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abstract: In this work, we prove an existence result of renormalized solutions in
Orlicz-Sobolev spaces for a class of nonlinear parabolic equations with two lower
order terms and L1-data.
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1. Introduction

We consider the following nonlinear parabolic problem:





∂u

∂t
− div

(
a(x, t, u,∇u) + Φ(u)

)
+ g(x, t, u,∇u) = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω.

(1.1)
where Ω is a bounded open subset of RN , N ≥ 1, T > 0 and QT is the cylinder
Ω × (0, T ). The operator A(u) = −div(a(x, t, u,∇u)) is a Leray-Lions operator
defined in W 1,x

0 LM (QT ).
In the case where A is a Leary-Lions operator defined on Lp(0, T ;W 1,p(Ω)),

Dall’aglio-Orsina [18] and Porretta [28] proved the existence of solutions for the
problem (1.1), where g is a nonlinearity with the following ”natural” growth con-
dition (of order p)

|g(x, t, s, ξ)| ≤ d(|s|)
(
c1(x, t) + |ξ|p

)
,

and which satisfies the classical sign condition g(x, t, s, ξ)s ≥ 0. The right hand side
f is assumed to belong to L1(Q). This result generalizes analogous one of Boccardo-
Gallouët [13], see also [12] and [14] for related topics. In all of these results, the
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function a is supposed to satisfy a polynomial growth condition with respect to u
and ∇u. In the case where a and g satisfy a more general growth condition with
respect to u and ∇u, it is shown in [19] that the appropriate space in which (1.1)
can be studied is the inhomogeneous Orlicz-Sobolev space W 1,xLM (Q), where the
N -function M is related to the actual growth of a and g. The solvability of (1.1) in
this setting is only proved in the variational case i.e. where f belongs to the Orlicz
spaceW−1,xEM (Q), see Donaldson [19] for g ≡ 0 and Robert [29] for g ≡ g(x, t, u)
when A is monotone, t2 ≪ M(t) and M satisfies a ∆2-condition and also Elmahi

[20] for g = g(x, t, u,∇u) when M satisfies a ∆′−condition and M(t) ≪ t
N

N−1

and finally the recent work Elmahi-Meskine [23] for the general case. A large
number of papers was devoted to the study the existence of renormalized solution
of parabolic problems under various assumptions and in different contexts: for a
review on classical results see [6,7,9,10,15,16,17,28].

In the case where Φ = 0, the existence of entropy solutions for parabolic prob-
lems of the form (1.1) in the setting of Orlicz spaces has been proved in A. Elmahi
and D. Meskine [23] in the case where f belongs to L1(Q) and g be a carathéodory
function satisfying

|g(x, t, s, ξ)| ≤ b(|s|)
(
c(x, t) +M(|ξ|)

)

g(x, t, s, ξ)s ≥ 0.

It is our purpose, in this article, to prove the existence of renormalized solution
for the problem (1.1) in the setting of the Orlicz Sobolev space W 1,xLM (Q), the
nonlinearity g satisfying the sign condition and the function Φ is just assumed to
be continuous on R.

Let us briefly summarize the contents of this article. In section 2 we give some
preliminaries and gives the definition of N -function and the Orlicz-Sobolev space.
Section 3 is devoted to specifying the assumptions on a,Φ, g, f and the definition
of a renormalized solution of (1.1). In Section 4 we establish (Theorem 4.1) the
existence of such a solution.

2. Preliminaries

Let Ω be a bounded open subset of RN with the segment property. Let M :
R

+ → R
+ be an N -function, i.e., M is continuous, convex, with M(t) > 0 for t >

0, M(t)
t

→ 0 as t → 0 and M(t)
t

→ ∞ as t → ∞. Equivalently, M admits the

representation : M(t) =
∫ t

0
m(s)ds where m : R+ → R

+ is non-decreasing, right
continuous, with m(0) = 0, m(t) > 0 ∀t > 0 and m(t) → ∞ as t → ∞. The

N -function M conjugate to M is defined by M(t) =
∫ t

0
m(s)ds, where m : R+ →

R
+ is given by m(t) = sup{s : m(s) ≤ t} ( see [1,5,26]). We will extend these

N -functions into even functions on all R. The N -function M is said to satisfy the
∆2 condition if, for some k > 0:

M(2t) ≤ kM(t) ∀t ≥ 0. (2.1)
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When this inequality holds only for t ≥ t0 > 0,M is said to satisfy the ∆2 condition
near infinity.

Let P,Q be twoN -functions, P ≪ Qmeans that P grows essentially less rapidly
than Q; i.e. for each ε > 0

P (t)/Q(εt) → 0 as t→ ∞. (2.2)

This is the case if and only if

lim
t→∞

Q−1(t)/P−1(t) = 0. (2.3)

Let Ω be an open subset of RN . The Orlicz class LM (Ω) (resp. the Orlicz space
LM (Ω)) is defined as the set of (equivalence classes of) real-valued measurable
functions u on Ω such that :

∫

Ω

M(u(x))dx < +∞ (resp.

∫

Ω

M(
u(x)

λ
)dx < +∞ for some λ > 0). (2.4)

Not that LM (Ω) is a Banach space under the norm:

‖u‖M,Ω = inf{λ > 0 :

∫

Ω

M(
u(x)

λ
)dx 6 1} (2.5)

and LM (Ω) is a convex subset of LM (Ω). The closure in LM (Ω) of the set of
bounded measurable functions with compact support in Ω is denoted by EM (Ω).
The equality EM (Ω) = LM (Ω) holds if and only if M satisfies the ∆2condition, for
all t or for t large according to whether Ω has infinite measure or not. The dual of
EM (Ω) can be identified with LM (Ω) by means of the pairing

∫
Ω u(x)v(x)dx, and

the dual norm on LM (Ω) is equivalent to ‖.‖M,Ω. The space LM (Ω) is reflexive if

and only if M andM satisfy the ∆2−condition, for all t or for t large, according to
whether Ω has infinite measure or not. We now turn to the Orlicz-Sobolev space.
W 1LM (Ω) (resp. W 1EM (Ω)) is the space of all functions u such that u and its
distributional derivatives up to order 1 lie in LM (Ω) (resp. EM (Ω)). This is a
Banach space under the norm

‖u‖1,M,Ω =
∑

|α|≤1

‖∇αu‖M,Ω. (2.6)

Thus W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the product
of N + 1 copies of LM (Ω). Denoting this product by ΠLM (Ω), we will use the
weak topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ). The space W 1

0EM (Ω) is de-
fined as the (norm) closure of the Schwartz space D(Ω) inW 1EM (Ω) and the space
W 1

0LM (Ω) as the σ(ΠLM ,ΠEM ) closure of D(Ω) in W 1LM (Ω). We say that un
converges to u for the modular convergence in W 1LM (Ω) if for some λ > 0,

∫

Ω

M
(∇αun −∇αu

λ

)
dx→ 0 for all |α| ≤ 1.
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This implies convergence for σ(ΠLM ,ΠLM ). IfM satisfies the ∆2−condition on R
+

(near infinity only when Ω has finite measure), then modular convergence coincides
with norm convergence. Let W−1LM (Ω) (resp. W−1EM (Ω)) denote the space of
distributions on Ω which can be written as sums of derivatives of order ≤ 1 of
functions in LM (Ω) (resp. EM (Ω)). It is a Banach space under the usual quotient
norm.

If the open set Ω has the segment property, then the space D(Ω) is dense in
W 1

0LM (Ω) for the modular convergence and for the topology σ(ΠLM ,ΠLM ) (cf.
[24,25]). Consequently, the action of a distribution T in W−1LM (Ω) on an element
u of W 1

0LM (Ω) is well defined. It will be denoted by 〈T, u〉. For k > 0, we define
the truncation at height k, Tk : R → R by

Tk(s) = min(k,max(s,−k)). (2.7)

The following lemmas can be found in [4].

Lemma 2.1. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. Let M be
an N -function, u ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Then F (u) ∈W 1LM (Ω) (resp.
W 1EM (Ω)). Moreover, if the set D of discontinuity points of F ′ is finite, then

∂(F ◦ u)

∂xi
=

{
F ′(u) ∂u

∂xi
a.e. in {x ∈ Ω : u(x) 6∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.2. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. I suppose
that the set of discontinuity points of F ′ is finite. Let M be an N -function, then
the mapping F : W 1LM (Ω) → W 1LM (Ω) is sequentially continuous with respect
to the weak ∗ topology σ(ΠLM ,ΠEM̄ ).

