
dx

)
1
2

for each i, and some constant C(q) > 0 that depends on the value of q only. In

terms of v(x, t) =
(

v1(x, t), v2(x, t), v3(x, t)
)

given by

vi(x, t) :=
∣

∣ ui(x, t)
∣

∣

q
2
, 1 ≤ i ≤ 3, (4.15a)

we therefore have

d

dt
‖ vi(·, t) ‖

2

L2
+ 4

(

1− 1

q

)

‖∇vi(·, t) ‖
2

L2
≤

≤ 2q
(

1− 1

q

)

C(q) ‖ v(·, t) ‖
4
q

Lβ
‖ vi(·, t) ‖

q−2
q

Lβ
‖∇vi(·, t) ‖

L2

for each i, where β = 2 + 4/q. Using the inequality

‖ v ‖
Lβ

≤ K(β) ‖ v ‖
q−1
q+2

L2
‖ ∇v ‖

3
q+2

L2
∀ v ∈ H1(IR3),

where the constant K(β) > 0 depends only on β, and summing on i = 1, 2, 3, we

obtain

d

dt
‖ v(·, t) ‖2

L2
+ 4

(

1− 1

q

)

‖Dv(·, t) ‖2
L2

≤ Cq ‖ v(·, t) ‖
q−1
q

L2
‖Dv(·, t) ‖

q+3
q

L2

(4.15b)

for all 0 ≤ t < Tf , and some constant Cq > 0 that depends on q only. This gives

d

dt
‖ v(·, t) ‖2

L2
≤ Kq ·

(

‖ v(·, t) ‖2
L2

)

q−1
q−3 ∀ 0 ≤ t < Tf

for some constant Kq > 0 depending on q only, which is equivalent to (4.14). ⋄
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It follows from the previous proof that the estimate (4.15b) is valid more gen-

erally for any 2 < q < ∞. Taking q = 3, it gives that d/dt ‖ v(·, t) ‖2L2 < 0

if ‖ v(·, t) ‖
L2 is appropriately small; since ‖ v(·, t) ‖2

L2
= ‖ u(·, t) ‖3

L3
in this case,

cf. (4.15a), we conclude that ‖ u(·, t) ‖
L3 is monotonically decreasing in t when

‖ u(·, 0) ‖
L3 is sufficiently small, i.e.,

‖ u(·, 0) ‖
L3 < η

3
=⇒ Tf = ∞ (4.16)

for some absolute value η
3
> 0. This shows (1.12), (1.15) for q = 3, and also, using

(1.17), the bound (1.4) for q = 3/2, thus completing the proof of Theorems 1.2

and 1.3 above. It also implies, by (1.13) and Gronwall’s lemma, that ‖Dv(·, t) ‖2L2

cannot be integrable on [ 0, Tf ] if Tf < ∞, or, in terms of u(·, t), that we have

3
∑

i=1

∫ Tf

0

∫

IR3

|ui(x, t) | | ∇ui(x, t) |2 dx dt = ∞ (if Tf < ∞). (4.17)

On the other hand, taking q > 3 in (4.15), we reobtain the fundamental estimate

(1.12), in view of Lemma 3.6. Another important consequence is the following.

Using that

‖ v ‖
L2 ≤ K(q) ‖ v ‖1−δ

L4/q
‖ ∇v ‖δ

L2
, δ =

3q − 6

3q − 2
(2 ≤ q < ∞), (4.18)

we have, for q > 3:

‖ v(·, t) ‖
q−1
q

L2
‖Dv(·, t) ‖

q+3
q

L2
=

= ‖ v(·, t) ‖
2

3q−6

L2
‖ v(·, t) ‖

3q−2
3q−6

(

1− 3
q

)

L2
‖Dv(·, t) ‖

q+3
q

L2

≤ C(q) ‖ v(·, t) ‖
4
q

q−3
3q−6

L4/q
‖ v(·, t) ‖

2
3q−6

L2
‖Dv(·, t) ‖2

L2

= C(q) ‖ u(·, t) ‖
2q−6
3q−6

L2
‖ u(·, t) ‖

q
3q−6

Lq ‖Dv(·, t) ‖2
L2

by (4.15a) and (4.18) above. As ‖ u(·, t) ‖
L2 never increases, this gives, because of

