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The Common-Neighbourhood of a Graph

P. Dundar, A. Aytac and E. Kilic

Abstract: The most widely used and well-known vulnerability measures of a
connected graph are based on the neighbourhood concept. It takes into account
neighbour-integrity, edge-integrity and accessibility number. In this work we define
and examine common-neighbourhood of a connected graph as a new global connec-
tivity measure. Our measure examines the neighbourhoods of all pairs of vertices of
any connected graph. We show that, for connected graphs G1 and G2 of the same
order, if the dominating number of G1 is bigger than the dominating number of G2,
then the common-neighbourhood of G1 is less than the common-neighbourhood of
G2. We give some theorems and obtain some results on common-neighbourhood
of a graph. We consider all the graphs in this paper as connected, undirected and
without loops.
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1. Introduction

The stability and reliability of a network are of prime importance to network
designers. The vulnerability value of a communication network shows the resis-
tance of the network after the disruption of some centres or connection lines until
communication within the network breaks down. As the network begins to loose
connection lines or centres, there would eventually be a loss of its effectiveness.
If the communication network is modelled as a simple, undirected, connected and
unweighted graph G, deterministic measures tend to provide a worst-case analysis
of some aspects of the overall disconnection process.
Let G be a graph with the vertex set V = V (G)and edge set E = E(G), where
|V (G)| = n and |E (G)| = m. The reliability of a graph can be measured by various
parameters. The best known reliability measure of a graph is connectivity, denoted
by k(G), defined as the minimum number of vertices whose deletion results in a
disconnected or trivial graph. This parameter has been extensively studied.
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The open neighbourhood of v ∈ V is N(v) = {u : u ∈ V |uv ∈ E} and the closed
neighbourhood of v is N [v] = {v}

⋃

N(v). For a set S ⊆ V , its open neighbour-
hood N(S) =

⋃

v∈S

N(v) and its closed neighbourhood N [S] = N(S) ∪ S.

Connectivity, integrity, toughness, neighbour-integrity are all worst-case measures
and as such do not always reflect what happens throughout the graph [1-5]. For
example, a tree and a graph obtained by appending an pendant-vertex to a com-
plete graph both have connectivity 1. Nevertheless, for large number of vertices
the latter graph is far more reliable than the former. Recent interest in the vulner-
ability and reliability of networks has given rise to a host of other measures, some
of which are more global in nature. These parameters, such as average connectiv-
ity, average degree and average distance of a graph, have been found to be more
useful in some circumstances then the corresponding local measures, [6-19]. For
example, the average distance between vertices in graph was introduced as a tool
in architecture and later turned out to be more valuable than the diameter when
analyzing transportation networks.
While the ordinary connectivity is the minimum number of removed vertices which
separates at least one connected pair of vertices, the average connectivity is a mea-
sure for the expected number of vertices that have to be removed to separate a
randomly chosen pair of vertices.

Definition 1.1. Let G = (V,E) be a simple graph of order n and let u and v

be two distinct vertices of G. Two vertices u and v in a graph G are said to be
k-neighbour, if there are k distinct vertices which are neighbours of both u and v.
The k-neighbour of uand v vertices of G is denoted by N(u, v). This new definition
is given by us.

In this paper we investigate the common-neighbourhood, a new measure for
reliability and stability of a graph. The common-neighbourhood gives the expected
number of vertices to constitute neighbourhood between a randomly chosen pair of
vertices. Although other global measures of reliability, such as the toughness and
integrity of a graph, are NP hard, the common-neighbourhood can be computed
in polynomial time, this makes it much more attractive for applications.