Let Ω be a bounded open subset of RN , T > 0 and set Q = Ω×(0, T ). LetM be
an N -function. For each α ∈ N

N , denote by ∇α
x the distributional derivative on Q

of order α with respect to the variable x ∈ R
N . The inhomogeneous Orlicz-Sobolev

spaces of order 1 are defined as follows

W 1,xLM (Q) = {u ∈ LM (Q) : ∇α
xu ∈ LM (Q) ∀ |α| ≤ 1} and (2.8)

W 1,xEM (Q) = {u ∈ EM (Q) : ∇α
xu ∈ EM (Q) ∀ |α| ≤ 1}. (2.9)

The latter space is a subspace of the former. Both are Banach spaces under the
norm

‖u‖ =
∑

|α|≤1

‖∇α
xu‖M,Q. (2.10)

We can easily show that they form a complementary system when Ω satisfies
the segment property. These spaces are considered as subspaces of the prod-
uct space ΠLM (Q) which has (N + 1) copies. We shall also consider the weak
topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ). if u ∈W 1,xLM (Q) then the func-
tion: t → u(t) = u(., t) is defined on (0, T ) with values in W 1LM (Ω). If, further,
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u ∈ W 1,xEM (Q) then u(., t) is a W 1EM (Ω)-valued and is strongly measurable.
Furthermore the following continuous imbedding holds:

W 1,xEM (Q) ⊂ L1(0, T ;W 1EM (Ω)).

The space W 1,xLM (Q) is not in general separable, if u ∈W 1,xLM (Q), we can not
conclude that the function u(t) is measurable from (0, T ) into W 1LM (Ω). How-
ever, the scalar function t→ ‖∇α

xu(t)‖M,Ω is in L1(0, T ) for all |α| ≤ 1. The space

W 1,x
0 EM (Q) is defined as the (norm) closure in W 1,xEM (Q) of D(Q). We can eas-

ily show as in [25] (see the proof of theorem 3 below) that when Ω has the segment
property then each element u of the closure of D(Q) with respect to the weak ∗
topology σ(ΠLM ,ΠEM ) is limit, in W 1,xLM (Q); of some sequence (un) ⊂ D(Q)
for the modular convergence i.e. there exists λ > 0 such that, for all |α| 6 1,

∫

Q

M
(∇α

xun −∇α
xu

λ

)
dx dt → 0 as n→ ∞. (2.11)

This implies that (un) converges tou in W 1,xLM (Q) for the weak topology
σ(ΠLM ,ΠLM ). Consequently,

D(Q)
σ(ΠLM ,ΠE

M
)
= D(Q)

σ(ΠLM ,ΠL
M

)
, (2.12)

this space will be denoted by W 1,x
0 LM (Q). Furthermore,

W 1,x
0 EM (Q) =W 1,x

0 LM (Q) ∩ ΠEM .

Poincaré’s inequality also holds in W 1,x
0 LM (Q) and then there is a constant C > 0

such that for all u ∈ W 1,x
0 LM (Q) one has
∑

|α|≤1

‖∇α
xu‖M,Q ≤ C

∑

|α|=1

‖∇α
xu‖M,Q, (2.13)

thus both sides of the last inequality are equivalent norms on W 1,x
0 LM (Q). We

have then the following complementary system



W 1,x
0 LM (Q) F

W 1,x
0 EM (Q) F0


 , (2.14)

F being the dual space of W 1,x
0 EM (Q). It is also, up to an isomorphism, the

quotient of ΠLM by the polar set W 1,x
0 EM (Q)⊥, and will be denoted by F =

W−1,xLM (Q) and it is shown that

W−1,xLM (Q) = {f =
∑

|α|≤1

∇α
xfα : fα ∈ LM (Q)}. (2.15)

This space will be equipped with the usual quotient norm:

‖f‖ = inf
∑

|α|≤1

‖fα‖M,Q (2.16)
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where the inf is taken over all possible decompositions

f =
∑

|α|≤1

∇α
xfα : fα ∈ LM (Q). (2.17)

The space F0 is then given by

F0 = {f =
∑

|α|≤1

∇α
xfα : fα ∈ EM (Q)} (2.18)

and is denoted by F0 =W−1,xEM (Q).

Remark 2.3. We can easily check, using lemma 2.1, that each uniformly lips-
chitzian mapping F , with F (0) = 0, acts in inhomogeneous Orlics-Sobolev spaces
of order 1: W 1,xLM (Q) and W 1,x

0 LM (Q).

Corollary 2.4. Let M be an N -function. Let (un) be a sequence of W 1,xLM (Q)
such that

un ⇀ u weakly in W 1,xLM (Q) for (ΠLM ,ΠEM )

and
∂un
∂t

= hn + kn in D
′(Q)

with (hn) bounded in W−1,xLM (Q) and (kn) bounded in the space M(Q) of mea-
sures on Q. Then

un −→ u strongly in L1
loc(Q).

If further un ∈W 1,x
0 LM (Q) then un −→ u strongly in L1(Q).

Proof: (See [22]) ✷

3. Basic assumptions, definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true: Let
Ω is a bounded open set of RN (N ≥ 2 ), T > 0 is given and we set QT = Ω×(0, T ).
Let M and P be two N−functions such that P ≪ Q.

Consider a second order operator A : D(A) ⊂W 1,xLM (Q) → W−1,xLM (Q) in
divergence form

A(u) = − div a(x, t, u,∇u)

where a : Ω × [0, T ] × R × R
N → R

N is a Carathéodory function satisfying for
almost every (x, t) ∈ Ω× [0, T ] and all s ∈ R, ξ 6= η ∈ R

N :

|a(x, t, s, ξ)| 6 b(|s|)
(
c(x, t) +M

−1
M(ν|ξ|)

)
(3.1)

[
a(x, t, s, ξ)− a(x, t, s, η)

]
[ξ − η] > 0 (3.2)

a(x, t, s, ξ)ξ > αM(|ξ|) (3.3)
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where c(x, t) ∈ EM (Q), c > 0, b : [0,+∞) → [0,+∞) a continuous and nonde-
creasing function;η, α > 0 Note that, (3.3) written for ξ = ǫζ (ǫ > 0), and the
fact that a is a Carathéodory function, imply that a(x, t, s, 0) = 0 for almost every
(x, t) ∈ Q and every s ∈ R. Let g : Ω × [0, T ]× R × R

N → R be a Carathéodory
function satisfying for a.e. (x, t) ∈ Ω× [0, T ] and forall s ∈ R, ξ ∈ R

N :

|g(x, t, s, ξ)| 6 d(|s|)(c2(x, t) +M(|ξ|)) (3.4)

g(x, t, s, ξ)s ≥ 0 (3.5)

where c2(x, t) ∈ L1(Q) and d : R
+ → R

+ is a continuous and nondecreasing
function. Furthermore let

Φ : R → R
N is a continuous function (3.6)

f is an element of L1(QT ). (3.7)

u0 is an element of L1(Ω). (3.8)

Remark 3.1. As already mentioned in the introduction, problem (1.1) does not
admit a weak solution under assumptions 3.1- 3.7 since the growths of a(x, t, u,∇u)
and Φ(u) are not controlled with respect to u (so that these fields are not in general
defined as distributions, even when u belongs to W 1,xLM (QT ).

Throughout this paper 〈, 〉 means for either the pairing betweenW 1,x
0 LM (QT )∩

L∞(QT ) and W−1,xLM (QT ) + L1(QT ) or between W 1,xLM (QT ) and
W−1,xLM (QT ) and Qτ = Ω× (0, τ) for τ ∈ [0, T ].

The definition of a renormalized solution for problem (1.1) can be stated as
follows.

