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Numerical study of the Benjamin-Bona-Mahony-Burgers equation

M. Zarebnia and R. Parvaz

ABSTRACT: In this paper, the quadratic B-spline collocation method is imple-
mented to find numerical solution of the Benjamin-Bona-Mahony-Burgers (BBMB)
equation. Applying the Von-Neumann stability analysis technique, we show that the
method is unconditionally stable. Also the convergence of the method is proved.
The method is applied on some test examples, and numerical results have been com-
pared with the exact solution. The numerical solutions show the efficiency of the
method computationally.
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1. Introduction

In this paper we consider the solution of the Benjamin-Bona-Mahony-Burgers
(BBMB) equation

Ut — Uggt — QUgy + Puy +uu, =0, x € [a,b], t€[0,T], (1.1)
with the initial condition
U(.T,O) = f(iE), HAES [aab]a (1'2)

and boundary conditions
u(a,t) = u(b,t) =0, (1.3)

where o and § are positive constants. For o« = 0, Eq. (1.1) is called the Benjamin-
Bona-Mahony (BBM) equation. The BBMB equation has been proposed as a
model for propagation of long waves. This equation incorporates dispersive and
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dissipative effects. The dissipative term can be found in —aw,,. For more details
on this topic, see [1,2]. In recent years, many different methods have been used
to estimate the solution of the Benjamin-Bona-Mahony-Burgers equation and the
BBM equation, for example, see [3,4,5,7,11].

The paper is organized as follows. In Section 2, quadratic B-spline collocation
method is explained. In Section 3, is devoted to stability analysis and convergence
analysis of the method. In Section 4, examples are presented. A summary is given
at the end of the paper in Section 5.

2. Quadratic B-spline collocation method

Our numerical treatment for BBMB equation using the collocation method with
quadratic B-spline is to find an approximate solution U(x,t) to the exact solution
u(zx,t) in the form

N
Uz, t) = > c(t)Bi(x), (2.1)
i=—1
where ¢;(t) are time-dependent quantities to be determined from the boundary
conditions and collocation form of the differential equations. Also B;(z) are the
quadratic B-spline basis functions at knots, given by [6,12]

(z = zi-1)%, z € [2i-1, %),
1 2 . o 2 )\ 2 . .
Bi(z) = — 2h (ZZ+21 2) (z—2)% 2 €[z, 2i41), (2.2)
h? (zig2 — 2)7, Z € [Zit1, Zit2),
0, otherwise.
The solution domain a < z < b partitioned into a mesh of uniform length h = b_T“,

by the knots z; where j = 0,1,2,..., N such that a = 20 < z1..2nv—1 < 2y = b
and z; = zo + jh. The values of B;(z) and its first and second derivatives at the
mid knots points are given in Table 1. Also numerical solutions are given at mid

points. We note that the mid points are x; = m%

Table 1: B;, B;, B;/ at mid points.

| €T | LTj—2 | LTi—1 | Xq | Lit1 | Ti42 |
B; 0 3 3 3 0
hB; 0 1 0 -1 0
2B, | 0 2 | -4 2 0

~—

By using approximate function (2.1) and Table 1, we have

3 1
e R SR (2.3)

iatn ~U'=
u(wi, ty) 5 1

?

B~ =
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Table 2: B; and B;-at node points.
| < | Ri—2 | Ri—1 | Zi | Rit1 | Ri+2 |
B; 0 0 1 1 0
hB; | 0 0 |2]-21] 0

2

hug (zi,t,) = WU )P = —cfy + 'y, (2.4)

W (4, ) 2 W2(U)F = 20 — 4c + 2741, (2.5)
where ¢ := ¢;(t,). In this step by using the finite difference method, we can write

n+1 n

U —u unJrl _ un unJrl + un unJrl + ,un Uy, n+1 + Uty n
_ Tz L _ o TTT mm+6z z_,’_( ) ( ) —0.
At At 2 2

(2.6)
The nonlinear term in (2.6) can be approximated by using the following formula

19]:

()" = u" "+ u T — ()™ (2.7)

Substituting the approximate solution U for w and putting the values of the mid
values U, its derivatives using (2.3),(2.4) and (2.5) at the knots in (2.6) yield the

following difference equation with the variables ¢; , 1 =0,1,..., N,
Gep 4 bt el =0 i =0,1,.., N — 1, (2.8)
where
W= U (1R U - B (29)
and
P N T S
with ¢ := 1+%(U,)?, b= ﬂ%Jr%Ui”, ¢ = —lfoz%, d:= O‘TM —1,¢é:= f%.