(4.15b), that ‖ v(·, t) ‖
L2

(

= ‖ u(·, t) ‖
Lq

)

is monotonically decreasing in time when-

ever we have

‖ u(·, 0) ‖
2q−6
3q−6

L2
‖ u(·, 0) ‖

q
3q−6

Lq < ηq

for some value ηq > 0 appropriately small (depending only on q). Together with

(4.16), this shows (1.15), Theorem 1.4, for 3 ≤ q < ∞. The proof for q = ∞ is

given in [3].
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We finish this Section with a few last remarks. Using (4.8) and the 3D inequal-

ity

‖ u ‖
Lr(q)

≤ Kq ‖D2
u ‖

Lq , r(q) =
3q

3− 2q

(

1 ≤ q <
3

2

)

, (4.19)

where Kq > 0 depends only on q, we obtain the lower bound estimate

‖D2u(·, t) ‖
Lq ≥ cq (Tf − t)

− 3
2

q−1
q

∀ 0 ≤ t < Tf ( if T < ∞) (4.20)

for each 1 ≤ q < 3/2, and some constant cq > 0 that depends only on q. The

estimate (4.20) has been recently shown in [18] to hold for q = 2 as well, but its

validity for arbitrary q ≥ 3/2 seems to be still open. The general fact that the

norms ‖Dnu(·, t) ‖
Lq , 1 ≤ q ≤ ∞, n ≥ 2, do all blow up as tրTf in case Tf < ∞

is a direct consequence of (1.13), (4.8) and the family of 3D Gagliardo inequalities

given by

‖ u ‖
Lq≤K(q, r)‖ u ‖1−θ

L2
‖ D

n
u ‖θ

Lr , θ =
1/2 - 1/q

1/2 + n/3 - 1/r
, r≥max

{

1,
3 q

n q + 3

}

for n ≥ 2, 3 ≤ q ≤ ∞ arbitrary, provided that (n, q, r) 6= (2,∞, 3/2), (n, q, r) 6=
(3,∞, 1).

5. Comparison of blow–up functions

Let 3 ≤ q < r ≤ ∞ and assume that Tf < ∞. Theorem 1.3 yields the lower

bounds

‖ u(·, t) ‖
Lq ≥ cq (Tf − t)−κ(q), ‖ u(·, t) ‖

Lr ≥ cr (Tf − t)−κ(r)

with positive constants cq, cr and

0 ≤ κ(q) =
q − 3

2q
< κ(r) =

r − 3

2r
.

Thus, the lower bound for the Lr norm blows up faster than the lower bound for

the Lq norm. This suggests that

‖ u(·, t) ‖
Lr

‖ u(·, t) ‖
Lq

→ ∞ as t → Tf if 3 ≤ q < r ≤ ∞. (5.1)

A precise result can be obtained by using boundedness of the L2 norm and inter-

polation: defining 0 < λ < 1 by
1

q
=

λ

2
+

1− λ

r

and recalling the interpolation estimate ‖ u(·, t) ‖
Lq ≤ ‖ u(·, t) ‖λ ‖ u(·, t) ‖1−λ

Lr , one



152 Jens Lorenz and Paulo R. Zingano

gets

‖ u(·, t) ‖λ
Lr ≤ ‖ f ‖λ

‖ u(·, t) ‖
Lr

‖ u(·, t) ‖
Lq

, λ =
1/q − 1/r

1/2 − 1/r
. (5.2)

Using the lower bound on the blow–up of ‖ u(·, t) ‖
Lr provided by Theorem 1.3,

one then obtains (5.1) with an algebraic lower bound, as described next.

Theorem 5.1. Let 3 ≤ q < r ≤ ∞, and assume that Tf < ∞. Then there is a

constant c(f) = c(f ; q, r) > 0, depending on q, r and the initial state f, such that

‖ u(·, t) ‖
Lr

‖ u(·, t) ‖
Lq

≥ c(f) ·
(

Tf − t
)
− γ

∀ 0 ≤ t < Tf , (5.3a)

where

γ =
r − 3

r − 2
· r − q

qr
> 0. (5.3b)

In a similar way, using the 3D inequality

‖ u ‖
Lq ≤ K(q) ‖ u ‖1−θ ‖ Du ‖θ, θ =

3

2
· q − 2

q
(2 ≤ q ≤ 6) (5.4)

and assuming Tf < ∞, one obtains

‖Du(·, t) ‖
‖ u(·, t) ‖

Lq

≥ c̃(f) ·
(

Tf − t
)
− γ̃

, γ̃ =
6− q

8q
≥ 0 (5.5)

for all0 ≤ t < Tf, and every2 ≤ q ≤ 6, where the constant c̃(f)depends onqand‖ f ‖.
In the remaining part of this section we compare the growth of ‖ u(·, t) ‖q

Lq

‖ u(·, t) ‖2∞, for 3 < q < ∞, with the growth of ‖ u(·, t) ‖
L3 ‖ u(·, t) ‖q∞ , as tր Tf .