Definition 3.2. A measurable function u defined on QT is a renormalized solution
of problem (1.1) if:

u ∈ L∞(0, T ;L1(Ω)) and Tk(u) ∈W 1,x
0 LM (QT ) for every k ≥ 0, (3.9)∫

{(x,t)∈QT :n≤|u(x,t)|≤n+1}

a(x, t, u,∇u)∇u→ 0 as n→ +∞, (3.10)

and if, for every function S ∈ W 2,∞(R), which is piecewise C1 and such that S′

has a compact support, we have

∂S(u)

∂t
− div

(
S′(u)a(x, t, u,∇u)

)
+ S′′(u)a(x, t, u,∇u)∇u (3.11)

− div
(
S′(u)Φ(u)

)
+ S′′(u)Φ(u)∇u+ g(x, t, u,∇u)S′(u) = fS′(u) ∈ D

′(QT )

Remark 3.3. Equation (3.11) is formally obtained through pointwise multiplica-
tion of (1.1) by S′(u). However, while a(x, t, u,∇u),Φ(u) and g(x, t, u,∇u) does
not in general make sense in 1.1, all the terms in (3.11) have a meaning in D′(Ω)
and W−1,xLM (QT ) + L1(QT ).
Indeed, if K is such that suppS′ ⊂ [−K,K], the following identifications are made
in (3.11):
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• S′(u)a(x, t, u,∇u) identifies with S′(u)a(x, t, TK(u),∇TK(u)) a.e in QT .
Since indeed TK(u) ≤ K a.e in QT . Since S

′(u) ∈ L∞(QT ) and with (3.1),
(3.9) we obtain that

S′(u)a(x, t, TK(u),∇TK(u)) ∈ (LM (QT ))
N .

• S′′(u)a(x, t, u,∇u)∇u identifies with S′′(u)a(x, t, TK(u),∇TK(u))∇TK(u)
and by the same arguments as above we get

S′′(u)a(x, t, TK(u),∇TK(u))∇TK(u) ∈ L1(QT ).

• S′(u)Φ(u) and S′′(u)Φ(u)∇u respectively identify with S′(u)Φ(TK(u)) and
S′′(u)Φ(TK(u))∇TK(u). Due to the properties of S and Φ is a continuous
function, the functions S′, S′′ and Φ ◦ TK are bounded on R so that (3.9)
implies that S′(u)Φ(TK(u)) ∈ (L∞(QT ))

N , and S′′(u)Φ(TK(u))∇TK(u) ∈
(LM (QT ))

N .

• S′(u)g(x, t, u,∇u) ∈ L1(QT ) by (3.4).

• S
′

(u)f ∈ L1(QT ) by (3.7).

4. Statements of results

This section is devoted to establish the following existence theorem:

Theorem 4.1. Assume that (3.1)-(3.7) hold true. Then the problem (1.1) admits
at least a renormalized solution.

Proof: The proof of Theorem 4.1 is done in 6 steps.

Step 1: Approximate problem.

For n ∈ N
∗, let us define the following approximation of a, g, Φ and f :

gn(x, t, s, ξ) =
g(x, t, s, ξ)

1 + 1
n
|g(x, t, s, ξ)|

(4.1)

an(x, t, s, ξ) = an(x, t, Tn(s), ξ) a.e in QT , ∀s ∈ R, ∀ξ ∈ R
N , (4.2)

Φn is a Lipschitz continuous bounded function from R into R
N , (4.3)

such that Φn uniformly converges to Φ on any compact subest of R as n −→ +∞.

u0n ∈ C∞
0 (Ω) : ‖u0n‖L1(Ω) ≤ ‖u0‖L1(Ω) and u0n → u0 in L1(Ω) as n tends to +∞.

(4.4)

fn ∈ C∞
0 (QT ) / fn→f in L1(QT ) as n tends to +∞ and ‖fn‖L1(QT )≤‖f‖L1(QT ).

(4.5)
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Let us now consider the approximate problem:





∂un
∂t

− div
(
an(x, t, un,∇un) + Φn(un)

)
+ gn(x, t, un,∇un) = fn in Ω× (0, T ),

un = 0 on ∂Ω× (0, T ),
un(x, 0) = u0n(x) in Ω.

(4.6)
Note that gn(x, t, un,∇un) satisfies the following conditions

| gn(x, t, s, ξ)| ≤ g(x, t, s, ξ) and | gn(x, t, s, ξ)| ≤ n. (4.7)

Since gn is bounded for any fixed n, as a consequence, proving of a weak solution
un ∈W 1,x

0 LM (QT ) of (4.6) is an easy task (see e.g. [21,27] ).

Step 2: A priori estimates.

The estimates derived in this step rely on usual techniques for problems of the
type (4.6).

Proposition 4.2. Assume that (3.1)-(3.7) are satisfied, and let un be a solution
of the approximate problem (4.6). Then for all ℓ, n > 0, we have

i) ‖Tℓ(un)‖W 1,x
0

LM (QT ) ≤ ℓ(‖f‖L1(QT ) + Cg + ‖u0‖L1(Ω)) ≡ Cℓ,

ii) lim
ℓ→+∞

(meas{(x, t) ∈ QT : |un| > ℓ}) = 0 uniformly with respect to n

iii)

∫

QT

gn(x, t, un,∇un) ≤ Cg

where Cg is a positive constant not depending on n.

Proof: We take Tℓ(un)χ(0,τ) as test function in (4.6), we get for every τ ∈ (0, T )

〈
∂un
∂t

, Tℓ(un)χ(0,τ)〉+

∫

Qτ

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(un)dx dt

+

∫

Qτ

Φn(un)∇Tℓ(un)dx dt+

∫

Qτ

gn(x, t, un,∇un)Tℓ(un)dx dt

=

∫

Qτ

fnTℓ(un)dx dt,

(4.8)

which implies that

∫

Ω

T̂ℓ(un(τ ))dx +

∫

Qτ

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(un)dx dt

+

∫

Qτ

Φn(un)∇Tℓ(un)dx dt

=

∫

Qτ

fnTℓ(un)dx dt−

∫

Qτ

gn(x, t, un,∇un)Tℓ(un)dx dt +

∫

Ω

T̂ℓ(u0n)dx

(4.9)
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where

T̂ℓ(s) =

∫ s

0

Tℓ(t)dt =

{
s2

2 if |s| ≤ ℓ,

ℓ|s| − ℓ2

2 if |s| ≥ ℓ.

The Lipshitz character of Φn, Stokes formula together with the boundary con-
dition un = 0 on (0, T )× Ω, make it possible to obtain

∫

Qτ

Φn(un)∇Tℓ(un)dx dt = 0. (4.10)

Due to the definition of T̂ℓ and (4.4) we have

0 ≤

∫

Ω

T̂ℓ(u0n)dx ≤ ℓ

∫

Ω

|u0n|dx ≤ ℓ‖u0‖L1(Ω). (4.11)

Consider now for θ, ǫ > 0 a function ̺ǫθ ∈ C1(R) such that

̺ǫθ(s) =

{
0 if |s| ≤ θ,
sign(s) if |s| ≥ θ + ǫ

(4.12)

and

(̺ǫθ)
′(s) ≥ 0 ∀s ∈ R,

then, by using ̺ǫθ(un) as a test function in (4.6) and following [28], we can see that

∫

{|un|>θ}

|gn(x, t, un,∇un)|dx dt ≤

∫

{|un|>θ}

|fn|dx dt+

∫

{|un|>θ}

|u0n|dx dt (4.13)

and so by letting θ −→ 0 and using Fatou’s lemma, we deduce that gn(x, t, un,∇un)
is a bounded sequence in L1(QT ), then we obtain iii). By using (4.5), (4.10), (4.11)
and iii), permit to deduce from (4.9) that

∫

Ω

T̂ℓ(un(τ ))dx +

∫

Qτ

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(un)dx dt

=

∫

Qτ

fnTℓ(un)dx dt−

∫

Qτ

gn(x, t, un,∇un)Tℓ(un)dx dt+

∫

Ω

T̂ℓ(u0n)dx

≤ |

∫

Qτ

fnTℓ(un)dx dt|+ |

∫

Qτ

gn(x, t, un,∇un)Tℓ(un)dx dt|+ ℓ‖u0‖L1(Ω)

≤ ℓ‖fn‖L1(Qτ ) + ℓCg + ℓ‖u0‖L1(Ω).
≤ (‖f‖L1(QT ) + Cg + ‖u0‖L1(Ω))ℓ
≤ C0ℓ,

(4.14)
where here and below Ci denote positive constants not depending on n and ℓ. By
using (4.14) and the fact that T̂ℓ(un) ≥ 0, permit to deduce that