The system (2.8) consists of N linear equations in N + 2 unknowns {c_1, co, ...,
¢N—1 ,cn}. To obtain a unique solution for ¢ = {c_1, ¢, ...,cN—1,CcN}, We must
use the boundary conditions. From the boundary conditions and Table 2, we can
write

gt =0, (2.10)

L ettt = 0. (2.11)

Associating (2.10) and (2.11) with (2.8), we obtain a (N 4 2) x (N 4+ 2) system of
equations in the following form

AC =Q, (2.12)
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where
1 1 0 ... 0
a b ¢ ... 0
A= | : ; (2.13)
0 a b ¢
0 0 1 1
Ci=("T et et T (2.14)
%uz(zo, t)yenes

(o,u(xo,t)Jr(—1+a%)um(zo,t) B
T
tuz(folat)vo) 7Zf t:Atv

Q=1 ulen-1,0) + (=1 + af ) us(en-1,t) — B5
if t> At
(2.15)

T
(0, q/g,...,\lﬂ;vfl,o) ,

3. Stability and convergence analysis

We present the stability of the quadratic B-spline approximation (2.8) using the
Von Numann method [8,10]. According to the Von-Neumann method, we have

= "exp(\khi), A= -1, (3.1)

where k is the mode number and h is the element size. To apply this method, we

have linearized the nonlinear term wu, by consider u as a constant w in term (2.6).

We obtain the equation

" eap(\kh(i — 1)) + b€ eap(Akh(i)) + € eap(Mkh(i + 1)) =
de"exp(Akh(i — 1)) + e exp(Akh(i)) + f E exp(Meh(i + 1)), (3.2)

Go=l,2 ¥y p._3_ 4z 5._ 1,2 ,y
A=t o b=y o =gty
— 142y 5.3 _ 4z =14 22 'y
d=gtptp =y [=rtE 0

. A At A A
with z := 17a2t,y = 2t+ éw,z 771+a2t'

Dividing both sides of (3.2) by exp (iAkh), we can obtain

gntt (?i exp(—Akh) + b+ Eexp(Akh)) =" (c/l\ezp(—/\kh) +e+ fezp()\kh)),
(3.3)
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(3.3) can be rewritten in a simple form as

X -)\Y
= A4
¢ Xy +AY’ (3-4)
where
X = (3 + 35)cos(kh) + (3 — 35,
X1 := (3 + 38) cos(kh) + (3 — 73),
= (%)sin(kzh).

X and X; can be rewritten in the form:

X = (3~ ) cos(kh) + (3 + ) — 2581 — cos(kn),
X1 = (3 ) cos(kh) + (3 + ) + 18451 — cos(kh).

2 _ ¢f . X24Y? . .
We note that X < Xy, so [§]" = £ = 575~ < 1. Therefore, the linearized
1

numerical scheme for the BBMB equation is unconditionally stable.

Now we discuss the convergence of the collocation method.

Theorem 3.1. Suppose that f(z) € C*[a,b] and | f4(z) |< L for x € [a,b]. Let A
be a partition A = {a = xg < x1 < --- < xn = b} be the equally spaced partition
of [a,b] with step size h. If S(x) be the unique spline function interpolate f(x) at

knots xg,x1, -+ ,xn € A then there exist a constant \; such that
19 =89 o< N LA, j=0,1,2. (3.5)
Proof: For the proof see [14]. O

Lemma 3.2. The B-splines {B_1,--- , By} satisfy the following inequality:
N
> Bi(z)| <5, (a<z<b). (3.6)
i=—1

Proof: At any nodal point x = x;, we can write

> IBi(x)| = |Bi1(x)| + [Bi(x)| + [Bit1(z)| = 2,

i=—1

also for any = € [z;_1, ;] we have

> IBia)| <

i=—1

N~
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which completes the proof. O

Theorem 3.3. Suppose that u(x,t) be the exact solution of (1.1) and assume that

|%| < L and U(x,t) be the approximate solution of BBMB (1.1) given by our
approach, then
lu(z,t) = Uz, t)llo < o(h® + At), (3.7)

where ¢ is a constant and independent of h.

Proof: At the (n + 1)th time step, we assume that S be the unique spline inter-
polate to the exact solution u of (1.1)-(1.3) given by

N

S(z)= Y ¢"Bi(w), (3.8)

i=—1

To continue, we note that matrix A is strictly diagonally dominant matrix, and
from [13] we can find M independent of h, such that ||[A7}||.c < M. Also from
Theorem 3.1, we can write

lu(@) = S()lsc < AoLh*, (3.9)
we substituting S(z) in (2.6), we have the following result
AC* = Q" (3.10)
Subtracting (2.12), (3.10) and taking the infinity norm, we can write
IC™ = Clloe = A7 o 1Q" — Qllox- (3.11)
From (2.9) and using Theorem 3.1, we get
|Q" — Qe < M, (312)
where M = AgLh%+ | 22 | A\ Lh+ | =1+ 22L | \,L. Then we have
|C* = Clloo < MMB2, (3.13)
Applying (3.13) and Lemma 3.2, we get the result as
|U = Slee < M2, (3.14)
where M = 7MM /6. From (3.9) and (3.14),we have
lu—Ulloo < Mh2. (3.15)