Setting r = ∞ and λ = 2/q in (5.2) above, we have

‖ u(·, t) ‖2/q∞ ≤ ‖ f ‖2/q ‖ u(·, t) ‖∞
‖ u(·, t) ‖

Lq

∀ 0 ≤ t < Tf . (5.6)

Together with (1.13) and (5.3), one obtains the following theorem.

Theorem 5.2. Let 3 < q < ∞, and assume that Tf < ∞. Then we have

lim
tր Tf

‖ u(·, t) ‖q∞
‖ u(·, t) ‖q

Lq

·
‖ u(·, t) ‖

L3

‖ u(·, t) ‖2∞
= ∞. (5.7)

Remark: Since the proof of (1.13) in [1] is very involved, we give here a direct

elementary argument for the weaker statement

sup
0≤ t<Tf

‖ u(·, t) ‖q∞
‖ u(·, t) ‖q

Lq

·
‖ u(·, t) ‖

L3

‖ u(·, t) ‖2∞
= ∞. (5.8)



Incompressible Navier–Stokes 153

Denoting by 〈u, v〉= ∑

i ui vi the Euclidean inner product in IR3, we have

1

q

d

dt
‖ u(·, t) ‖q

Lq =

∫

IR3

|u(x, t) |q−2 〈u(x, t), ut(x, t)〉 dx

= −
∫

IR3

|u |q−2 〈u,∇p〉dx −
∫

IR3

|u |q−2〈u, u ·∇u〉dx

+

∫

IR3

|u |q−2〈u,∆u〉dx

=: Tp + Tc + Tv

Using integration by parts, one obtains that Tc = 0. Also,

Tv =

3
∑

i, j =1

∫

IR3

|u |q−2 uiD
2
j ui dx

= −
3

∑

i, j =1

∫

IR3

|u |q−2 |Du |2 dx − (q − 2)

3
∑

j =1

∫

IR3

|u |q−4 〈u,Dju〉2 dx

≤ 0.

The pressure term is

Tp = −
3

∑

j=1

∫

IR3

|u |q−2 ujDjp dx

= (q − 2)

3
∑

j =1

∫

IR3

|u |q−4 〈u,Dju〉uj p dx

≤ Cq ‖ u(·, t) ‖q−2
∞ ‖Du(·, t) ‖ ‖ p(·, t) ‖.

For ‖ p(·, t) ‖, we use the bound (from Fourier transform, plus Parseval’s relation)

‖ p(·, t) ‖ ≤
3

∑

i, j=1

‖ uiuj (·, t) ‖

≤ C ‖ u(·, t) ‖2
L4

≤ C ‖ u(·, t) ‖
L3 ‖Du(·, t) ‖.

Thus, we have shown the estimate

d

dt
‖ u(·, t) ‖q

Lq ≤ Cq ‖ u(·, t) ‖q−2
∞ ‖ u(·, t) ‖

L3 ‖Du(·, t) ‖2. (5.9)

Setting
h(t) :=

‖ u(·, t) ‖q∞
‖ u(·, t) ‖q

Lq

·
‖ u(·, t) ‖

L3

‖ u(·, t) ‖2∞
, (5.10)
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we have that if h(t) were bounded by some quantity hmax in the interval 0 ≤ t < Tf,

then the estimate (5.9) would give

d

dt
‖ u(·, t) ‖q

Lq ≤ Cq hmax ‖Du(·, t) ‖2 ‖ u(·, t) ‖q
Lq .

Since
∫ Tf

0
‖Du(·, t) ‖2 ds is finite by Theorem 2.1, this would give (by Gronwall’s

lemma) boundedness of ‖ u(·, t) ‖
Lq in 0 ≤ t < Tf . This contradiction proves (5.8).