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(un)dx dt ≤ C0ℓ, (4.15)
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which implies by virtue of (3.3) that
∫

QT

M(∇Tℓ(un))dx dt ≤ C1ℓ. (4.16)

We deduce from that above inequality (4.14) that
∫

Ω

T̂ℓ(un(τ ))dx ≤ C0ℓ, for almost any τ in (0, T ). (4.17)

On the other hand, thanks to Lemma 5.7 of [25], there exists two positive
constants δ, λ such that

∫

QT

M(v)dx dt ≤ δ

∫

QT

M(λ|∇v|)dx dt for all v ∈W 1,x
0 LM (QT ). (4.18)

Taking v =
Tℓ(un)

λ
in (4.18) and using (4.16), one has

∫

QT

M
(Tℓ(un)

λ

)
dx dt ≤ C1ℓ, (4.19)

which implies that

meas{(x, t) ∈ QT : |un| > ℓ} ≤
C2ℓ

M(
ℓ

λ
)

(4.20)

so that

lim
ℓ→+∞

(
meas{(x, t) ∈ QT : |un| > ℓ}

)
= 0 uniformly with respect to n, (4.21)

✷

Which completes the proof. We prove the following proposition:

Proposition 4.3. Let un be a solution of the approximate problem (4.6), then we
have the following properties:

un −→ u a. e. in QT , (4.22)

an(x, t, Tℓ(un),∇Tℓ(un))⇀ ϕℓ weakly in (LM (QT ))
N for σ(ΠLM ,ΠEM ) (4.23)

for some ϕℓ ∈ (LM (QT ))
N .

Proof: We have from (4.19) that Tℓ(un) is bounded in W 1,x
0 LM (QT ) for every

ℓ > 0. Consider now a nondecreasing function ζℓ(s) = s for |s| ≤
ℓ

2
and ζℓ(s) =

ℓ sign (s). Multiplying the approximating equation by ζ
′

ℓ(un), we obtain

∂(ζℓ(un))

∂t
= div

(
an(x, t, un,∇un)ζ

′
ℓ(un)

)
− an(x, t, un,∇un)ζ

′′
ℓ (un)∇un

+div(ζ′ℓ(un)Φn(un))− gn(x, t, un,∇un)ζ
′

ℓ(un) + fnζ
′

ℓ(un),
(4.24)
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in the sense of distributions. This implies, thanks to (4.19) and the fact that ζ
′

ℓ has
compact support, that ζℓ(un) is bounded in W 1,x

0 LM (QT ) while its time derivative
∂(ζℓ(un))

∂t
is bounded in W−1,x

0 LM (QT )+L
1(QT ), hence Corolloray 2.4 allows us to

conclude that ζℓ(un) is compact in L1(QT ). Due to the choice of ζℓ, we conclude
that for each ℓ, the sequence Tℓ(un) converges almost everywhere in QT , which
implies that un converges almost everywhere to some measurable function u in
QT . Therfore, following [7,8,10,11,28], we can see that there exists a measurable
function u ∈ L∞(0, T ;L1(Ω)) such that for every ℓ > 0 and a subsequence, not
relabeled,

un −→ u a. e. in QT ,

and

Tℓ(un)⇀ Tℓ(u) weakly in W 1,x
0 LM (QT ) for σ(ΠLM ,ΠEM ), (4.25)

strongly in L1(QT ) and a. e. in QT .

We prove that an(x, t, Tℓ(un),∇Tℓ(un)) is bounded sequence in LM (QT ). Let ϕ ∈
(EM (QT ))

N with ‖ϕ‖M,QT
= 1. In view of the monotonicity of a one easily has,

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))−an(x, t, Tℓ(un), ϕ)

][
∇Tℓ(un)−ϕ

]
dx dt ≥ 0, (4.26)

which gives

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))ϕdxdt ≤

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(un)dx dt

+

∫

QT

an(x, t, Tℓ(un), ϕ)
[
∇Tℓ(un)− ϕ

]
dx dt,

(4.27)
and

−

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))ϕdxdt ≤

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(un)dx dt

−

∫

QT

an(x, t, Tℓ(un),−ϕ)
[
∇Tℓ(un) + ϕ

]
dx dt.

(4.28)
On the other hand, using (3.1), we see that

M

(
|an(x, t, Tℓ(un), ϕ)|

2b(ℓ)

)
≤M(c(x, t)) +M(ν|ϕ|). (4.29)

Then, by (4.15) and (4.29) we get that an(x, t, Tℓ(un), ϕ) is bounded in (LM (QT ))
N ,

implying that, since Tℓ(un) is bounded in W 1,x
0 LM (QT )

∣∣∣∣
∫

QT

an(x, t, Tℓ(un), ϕ)[∇Tℓ(un)− ϕ]dx dt

∣∣∣∣ ≤ C4. (4.30)
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And so, by using the dual norm of (LM (QT ))
N we conclude that

an(x, t, Tℓ(un),∇Tℓ(un)) is a bounded sequence in (LM (QT ))
N , and we obtain

(4.23). ✷

Lemma 4.4. Let uu be a solution of the approximate problem (4.6). Then

lim
m→∞

lim
n→∞

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt = 0. (4.31)

Proof: Considering the following function ϕ = T1(un − Tm(un)) as test function
in (4.6) we obtain,

〈
∂un
∂t

, T1(un − Tm(un))〉 +

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt

+

∫

QT

div
[ ∫ un

0

Φ(r)T
′

1(r − Tm(r))dr
]
dx dt =

∫

QT

fnT1(un − Tm(un))dx dt

−

∫

QT

gn(x, t, un,∇un)T1(un − Tm(un))dx dt.

(4.32)

Using the fact that

∫ un

0

Φ(r)T
′

1(r−Tm(r))dr ∈ W 1,x
0 LM (QT ) and Stokes formula,

we get
∫

Ω

Um
n (un(T ))dx+

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt

≤

∫

QT

|fnT1(un − Tm(un))|dx dt +

∫

QT

|gn(x, t, un,∇un)T1(un − Tm(un))|dx dt

+

∫

Ω

Um
n (x, u0n)dx ≤

∫

QT

(|fn|+ |gn(x, t, un,∇un)|)|T1(un − Tm(un))|dx dt

+

∫

Ω

Um
n (u0n)dx,

(4.33)

where Um
n (r) =

∫ r

0

∂un
∂t

T1(s − Tm(s))ds. In order to pass to the limit as n tends

to +∞ in (4.33), we us Um
n (un(T )) ≥ 0, iii) and (4.5) we obtain that,

lim
n→+∞

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇undx dt

≤

∫

{|u|>m}

(|f |+ Cg)dx dt +

∫

{|u0|>m}

|u0|dx.
(4.34)

Finally by (3.7), (3.8) and (4.34) we obtain (4.31). ✷

Step 3: Almost everywhere convergence of the gradients.

Fix ℓ > 0 and let ϕ(r) = r expδr
2

, δ > 0. It is well known that when δ ≥ ( b(ℓ)2α )2

one has

ϕ′(r)−
b(ℓ)

α
|ϕ(r)| ≥

1

2
for all r ∈ R. (4.35)
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Proposition 4.5. Let un be a solution of the approximate problem (4.6). Then,
for any ℓ ≥ 0

∇Tℓ(un) −→ ∇Tℓ(u) a. e. in QT , (4.36)

an(x, t, Tℓ(un),∇Tℓ(un))⇀ a(x, t, Tℓ(u),∇Tℓ(u)) weakly in (LM(QT ))
N , (4.37)

M(|∇Tℓ(un)|) →M(|∇Tℓ(u)|) strongly in L1(QT ), (4.38)

as n tends to +∞.

Let use give the following lemma which will be needed later:

Lemma 4.6. Assume that (3.1)-(3.7) are satisfied, and let zn be a sequence in
W 1,x

0 LM (QT ) such that,

zn ⇀ z in W 1,x
0 LM (QT ) for σ(ΠLM (QT ), P iEM (QT )), (4.39)

(an(x, t, zn,∇zn))n is bounded in (LM (QT )))
N , (4.40)

∫

QT

[
an(x, t, zn,∇zn)− an(x, t, zn,∇zχs)

][
∇zn −∇zχs

]
dx dt→ 0, (4.41)

as n and s tend to +∞, and where χs is the characteristic function of

Qs = {(x, t) ∈ QT ; |∇z| ≤ s}.