Definition 1.2. If the order of G is n, then the common-neighbourhood of G is
denoted by N̄(G) , is defined to be

N̄(G) =

∑

u,v∈V (G)

|N(u, v)|

n− 1
for n ≥ 3

where
∑

u,v∈V (G)

|N(u, v)| is equal to the number of paths of length 2 occurring in the

graph G. For any vertex v there exist exactly

(

deg(v)
2

)

such paths, i.e. paths of
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the form u1 v u2 with the vertex v in the middle. In order to determine the value
N̄(G) one only needs O(n2) steps since

N̄ (G) =

∑

v∈V (G)

(

deg(v)
2

)

n− 1
.

As examples, we consider the two graphs in Figure 1, but the second is a more
reliable network then the first. This is reflected in the common-neighbourhood
since N̄ (G1) =

3
4 and N̄ (G2) =

15
4 .

Figure 1: P5=G1 G2

Apart from having the same connectivity, the two graphs in Figure 1 have the
same number vertices but a different number of edges. The difference in common-
neighbourhood is a result of the increased number of edges.
In Figure 2 we show two graphs with the same numbers of vertices and edges, but
N̄ (G3) =

6
4 while N̄ (G4) =

7
4 .

Figure 2: G1 G2

2. Basic Results on Common-Neighbourhood of Some Graphs

In the following results for the common-neighbourhood of a variety of families
of graphs can be seen clearly.

1) N̄(Pn) =
n−2
n−1 = 1− 1

n−1

2) N̄(Cn) =
n

n−1 = 1 + 1
n−1
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3) N̄(Kn) =
n(n−2)

2

4) N̄(K1,n−1) =
n−2
2

5) N̄(Km,n) =





m

2



n+





n

2



m

m+n−1

6) N̄(W1,n−1) =





n− 1
2



+3(n−1)

n−1

For a connected graph G, let the nodes of G be labelled as v1, v2, ..., vn and the
adjacency matrix A = A(G) = [ai,j ] of G is the binary matrix of order n

aij =

{

1, if vi is adjacentwith vj

0, otherwise

For a connected graph G, we define the distance d(u, v) between two vertices u

and v as the minimum of the lengths of the u− v paths in G. Under the distance
function, the set V (G) is a metric space. The eccentricity e(v) of a vertex v of
connected graph G is the number max

v,u∈V (G)
d(v, u) . The radius rad(G) is defined as

min
u∈V (G)

e(v) while the diameter diam(G) is max
v∈V (G)

e(v). It follows that diam(G) =

max
v,u∈V (G)

d(v, u).

Definition 2.1. [20, 21] An independent set of vertices of a graph G is a set whose
elements are pairwise nonadjacent. The independence number β (G) of G is the
maximum cardinality among all independent sets of vertices of G.

Definition 2.2. [20, 21] A vertex is said to cover other vertices in a graph G if it
is incident to these vertices in G. A cover in G is a set of vertices that covers all
edges of G. The minimum cardinality of a cover in a graph G, denoted by α (G),
is called the covering number of G.

Therefore α(G) + β(G) = n

Definition 2.3. [20, 21] A vertex dominating set for a graph G is a set S of vertices
such that every vertex of G belongs to S or is adjacent to a vertex of S. The
minimum cardinality of a vertex dominating set in a graph G is called the vertex
dominating number of G and is denoted by σ(G). For every graph G, σ (G) ≤ β (G).

Lemma 2.1. Let u and v be two vertices of a connected graph G. If the d (u, v) > 2
then N(u, v) = 0, whereas if d (u, v) = 2 then 1 ≤ N(u, v) ≤ n− 2.
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Lemma 2.2. For any connected graph with n vertices, n− 2 ≤
∑

u,v∈V (G)

N(u, v) ≤

n(n−1)(n−2)
2 where n > 2.

Theorem 2.1. Let G be a graph of order n ≥ 3.

a) N̄(G) = 0 if and only if G is a null graph.

b) N̄(G) > 0 if and only if G is a connected graph at least of order 3.

Proof is clear.

Lemma 2.3. Let G be a connected graph of order n. The common-neighbourhood
of G is minimum if and only if G = Pn and maximum if and only if G = Kn. It
can be easily seen from Lemma 2.1.