⋄

6. The Beale–Kato–Majda blow–up condition

In this section, we recall a few basic facts for the vorticity ω(·, t) := ∇×u(·, t),
which satisfies the related equation

ωt + u(·, t) · ∇ω(·, t) = ∆ω(·, t) + ω(·, t) · ∇u(·, t). (6.1)

From our definition of the L2-norm ‖·‖, it is readily seen that ‖ω(·, t) ‖=‖Du(·, t) ‖,
and, more generally,

‖Dℓ+1u(·, t) ‖ = ‖Dℓω(·, t) ‖ ∀ ℓ ≥ 0, (6.2)

so that we have, in case Tf < ∞, that ‖Dℓω(·, t) ‖ → ∞ as tր Tf for all ℓ ≥ 0.

Similar considerations are obtained from

‖Dℓ+1u(·, t) ‖
Lq ≤ K(ℓ, q) ‖Dℓω(·, t) ‖

Lq ∀ ℓ ≥ 0, 1 < q < ∞, (6.3)

which follows from the Calderon–Zygmund theory of singular operators, see e.g.

[32,52]. Another important property of ω(·, t) is that it stays bounded in L1, as

observed in [54].

Theorem 6.1. (i) Let ω =
(

ω
1
, ω

2
, ω

3

)

be the vorticity. If ω
i
(·, 0) ∈ L1(IR3) for

some i, then ω
i
(·, t) remains in L1(IR3) for t > 0, with

‖ω
i
(·, t) ‖

L1 ≤ ‖ω
i
(·, 0) ‖

L1 +
1

2
‖ u(·, 0) ‖2 ∀ 0 ≤ t < Tf . (6.4)

(ii) If ω(·, 0) ∈ L1(IR3), then

‖ω(·, t) ‖
L1 ≤ ‖ω(·, 0) ‖

L1 +

√
3

2
‖ u(·, 0) ‖2 ∀ 0 ≤ t < Tf . (6.5)

Proof: Again, we use regularized sign functions L′
δ(·) as defined in [35], p. 136,

where δ > 0 is arbitrary. Multiplying the i-th component of equation (6.1) above

by L′
δ(ωi

(·, t)) and integrating on IR3× [ 0, t ], we get, letting δց 0,

‖ω
i
(·, t) ‖

L1 ≤ ‖ω
i
(·, 0) ‖

L1 +

3
∑

j =1

∫ t

0

∫

IR3

|ω
j
(x, t) | |D

j
u
i
(x, t) | dx dτ
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for all 0 ≤ t < Tf , which gives (6.4) by the Cauchy–Schwarz inequality and (1.7),

(6.2). Moreover, summing on 1 ≤ i ≤ 3 and applying again the Cauchy–Schwarz

inequality to estimate the integral term, one obtains (6.5), using (1.7) and (6.2)

once more. ⋄

We now turn to the L2 norm of ω(·, t), which will quickly lead us to the following

blow–up result, originally obtained for the Euler’s equations in [30].

Theorem 6.2. (Beale–Kato–Majda). If Tf < ∞, then

∫ T
f

0

‖ω(·, t) ‖∞ dt = ∞.

Proof: Multiplying the i-th component of equation (6.1) by ω
i
(·, t) and integrat-

ing on IR3× [ 0, t ], we get, summing on 1 ≤ i ≤ 3,

1

2

d

dt
‖ω(·, t) ‖2 + ‖Dω(·, t) ‖2 =

3
∑

i, j =1

∫

IR3

ω
i
(x, t) ω

j
(x, t)Djui

(x, t) dx

≤ ‖ω(·, t) ‖
∞

3
∑

i, j =1

∫

IR3

|ω
j
(x, t) | |Djui

(x, t) | dx

≤
√
3 ‖ω(·, t) ‖

∞
‖ω(·, t) ‖ ‖Du(·, t) ‖

=
√
3 ‖ω(·, t) ‖

∞
‖ω(·, t) ‖2

for all 0 ≤ t < Tf , using the Cauchy-Schwarz inequality and that ‖Du(·, t)‖ =

‖ω(·, t)‖, see (6.2) above. By the standard Gronwall lemma, this gives

‖ω(·, t) ‖ ≤ ‖ω(·, 0) ‖ · exp

{√
3

∫ t

0

‖ω(·, τ ) ‖
∞
dτ

}

∀ 0 ≤ t < Tf .

Therefore, if we had

∫ T
f

0

‖ω(·, t) ‖∞ dt < ∞, we would have ‖ω(·, t) ‖ bounded in

[ 0, Tf [. That is, ‖Du(·, t) ‖ would be bounded in [ 0, Tf [, contradicting Leray’s

estimate (3.10). ⋄
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