Then
∇zn −→ ∇z a. e. in QT , (4.42)

lim
n→+∞

∫

QT

an(x, t, zn,∇zn)∇zndx dt =

∫

QT

a(x, t, z,∇z)∇zdx dt, (4.43)

M(|∇zn|) −→ M(|∇z|) in L1(QT ). (4.44)

Proof: See [23]. ✷

Proof: (Proposition 4.5).The proof is almost identical of the one given in, e.g.
[23]. where the result is established for the growth of a(x, t, u,Du) is controlled
with respect to u. This proof is devoted to introduce for ℓ ≥ 0 fixed, a time
regularization of the function Tℓ(u), this notion, introduced by R. Landes (see
Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231 in [27]). More
recently, it has been exploited in [13] and [18] to solve a few nonlinear evolution
problems with L1 or measure data.

Let v ∈ D(QT ) be a sequence such that v → u in W 1,x
0 LM (QT ) for the

modular convergence and let ψı be a sequence which converges strongly to u0 in
L1(Ω).

Let ωβ
ı, = Tℓ(υ)β+exp−βt Tℓ(ψı) where Tℓ(υ)β is the mollification with respect

to time of Tℓ(υ), note that ω
β
ı, is a smooth function having the following properties:

∂ωβ
ı,

∂t
= β(Tℓ(υ)− ωβ

ı,), ω
β
ı,(0) = Tℓ(ψı), |ωβ

ı,| ≤ ℓ, (4.45)
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ωβ
ı, → Tℓ(u)β + exp−βt Tℓ(ψı) in W

1,x
0 LM (QT ), (4.46)

for the modular convergence as → ∞,

Tℓ(u)β + exp−βt Tℓ(ψı) → Tℓ(u) in W
1,x
0 LM (QT ), (4.47)

for the modular convergence as ı→ ∞. Let now the function ρm defined on R with
m ≥ ℓ by:

ρm(r) =





1 if |r| ≤ m,
m+ 1− |r| if m ≤ |r| ≤ m+ 1,
0 if |r| ≥ m+ 1.

Let θβ,nı, = Tℓ(un)− ωβ
ı, and ϕ

β,m
ı,,n = ϕ(θβ,nı, )ρm(un).

Using the admissible test function ϕβ,m
ı,,n as test function in (4.6) leads to

〈
∂un
∂t

, ϕβ,m
ı,,n〉+

∫

QT

an(x, t, un,∇un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(θβ,nı, )ρm(un)dx dt

+

∫

QT

an(x, t, un,∇un)∇unϕ(θ
β,n
ı, )ρ′m(un)dx dt

+

∫

{m≤|un|≤m+1}

Φn(un)∇unρ
′
m(un)ϕ(θ

β,n
ı, )dx dt

+

∫

QT

Φn(un)ρm(un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(θβ,nı, )dx dt

+

∫

QT

gn(x, t, un,∇un)ϕ
β,m
ı,,ndx dt

=

∫

QT

fnϕ
β,m
ı,,ndx dt.

(4.48)
Which implies, since gn(x, t, un,∇un)ϕ(Tℓ(un)− ωβ

ı,)ρm(un) ≥ 0 on {|un| > ℓ} :

〈
∂un
∂t

, ϕβ,m
ı,,n〉+

∫

QT

an(x, t, un,∇un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(θβ,nı, )ρm(un)dx dt

+

∫

QT

an(x, t, un,∇un)∇unϕ(θ
β,n
ı, )ρ′m(un)dx dt

+

∫

{m≤|un|≤m+1}

Φn(un)∇unρ
′
m(un)ϕ(θ

β,n
ı, )dx dt

+

∫

QT

Φn(un)ρm(un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(θβ,nı, )dx dt

+

∫

{|un|≤ℓ}

gn(x, t, un,∇un)ϕ(Tℓ(un)− ωβ
ı,)ρm(un)dx dt

≤

∫

QT

fnϕ
β,m
ı,,ndx dt.

(4.49)
Denoting by ǫ(ı, , β, n) any quantity such that,

lim
ı→∞

lim
→∞

lim
β→∞

lim
m→∞

ǫ(ı, , β, n) = 0.



72 A. Benkirane, Y. El Hadfi, M. El Moumni

The very definition of the sequence ωβ
ı, makes it possible to establish the fol-

lowing lemma.

Lemma 4.7. Let ϕβ,m
ı,,n = ϕ(Tℓ(un)− ωβ

ı,)ρm(un), we have for any ℓ ≥ 0 :

〈
∂un
∂t

, ϕβ,m
ı,,n〉 ≥ ǫ(ı, , β, n), (4.50)

where 〈, 〉 denotes the duality pairing between L1(QT )+W
−1,xLM (QT ) and L

∞(QT )

∩W 1,x
0 LM (QT )).

Proof: See ( [22]). ✷

Now, we turn to complete the proof of Proposition 4.5. First, it is easy to see
that ∫

QT

fnϕ
β,m
ı,,n = ǫ(, β, n) (4.51)

Indeed, by the almost everywhere convergence of un, we have that ϕ(Tℓ(un) −
ωβ
ı,)ρm(un) converges to ϕ(Tℓ(u)− ωβ

ı,)ρm(u) weakly ∗ in L∞(QT ) and then

lim
n−→∞

∫

QT

fnϕ(Tℓ(un)− ωβ
ı,)ρm(un)dx dt =

∫

QT

fϕ(Tℓ(u)− ωβ
ı,)ρm(u)dx dt,

so that

ϕ(Tℓ(u)−ω
β
ı,)ρm(u)⇀ϕ(Tℓ(u)−Tℓ(u)β−exp−βt Tℓ(ψı))ρm(u) weakly ∗ in L∞(QT )

as → ∞, also

ϕ(Tℓ(u)− Tℓ(u)β − exp−βt Tℓ(ψı))ρm(u)⇀ 0 weakly ∗ in L∞(QT ) as β −→ ∞.
(4.52)

Then we deduce that
∫

QT

fnϕ(Tℓ(un)− ωβ
ı,)ρm(un)dx dt = ǫ(, β, n). (4.53)

Similarly, Lebesgue’s convergence theorem shows that

Φn(un)ρm(un) → Φ(u)ρm(u) strongly in (EM (QT )
N ) as n→ +∞

and

Φn(un)χ{m≤|un|≤m+1}ϕ
′(Tℓ(un)− ωβ

ı,) → Φ(u)χ{m≤|u|≤m+1}ϕ
′(Tℓ(u)− ωβ

ı,)

strongly in (EM (QT )
N ) as n→ +∞. Then by virtue of ∇Tℓ(un)⇀ ∇Tℓ(u) weakly

in (LM (QT ))
N and ∇unχ{m≤|un|≤m+1} = ∇Tm+1(un)χ{m≤|un|≤m+1} a. e. in QT ,

one has
∫

QT

Φn(un)ρm(un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(Tℓ(un)− ωβ
ı,)dx dt

→

∫

QT

Φ(u)ρm(u)(∇Tℓ(u)−∇ωβ
ı,)ϕ

′(Tℓ(u)− ωβ
ı,)dx dt
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as n→ +∞, and

∫

{m≤|un|≤m+1}

Φn(un)∇unϕ(Tℓ(un)− ωβ
ı,)dx dt

−→

∫

{m≤|u|≤m+1}

Φ(u)∇uϕ(Tℓ(u)− ωβ
ı,)dx dt

as n → +∞. On the other hand, by using the modular convergence of ωβ
ı, as

→ +∞ and letting β tend to infinity, we get

∫

QT

Φn(un)ρm(un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(Tℓ(un)− ωβ
ı,)dx dt = ǫ(, β, n) (4.54)

and

∫

{m≤|un|≤m+1}

Φn(un)∇unϕ(Tℓ(un)− ωβ
ı,)dx dt = ǫ(, β, n). (4.55)

Concerning the third term of the right hand side of (4.48) we obtain that

∣∣∣∣
∫

QT

an(x, t, un,∇un)ϕ(Tℓ(un)− ωβ
ı,)∇unρ

′
m(un)dx dt

∣∣∣∣

≤ ϕ(2ℓ)

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇undx dt.
(4.56)

Then by (4.31) we deduce that,

∣∣∣∣
∫

QT

an(x, t, un,∇un)ϕ(Tℓ(un)− ωβ
ı,)∇unρ

′
m(un)dx dt

∣∣∣∣ ≤ ǫ(n, β,m). (4.57)

We now turn to the fourth term of the left hand side of (4.49). We can write

∣∣∣∣
∫

{|un|≤ℓ}

gn(x, t, un,∇un)ϕ(Tℓ(un)− ωβ
ı,)ρm(un)dx dt

∣∣∣∣

≤ d(ℓ)

∫

QT

c2(x, t)|ϕ(Tℓ(un)− ωβ
ı,)|dx dt

+ d(ℓ)
α

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(un)(Tℓ(un)− ωβ
ı,)

×ρm(un)|ϕ(Tℓ(un)− ωβ
ı,)|dx dt.