Theorem 2.2. For a connected graph G, the common-neighbourhood of G is 1
2 ≤

N̄ (G) ≤ n(n−2)
2 .

Proof: From the Lemma 2.1. and Theorem 2.1. G must be connected graph and
at least the path P3. Then N̄ (P3) =

1
2 . G can be the complete graph order of n,

Kn at most. In complete graph Kn, N(u, v) = n− 2 for each u, v ∈ V (Kn). It is
obtained from the definition of common-neighbourhood and Lemma 2.2

N̄ (Kn) =

(

n

2

)

(n− 2)

n− 1
=

n (n− 2)

2

Consequently, for any connected graph G, its common-neighbourhood is 1
2 ≤

N̄ (G) ≤ n(n−2)
2 ✷

Theorem 2.3. Let G be connected graph with n vertices having K1,n−1 as a span-
ning subgraph then

N̄ (G) ≥
(n− 2)

2
.

Proof: The right side of the inequality can be seen from common-neighbourhood of
K1,n−1. In K1,n−1, the number of (u, v) pairs which have the property d(u, v) = 2

is

(

n− 1
2

)

and for each pair of vertices. And from the definition of common-

neighbourhood it can be obtained easily. ✷

Theorem 2.4. N̄(G) < N̄(G+ e).

Proof: From the definition of (G + e), to add an e edge between any vertices
which are disjoint increase k-neighbour value for at least any (vi, vj) vertex pair of
G. Since we are working on graphs which do not contain loops, we cannot add an
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edge between adjacent vertices. This increases N(vi, vj) value.
In the definition common-neighbourhood, if

∑

u,v∈V (G)

|N(u, v)| increases, then the

N̄(G) increases also. Hence, N̄(G) < N̄(G+ e). ✷

Theorem 2.5. Let G be a graph of order n and Pn be a path graph. If diam(G) <
diam(Pn), then

N̄(G) ≥ N̄(Pn).

Proof: Let G and Pn be two graphs whose orders are the same and diam(G) <
diam(Pn), from Lemma 2.3 it is obvious that Pn has the minimum value of common-
neighbourhood. Hence, this shows that the k-neighbourhoods in G are greater
than in Pn. By the definition of common-neighbourhood, if the number of neigh-
bourhoods in G1 is higher, then the number of N(u, v) in G will be high. Then
N̄(G) > N̄(Pn). ✷

Theorem 2.6. Let G be connected graph except tree. Then, N̄(G) <

n
∑

i=1

deg(vi)

2(n−1) ,

for all vi vertices.

Proof: For the graph G max

(

n
∑

i=1

deg(vi)

)

= 2m, where m denotes the number

of edges of G. m gets its maximum value n(n−1)
2 only in complete graph.

∑

N(u, v) = (n− 2)
n(n− 1)

2
=

(n− 2)

2

n
∑

i=1

deg (vi).

Thus,

N̄(G) =

(

n−2
2

)

n
∑

i=1

deg (vi)

2 (n− 1)
=

(n− 2)
n
∑

i=1

deg (vi)

2 (n− 1)
.

This value is the maximum value in Kn complete graph. If we remove any ei =
(ui, vi) edge from Kn , the neighbourhood values of the vertices ui and vi decrease
1. Consequently, for any connected graph G, the value of common-neighbourhood

N̄(G) >

n
∑

i=1

deg (vi)

2 (n− 1)
.

✷
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3. Common-Neighbourhood and Other Parameters

Certainly other parameters provide bounds on the common-neighbourhood of
a graph. In this section we give some theorems relating to common-neighbourhood
and graph parameters.

Definition 3.1. A graph in which all vertices are of equal degree is called a regular
graph. For any non-regular graph G, ∆(G) denotes maximum vertex degree and
δ(G) denotes minimum vertex degree of the graph G.