In the next step, suppose that €; = u(t;) — U(t;) be the local truncation error
for (2.6) at the ith level of time. By using the truncation error , we get

|ei |[< viAt? | i >1, (3.16)
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where v; is some finite constant. We can write the following global error estimate
at n+ 1 level

EnJrl = ié‘i, (At S T/TL), (317)

=1

thus with the help of (3.16), we can write

n n T
E,ii|= 1< AL < nuAt? < nu=At = pAt, 3.18
| Ens1 | |ZE |_ZU < nv _m)n p ( )

i=1 i=1

where p = vT and v = max{vy,...,v,}. Which completes the proof. |

4. Numerical examples

In order to illustrate the performance of the quadratic B-spline collocation
method in solving BBMB equation and justify the accuracy and efficiency of the
present method, we consider the following examples. To show the efficiency of the
present method for our problem in comparison with the solution, we report L.
and Lo using formulae
Loo = max; | Uz, t) — u(wi,t) |, Lo = (WY, | Uz, t) — ulwi,t) [2)2,
where U is numerical solution and u denotes exact solution. Note that we have
computed the numerical results by Mathematica-9 programming.

Example 4.1. Consider the BBMB equation with o = 0 and g = 1 in the interval
[—40,60], with the solution u(z,t) = 3csech®(k(x — vt — xp)). We have taken
c=0.03,01,v=1+¢c, 29 =0 and k* = 15- The initial condition is taken from
the solution. Also the solution satisfy three conservation laws:

Cr= [T ude=h3ul, Co= [T (u* +ui)de =hy, ((uf)® + ((u2)})?),

Cs = [T u? +3u’de = hY, (uf)® + 3(ul’)?).

Table 3 and Table 6 give C1,C5,Cs, Loo and Lo found by our method in different
times for ¢ = 0.1,0.03 and Table 4 and Table 7 give numerical results from method
in [4,5]. Figure. 1 and Figure. 2 show that solution obtained by our method
18 closed to the solutions. In addition, in Table 5 and Table 8 we see that Lo
decreases with decreasing in At or increasing in N. Also from Figure 3 we can see
that numerical solutions show the same behavior as solutions.
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Table 3: Numerical results for Example 4.1 with A = 0.1, N = 1000 and ¢ = 0.1.
| Time| C1 | Gy | C3 | Lyx10% | Lo x 10° |
2 3.97993 | 0.810461 | 2.579 | 0.0325248 | 0.0122345
4 3.97993 | 0.810461 | 2.579 | 0.0646491 | 0.0249644
6 3.97993 | 0.810461 | 2.579 | 0.0966147 | 0.0378028
8 3.97993 | 0.810461 | 2.579 | 0.12823 | 0.0504925
10 3.97993 | 0.810461 | 2.579 | 0.159403 | 0.0628118
12 3.97993 | 0.810461 | 2.579 | 0.190073 | 0.0747027
14 3.97992 | 0.810461 | 2.579 | 0.220198 | 0.0861316
16 3.97992 | 0.810461 | 2.579 | 0.249754 | 0.0970962
18 3.97991 | 0.810461 | 2.579 | 0.278738 | 0.107622
20 3.97988 | 0.810461 | 2.579 | 0.307172 | 0.117734

Table 4: Numerical results for Example 4.1 with A = 0.1, N = 1000 and ¢ = 0.1
with the algorithim of [4,5].

[Time| C1 | Co | Cs3 [ Lyx10%[ Lo x10% ]
2 [ 4.41677 | 0.899303 | 2.86167 | 19.92 6.817
4 | 4.42017 | 0.899873 | 2.86339 | 39.82 13.74
6 | 4.41922 | 0.899559 | 2.86226 | 59.67 20.71
8 | 4.41822 | 0.899236 | 2.86106 | 79.46 27.66
10 | 4.41722 | 0.898919 | 2.85986 | 99.17 34.55
12 | 4.41623 | 0.898601 | 2.85863 | 118.8 41.35
14 | 4.41523 | 0.898283 | 2.85739 | 138.3 48.04
16 | 4.41423 | 0.897967 | 2.85613 | 157.7 54.60
18 | 4.41321 | 0.897653 | 2.85487 | 176.9 61.04
20 | 4.41219 | 0.897342 | 2.85361 | 196.1 67.35