(4.58)

Since c2(x, t) ∈ L1(QT ) it is easy to see that

d(ℓ)

∫

QT

c2(x, t)|ϕ(Tℓ(un)− ωβ
ı,)|dx dt = ǫ(n, β, ).
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On the other hand, the second term of the right hand side of (4.58) reads as

d(ℓ)
α

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(un)|ϕ(Tℓ(un)− ωβ
ı,)|ρm(un)dx dt

= d(ℓ)
α

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(v)χ

s
)
]

×
[
∇Tℓ(un)−∇Tℓ(v)χ

s


]
|ϕ(Tℓ(un)− ωβ

ı,)|dx dt

+ d(ℓ)
α

∫

QT

an(x, t, Tℓ(un),∇Tℓ(v)χ
s
 )[∇Tℓ(un)−∇Tℓ(v)χ

s
 ]

×|ϕ(Tℓ(un)− ωβ
ı,)|dx dt

+ d(ℓ)
α

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(v)χ
s
 |ϕ(Tℓ(un)− ωβ

ı,)|dx dt,

(4.59)

where χs
 denotes the characteristic function of the subset

Q
s = {(x, t) ∈ QT : |∇Tℓ(v)| ≤ s} for s > 0.

And, as above, by letting first n then , β and finally s go to infinity, we can easily
see that each one of last two integrals is of the form ǫ(n, β, ). This implies that

|

∫

{|un|≤ℓ}

gn(x, t, un,∇un)ϕ(Tℓ(un)− ωβ
ı,)ρm(un)dx dt|

≤ d(ℓ)
α

∫

QT

[an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(v)χ
s
 )]

×[∇Tℓ(un)−∇Tℓ(v)χ
s
 ]|ϕ(Tℓ(un)− ωβ

ı,)|dx dt+ ǫ(n, β, ).

(4.60)

Splitting the first integral on the left hand side of (4.57) where |un| ≤ ℓ and |un| > ℓ,
we can write,

∫

QT

an(x, t, un,∇un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(Tℓ(un)− ωβ
ı,)ρm(un)dx dt

=

∫

{|un|≤ℓ}

an(x, t, un,∇un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(Tℓ(un)− ωβ
ı,)ρm(un)dx dt

−

∫

{|un|>ℓ}

an(x, t, un,∇un)∇ω
β
ı,ϕ

′(Tℓ(un)− ωβ
ı,)ρm(un)dx dt.

(4.61)
where we have used the fact that, since m > ℓ, ρm(un) = 1 on |un| ≤ ℓ. Since
ρm(un) = 0 if |un| ≥ m+ 1, one has

∫

QT

an(x, t, un,∇un)(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(Tℓ(un)− ωβ
ı,)ρm(un)dx dt

=

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(Tℓ(un)− ωβ
ı,)dx dt

−

∫

{|un|>ℓ}

an(x, t, Tm+1(un),∇Tm+1(un))∇ω
β
ı,ϕ

′(Tℓ(un)− ωβ
ı,)ρm(un)dx dt.

= I1 + I2.
(4.62)
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By letting n→ +∞

I2 = −

∫

{|u|>ℓ}

ϕm+1∇ω
β
ı,ϕ

′(Tℓ(u)− ωβ
ı,)ρm(u)dx dt+ ǫ(n)

which implies that, by letting → +∞

I2 = −

∫

{|u|>ℓ}

ϕm+1

[
∇Tℓ(u)β − exp−βt ∇Tℓ(ψı)

]

×ϕ′(Tℓ(u)− Tℓ(u)β − exp−βt ∇Tℓ(ψı))ρm(u)dx dt + ǫ(n, )

so that, by letting β → +∞

I2 = −

∫

QT

ϕm+1∇Tℓ(u)χ{|u|>ℓ} + ǫ(n, , β) (4.63)

Using now the term I1 of (4.62), we conclude that, it is easy to show that,

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))(∇Tℓ(un)−∇ωβ
ı,)ϕ

′(Tℓ(un)− ωβ
ı,)dx dt

=

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(v)χ

s
 )
]

×
[
∇Tℓ(un)−∇Tℓ(v)χ

s
 )
]
ϕ′(Tℓ(un)− ωβ

ı,)dx dt

+

∫

QT

an(x, t, Tℓ(un),∇Tℓ(v)χ
s
 )
[
∇Tℓ(un)−∇Tℓ(v)χ

s
 )
]
ϕ′(Tℓ(un)− ωβ

ı,)dx dt

+

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))∇Tℓ(v)χ
s
ϕ

′(Tℓ(un)− ωβ
ı,)dx dt

−

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))∇ω
β
ı,ϕ

′(Tℓ(un)− ωβ
ı,)dx dt

= J1 + J2 + J3 + J4,
(4.64)

As before, in the following we pass to the limit in (4.64): first we let n tends to
+∞, then  then β then m tends tends to +∞. Starting with J2, observe first that

J2 =

∫

QT

an(x, t, Tℓ(un),∇Tℓ(v)χ
s
)∇Tℓ(un)ϕ

′(Tℓ(un)− ωβ
ı,)dx dt

−

∫

QT

an(x, t, Tℓ(un),∇Tℓ(v)χ
s
)∇Tℓ(v)χ

s
ϕ

′(Tℓ(un)− ωβ
ı,)dx dt.

Since an(x, t, Tℓ(un),∇Tℓ(v)χ
s
)→a(x, t, Tℓ(u),∇Tℓ(v)χ

s
 ) strongly in (EM (QT ))

N

and ∇Tℓ(un)
⇀ ∇Tℓ(u) weakly in (LM (QT ))

N for σ(ΠLM ,ΠEM ). Moreover, it is easy to show
that

∫

QT

an(x, t, Tℓ(un),∇Tℓ(v)χ
s
 )∇Tℓ(v)χ

s
ϕ

′(Tℓ(un)− ωβ
ı,)dx dt

→

∫

QT

a(x, t, Tℓ(u),∇Tℓ(v)χ
s
)∇Tℓ(v)χ

s
ϕ

′(Tℓ(u)− ωβ
ı,)dx dt
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as n tends to +∞. We get

J2 =

∫

QT

a(x, t, Tℓ(u),∇Tℓ(v)χ
s
 )
[
∇Tℓ(u)−∇Tℓ(v)χ

s
)
]
ϕ′(Tℓ(u)−ω

β
ı,)dx dt+ǫ(n),

denoting by χs the characteristic function of the subset

Qs = {(x, t) ∈ QT : |∇Tℓ(u)| ≤ s} for s > 0.