Table 5: Comparison of Lo for Example 4.1 at different At with ¢ = 0.1.
| Partition\Time | 1 | 1.5 | 2 |
N =1000,At = 0.25 | 0.0722912x10~3 | 0.108617x10~3 | 0.144949x1073
N =1000,At = 0.1 | 0.0166866x 1073 | 0.0245446 x 1073 | 0.0325248 x 1073
N =1000, At =0.01 | 7.46198x 106 9.71695x 1076 | 0.012213x1073

Example 4.2. Consider the BBMB equation in the interval [—10,10] with @ = 1
and B =1 and the initial condition u(x,0) = exp(—x?). Table 9 and Table 10 give
numerical results found by our method in different times. Also Figure. 4 shows
approximate solution graphs. In addition, we can see that the graph shows the
same behavior as in [7].
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Figure 1: Numerical and analytical solutions for Example 4.1 with ¢ = 0.1, N =
1000, and At = 0.1.
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Figure 2: Numerical and analytical solutions for Example 4.1 with ¢ = 0.03, N =
1000, and At = 0.1.

space(x)

Figure 3: Analytical solution (left) and numerical solution (right) using At = 0.1
and N = 500 with ¢ = 0.03 of Example 4.1.
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Table 6: Numerical results for Example 4.1 with A = 0.1, N = 1000 and ¢ = 0.0.03.
|[Time | C1 | Co | C3 | Lyx10%] Lo x10° |
2 2.10701 | 0.127301 | 0.388804 | 0.333312 | 0.276642
4 2.1071 | 0.127301 | 0.388804 | 0.409707 | 0.229933
6 2.10703 | 0.127301 | 0.388804 | 0.472601 | 0.22496
8 2.1069 | 0.127301 | 0.388804 | 0.510916 | 0.221015
10 2.10674 | 0.127301 | 0.388804 | 0.528822 | 0.216744
12 2.10655 | 0.127301 | 0.388804 | 0.535957 | 0.212506
14 2.1063 | 0.127301 | 0.388804 | 0.539885 | 0.208489
16 2.10593 | 0.127301 | 0.388804 | 0.544644 | 0.212056
18 2.10539 | 0.127301 | 0.388803 | 0.552954 | 0.301244
20 2.10461 | 0.127301 | 0.388802 | 0.568417 | 0.427854

Table 7: Numerical results for Example 4.1 with h = 0.1, N = 1000 and ¢ = 0.03
with the algorithim of [4,5].

| Time| Ci | Cy | O35 [ Lyx10%| Ly x 107 ]
2 [2338]0.141245 | 0.431389 | 1.487 0.392
4 | 2340 | 0.141322 | 0.431621 | 2.928 0.786
6 | 2.340 | 0.141259 | 0.431427 | 4.373 1.183
8 | 2339 |0.141195 | 0.431231 | 5.816 1.582
10 | 2.338 | 0.141131 | 0.431031 | 7.257 1.983
12 | 2.337 | 0.141067 | 0.430834 | 8.698 2.384
14 | 2.337 | 0.141004 | 0.430636 | 10.14 2.787
16 | 2.336 | 0.140940 | 0.430440 | 11.58 3.190
18 | 2.335 | 0.140877 | 0.430245 | 13.01 3.593
20 | 2.333 | 0.140815 | 0.430052 | 14.45 3.996

Table 8: Comparison of Ly for Example 4.1 at different N with ¢ = 0.1.
| Partition\Time | 3 | 5 | 7 |
N =200,At=0.1 0.438353 x 1073 | 0.730055 x 10=3 | 1.01786 x 1073
N =400,At =0.1 0.133167 x 1073 0.22177 x 1073 | 0.309324 x 1073
N = 1000, At = 0.1 | 0.0485834 x 1073 | 0.080668 x 1073 | 0.112473 x 1073

Table 9: Numerical results for Example 2 with At = 0.1 and N = 200.
| 2\t | 1 | 5 | 7 | 10 |
-5 | -0.00109485 | -0.000342832 | -0.000133937 | -0.0000298046

0 0.572752 0.0202368 -0.00091068 -0.00220189
5 0.0396263 0.234568 0.179672 0.073734
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Figure 4: Approximate solution graphs of Example 4.2 in different times with
At = 0.1 and N = 200.

Table 10: Numerical results for Example 2 with At = 0.1 and N = 400.

| 2\t | 1 | 5 | 7 | 10
-5 [ -0.00109258 | -0.00034219 | -0.000133763 | -0.0000298188
0 | 0572783 | 0.0201537 | -0.000921405 | -0.00219315
5 | 0.039628 0.2346 0.179665 0.0737031

5. Conclusion

The quadratic B-spline collocation method is used to solve the Benjamin-Bona-
Mahony-Burgers(BBMB) equation with initial and boundary conditions. We study
the stability analysis and the convergence analysis of the method. The numerical
results given in the previous section demonstrate the good accuracy and stability
of the proposed scheme in this research.
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