Since ∇Tℓ(v)χ
s
 → ∇Tℓ(u)χ

s strongly in (EM (QT ))
N as → +∞ and

a(x, t, Tℓ(u),∇Tℓ(v)χ
s
 ) → a(x, t, Tℓ(u),∇Tℓ(u)χ

s) strongly in (LM (QT ))
N as 

goes to +∞, we have

J2 = ǫ(n, ). (4.65)

By letting n→ +∞ and since a(x, t, Tℓ(un),∇Tℓ(un))⇀ ϕℓ weakly in (LM (QT ))
N

we have

J3 =

∫

QT

ϕℓ∇Tℓ(v)χ
s
ϕ

′(Tℓ(u)− ωβ
ı,)dx dt+ ǫ(n),

which gives by letting  → +∞ and since v → Tℓ(u) in W 1,x
0 LM (QT ) for the

modular convergence, we have

J3 =

∫

QT

ϕℓ∇Tℓ(u)χ
sϕ′(Tℓ(u)− Tℓ(u)β + exp−βt Tℓ(ψı))dx dt + ǫ(n, ), (4.66)

implying that, by letting β → +∞, J3 =
∫
QT

ϕℓ∇Tℓ(u)χ
sdx dt+ǫ(n, , β), and thus

J3 =

∫

QT

ϕℓ∇Tℓ(u)dx dt+ ǫ(n, , β, s). (4.67)

Concerning J4 we can write

J4 = −

∫

{|un|≤ℓ}

an(x, t, Tℓ(un),∇Tℓ(un))∇ω
β
ı,ϕ

′(Tℓ(un)− ωβ
ı,)dx dt

= −

∫

{|u|≤ℓ}

ϕℓ∇ω
β
ı,ϕ

′(Tℓ(u)− Tℓ(u)βdx dt+ ǫ(n),

which implies that, by letting → +∞,

J4 =

∫

QT

ϕℓ

[
∇Tℓ(u)β − exp−βt ∇Tℓ(ψı)

]

×ϕ′(Tℓ(u)− Tℓ(u)β − exp−βt Tℓ(ψı))χ{|u|≤ℓ}dx dt+ ǫ(n, ).

By letting β → +∞ we obtain

J4 = −

∫

QT

ϕℓ∇Tℓ(u)χ{|u|≤ℓ}dx dt+ ǫ(n, , β, s). (4.68)
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In view of (4.62), (4.63), (4.64), (4.65), (4.67) and (4.68), we conclude then that
∫

QT

an(x, t, un,∇un)
[
∇Tℓ(un)−∇ωβ

ı,

]
ϕ′(Tℓ(un)− ωβ

ı,)ρm(un)dx dt

=

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(v)χ

s
)
]

×
[
∇Tℓ(un)−∇Tℓ(v)χ

s
)
]
ϕ′(Tℓ(un)− ωβ

ı,)dx dt+ ǫ(n, , β, s).

(4.69)

Combining (4.49), (4.50), (4.51),(4.57), (4.60) and (4.69) we obtain
∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(v)χ

s
)
]

×
[
∇Tℓ(un)−∇Tℓ(v)χ

s


][
ϕ′(Tℓ(un)− ωβ

ı,)−
b(ℓ)
α

|ϕ(Tℓ(un)− ωβ
ı,)|

]
dx dt

≤ ǫ(n, β, , ı, s,m)

and so, thanks to (4.35)
∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(v)χ

s
 )
]

×
[
∇Tℓ(un)−∇Tℓ(v)χ

s


]
dx dt ≤ ǫ(n, β, , ı, s,m)

Now observe that
∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
ρm(un)dx dt

=

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(v)χ

s
)
]

×
[
∇Tℓ(un)−∇Tℓ(v)χ

s


]
ρm(un)dx dt

+

∫

QT

an(x, t, Tℓ(un),∇Tℓ(v)χ
s
 )
[
∇Tℓ(un)−∇Tℓ(v)χ

s
 )
]
ρm(un)dx dt

−

∫

QT

an(x, t, Tℓ(un),∇Tℓ(u)χ
s)
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
ρm(un)dx dt

+

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))
[
∇Tℓ(v)χ

s
 −∇Tℓ(u)χ

s
]
ρm(un)dx dt.

Passing to the limit in n and  in the last three terms on the right-hand side of the
last equality, we get

∫

QT

an(x, t, Tℓ(un),∇Tℓ(v)χ
s
)
[
∇Tℓ(un)−∇Tℓ(v)χ

s


]
ρm(un)dx dt

−

∫

QT

an(x, t, Tℓ(un),∇Tℓ(u)χ
s)
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
ρm(un)dx dt = ǫ(n, )

and
∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))
[
∇Tℓ(v)χ

s
 −∇Tℓ(u)χ

s
]
ρm(un)dx dt = ǫ(n, ).

(4.70)
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This implies that

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
ρm(un)dx dt

=

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(v)χ

s
 )
]

×
[
∇Tℓ(un)−∇Tℓ(v)χ

s
)
]
ρm(un)dx dt + ǫ(n, ).

On the other hand, we have

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
dx dt

=

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
ρm(un)dx dt

+

∫

QT

an(x, t, Tℓ(un),∇Tℓ(un))
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
(1− ρm(un))dx dt

−

∫

QT

an(x, t, Tℓ(un),∇Tℓ(u)χ
s)
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
(1− ρm(un))dx dt.

(4.71)
Since ρm(un) = 1 in {|un| ≤ m} and {|un| ≤ ℓ} ⊂ {|un| ≤ m} for m large enough,
we deduce from (4.71) that

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
dx dt

=

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
ρm(un)dx dt

+

∫

{|un|>ℓ}

an(x, t, Tℓ(un),∇Tℓ(u)χ
s)∇Tℓ(u)χ

s(1− ρm(un))dx dt.

It is easy to see that the last terms of the last equality tend to zero as n → +∞,
which implies that

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
dx dt

=

∫

QT

[
a(x, t, Tℓ(u),∇Tℓ(u))− a(x, t, Tℓ(u),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(u)−∇Tℓ(u)χ

s
]
ρm(un)dx dt+ ǫ(n, )

≤ ǫ(n, , β,m, s).

(4.72)
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To pass to the limit in (4.72) as n, ,m, s tend to infinity, we obtain

lim
s→+∞

lim
n→+∞

∫

QT

[
an(x, t, Tℓ(un),∇Tℓ(un))− an(x, t, Tℓ(un),∇Tℓ(u)χ

s)
]

×
[
∇Tℓ(un)−∇Tℓ(u)χ

s
]
dx dt = 0.

(4.73)
This implies by the lemma 4.6, the desired statement and hence the proof of Propo-
sition 4.5 is achieved. ✷

Remark 4.8. Observe that for every σ > 0,

meas{(x, t) ∈ QT : |∇un −∇u| > σ} ≤ meas{(x, t) ∈ QT : |∇un| > ℓ}
+meas{(x, t) ∈ QT : |∇u| > ℓ}+meas{(x, t) ∈ QT : |∇Tℓ(un)−∇Tℓ(u)| > σ},

then as a consequence of (4.36), it follows that ∇un converges to ∇u in measure
and therefore, always reasoning for a subsequence,

∇un → ∇u a. e. in QT . (4.74)

Step 4: Equi-integrability of the nonlinearitie gn(x, t, un,∇un).

We shall now prove that gn(x, t, un,∇un) → g(x, t, u,∇u) strongly in L1(QT )
by using Vitali’s theorem. Since gn(x, t, un,∇un) → g(x, t, u,∇u) a.e. in QT ,
thanks to (4.22) and (4.74), it suffices to prove that gn(x, t, un,∇un) are uniformly
equi-integrable in QT . Let E ⊂ QT be a measurable subset of QT . We have for any
m > 0 :

∫

E

|gn(x, t, un,∇un)|dx dt =

∫

E∩{un≤m}

|gn(x, t, un,∇un)|dx dt

+

∫

E∩{un>m}

|gn(x, t, un,∇un)|dx dt

≤ d(m)
α

∫

E

an(x, t, Tm(un),∇Tm(un))∇Tm(un)dx dt+ d(m)

∫

E

c2(x, t)dx dt

+

∫

E

|fn|dx dt+

∫

{u0n>m}

|u0n|dx dt,

where we have used (3.4) and (4.13). Therefore, it is easy to see that there exists
δ > 0 such that

| E| < δ ⇒

∫

E

|gn(x, t, un,∇un)|dx dt ≤ ǫ, ∀n ∈ N

which shows that gn(x, t, un,∇un) are uniformly equi-integrable in QT as required.

Step 5:

In this step we prove that u satisfies (3.9).
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Lemma 4.9. The limit u of the approximate solution un of (4.6) satisfies

lim
m→+∞

∫

{m≤|u|≤m+1}

a(x, t, u,∇u)dx dt = 0. (4.75)

Proof: Observe that for any fixed m ≥ 0 one has

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt

=

∫

QT

an(x, t, un,∇un)
(
∇Tm+1(un)−∇Tm(un)

)
dx dt

=

∫

QT

an(x, t, Tm+1(un),∇Tm+1(un))∇Tm+1(un) dx dt

−

∫

QT

an(x, t, Tm(un),∇Tm(un))∇Tm(un) dx dt

(4.76)

According to (4.43) (with zn = Tm(un) or zn = Tm+1(un), one is at liberty to pass
to the limit as n tends to +∞ for fixed m ≥ 0 and to obtain

lim
n→+∞

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇undx dt

=

∫

QT

a(x, t, Tm+1(u),∇Tm+1(u))∇Tm+1(u) dx dt

−

∫

QT

a(x, t, Tm(u),∇Tm(u)∇Tm(u) dx dt

=

∫

{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx dt.

(4.77)

Taking the limit asm tends to +∞ in (4.77) and using the estimate (4.31) it possible
to conclude that (4.76) holds true and the proof of Lemma 4.9 is complete. ✷

Step 6:

In this step, u is shown to satisfies (3.11) . Let S be a function in W 2,∞(R)
such that S′ has a compact support. Let K be a positive real number such that
suppS′ ⊂ [−K,K]. Pointwise multiplication of the approximate equation (4.6) by
S′(un) leads to

∂S(un)

∂t
− div

(
S′(un)an(x, t, un,∇un)

)
+ S′′(un)an(x, t, un,∇un)∇un

−div
(
S′(un)Φn(un)

)
+ S′′(un)Φn(un)∇un + gn(x, t, un,∇un)S

′(un) = fS′(un).
(4.78)

It what follows we pass to the limit as n tends to +∞ in each term of (4.78).

◮ Since S′ is bounded, and S(un) converges to S(u) a.e. in QT and in L∞(QT )

weak ∗. Then ∂S(un)
∂t

converges to ∂S(u)
∂t

in D′(QT ) as n tends to +∞
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◮ Since suppS ⊂ [−K,K], we have

S′(un)an(x, t, un,∇un) = S′(un)an(x, t, TK(un),∇TK(un)) a. e. in QT .

The pointwise convergence of un to u as n tends to +∞, the bounded char-
acter of S′′, (4.22) and (4.37) of Proposition 4.5 imply that

S′(un)an(x, t, TK(un),∇TK(un))⇀ S′(u)a(x, t, TK(u),∇TK(u)) weakly in

(LM (QT ))
N , for σ(ΠLM ,ΠEM ) as n tends to +∞, because S(u) = 0 for |u| ≥

K a. e. in QT . And the term S′(u)a(x, t, TK(u),∇TK(u))=S′(u)a(x, t, u,∇u)
a. e. in QT .

◮ Since suppS′ ⊂ [−K,K], we have

S′′(un)an(x, t, un),∇un)∇un = S′′(un)an(x, t, TK(un),∇TK(un))∇TK(un)

a. e. in QT . The pointwise convergence of S′′(un) to S′′(u) as n tends to
+∞, the bounded character of S′′, (4.22), (4.37) and (4.37) imply that

S′(un)an(x, t, un,∇un)∇un⇀S′(u)a(x, t, TK(u),∇TK(u))∇TK(u) weakly in

L1(QT ), as n tends to +∞. And

S′′(u)a(x, t, TK(u),∇TK(u))∇TK(u) = S′′(u)a(x, t, u,∇)∇u a. e. in QT .

◮ Since suppS′ ⊂ [−K,K], we have

S′(un)Φn(un) = S′(un)Φn(TK(un)) a. e. in QT .

As a consequence of (3.6), (4.3) and (4.22), it follows that:

S′(un)Φn(un) → S′(u)Φ(TK(u)) strongly in (EM (QT ))
N ,

as n tends to +∞. The term S′(u)Φ(TK(u)) is denoted by S′(u)Φ(u).

◮ Since S ∈W 1,∞(R) with suppS′ ⊂ [−K,K], we have

S′′(un)Φn(un)∇un = Φn(TK(un))∇S
′′(un) a. e. in QT ,

we have, ∇S′′(un) converges to ∇S′′(u) weakly in (LM (QT ))
N as n tends to

+∞, while Φn(TK(un)) is uniformly bounded with respect to n and converges
a. e. in QT to Φ(TK(u)) as n tends to +∞. Therefore

S′′(un)Φn(un)∇un ⇀ Φ(TK(u))∇S′′(u) weakly in LM (QT ).

◮ Due to (4.5) and (4.22), we have fnS
′(un) converges to fS′(u) strongly in

L1(QT ), as n tends to +∞.
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◮ Due to (4.22) and the fact that gn(x, t, un,∇un) → g(x, t, u,∇u) strongly in
L1(QT ), we have gnS

′(un) converges to gS′(u) strongly in L1(QT ), as n
tends to +∞.

As a consequence of the above convergence result, we are in a position to pass to
the limit as n tends to +∞ in equation (4.78) and to conclude that u satisfies (3.11).
Remark that, S′ has a compact support, we have S(un) is bounded in L∞(QT ). by
(4.78) and the above considerations on the behavior of the terms of this equation

show that ∂S(un)
∂t

is bounded in L1(QT )+W
−1,xLM (QT ). a consequence, an Aubin’s

type Lemma (see e.g., [30], Corollary 4) (see also [23]) implies that S(un)(t = 0)
lies in a compact set of C0([0, T ];L1(Ω)). It follows that, S(un)(t = 0) converges
to S(u)(t = 0) strongly in L1(Ω). Due to (4.4), we conclude that S(un)(t = 0) =
S(un(x, 0)) converges to S(u)(t = 0) strongly in L1(Ω). Then we conclude that
S(u)(t = 0) = S(u0) in Ω.

As a conclusion of step 1 to step 6, the proof of theorem 4.1 is complete. ✷

References

1. R. Adams, Sobolev spaces, Academic Press, New York, 1975.

2. A. Aissaoui Fqayeh, A. Benkirane, Mostafa El Moumni, Entropy solutions for nonlinear
unilateral parabolic inequalities in Orlicz–Sobolev spaces, Appl. Math. (Warsaw) 41 (2014),
185-193

3. A. Aissaoui Fqayeh, A. Benkirane, M. El Moumni and A. Youssfi, Existence of renormalized
solutions for some strongly nonlinear elliptic equations in Orlicz spaces. Accepted in Georgian
Mathematical Journal (GMJ).

4. A. Benkirane, A. Elmahi; An existence for a strongly nonlinear elliptic problem in Orlicz
spaces, Nonlinear Analysis, 36 (1999) 11-24.

5. A. Benkirane, A. Emahi; Almost everywhere convergence of the gradients of solutions to
elliptic equations in Orlicz spaces and application, Nonlinear Analysis, 28 (11), 1997, 1769-
1784.

6. D. Blanchard; Truncation and monotonicity methods for parabolic equations equations, Non-
linear Anal., 21, (1993), pp. 725-743.

7. D. Blanchard and F. Murat; Renormalized solutions of nonlinear parabolic problems with L1

data: existence and uniqueness. Proceedings of the Royal Society of Edinburgh, 127A (1997),
1137–1152.

8. D. Blanchard, F. Murat and H. Redwane; Existence and uniqueness of renormalized solution
for a fairly general class of nonlinear parabolic problems. J. Diferential Equations 177 (2001),
331–374.

9. D. Blanchard and A. Porretta; Stefan problems with nonlinear diffusion and convection, J.
Diff. Equations, 210, (2005), pp. 383-428.

10. D. Blanchard and H. Redwane; Renormalized solutions of nonlinear parabolic evolution prob-
lems, J. Math. Pure Appl., 77, (1998), pp. 117-151.

11. D. Blanchard, F. Murat and H. Redwane;Existence et unicité de la solution renormalisée d’un
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26. A. Kunfer, O. John and S. Fučik, Function Spaces, Academia, Prague, 1997.

27. R. Landes;On the existence of weak solutions for quasilinear parabolic initial-boundary value
problems. Proc. Roy. Soc. Edinburgh Sect A 89 (1981), 321–366.

28. A. Porretta; Existence results for strongly nonlinear parabolic equations via strong conver-
gence of truncations, Ann. Mat. Pura Appl. (IV), 177 (1999), 143-172.

29. J. Robert; Inéquations variationnelles paraboliques fortement non linéaires. J. Math. Pures
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