Theorem 3.1. Let G be a tree and for n > 3, N̄(G) ≥ β(G)
n−1 .

Proof: From the Lemma 2.1, If d(u, v) = 2, then N(u, v) ≥ 1. For all (u, v) pairs
of a maximum independent set of G, d(u, v) ≥ 2. From Theorem 2.1 if u and v is
adjacent then N(u, v) = 0.

Then, in the definition N̄ (G) =

∑

u,v∈V (G)

N(u,v)

n−1 ,
∑

u,v∈V (G)

N(u, v) ≥ β(G)

We divide the both sides of this inequality by n−1, we obtain

∑

u,v∈V (G)

N(u,v)

n−1 ≥ β(G)
n−1 .

✷

Theorem 3.2. Let G1 and G2 be graphs each having n vertices. If σ(G1) < σ(G2),
then N̄ (G1) > N̄ (G2).

Proof: Since the minimum dominating number denotes that the neighbourhood
between vertex pairs of that graph is more.
If σ(G1) < σ(G2) then for any vertex pair in G1 k-neighbour value is bigger than
in G2.
Consequently,

∑

u,v∈G1

|N(u, v)| >
∑

x,y∈G2

|N(x, y)| If we divide the both sides of the

inequality by n− 1, we obtain the following inequality.

∑

u,v∈G1

|N(u, v)|

n− 1
>

∑

x,y∈G2

|N(x, y)|

n− 1

and by the definition of common-neighbourhood, N̄ (G1) > N̄ (G2). ✷

The results of the common-neighbourhood of the above graphs relating with α,
β, ∆ and diam are given in the following.

1) N̄(Pn) =
diam(Pn)−1

n−1

2) N̄(Pn) ≤
β+diam(Pn)

n−1

3) N̄(Cn) =
α+β
n−1

4) N̄(Cn) =

{

∆diam(Cn)+1
n−1 , if n is odd

∆diam(Cn)
n−1 , if n is even



30 P. Dundar, A. Aytac and E. Kilic

5) N̄(K1,n) =







⌈ β

3 ⌉∆
n−1 , if n is odd
⌈ β

2 ⌉∆−3

n−1 , if n is even

Theorem 3.3. Let G be K1,n−1 graph. N̄ (G) = ∆(G)−δ(G)
2 .

Proof: If we put this value in the common-neighbourhood definition for K1,n−1,

we obtain the following equality. N̄(K1, n−1) =n−2
2 = n−1−1

2 = ∆(G)−δ(G)
2 .

And this value is the minimum value that common-neighbourhood can get. To
be far away from K1,n−1 when we add edges to K1,n−1 , the value of ∆(G) is
still n− 1 however δ(G) increases. From Theorem 2.4, N̄ (G) increases and finally

N̄ (G) = ∆(G)−δ(G)
2 is obtained. ✷

4. Algorithm for the Common-Neighbourhood Number of a Graph

In this section, we offer an algorithm for the common-neighbourhood number of
a graph. The complexity of this algorithm is O(n2). Data of this algorithm are
adjacency matrix and the order of the graph.

A [i, j]: The adjacency matrix of the graph.
CN: Common-Neighbourhood Number of the graph
n: the order of the graph G

sumneigh=0

For i=1 to n do

degv=0

For j=1 to n do

degv=degv+A [i, j]

fact1=1

fact2=1

For j=1 to degv do

fact1=fact1*j

For j=1 to (degv-2) do

fact2=fact2*j

sumneigh=sumneigh + (fact1)/(2-fact2)

Repeat

CN = sumneigh / (n-1)

END.



The Common-Neighbourhood of a Graph 31

References

1. Bagga K.S., Beineke L.W., Goddard W.D., Lipman M.J, and Pippert R.E., A Survey of
Integrity, Discrete Applied Math. 37/38, 13-28, (1992).

2. Bagga K.S., Beineke L.W., Pippert R.E., and Sedlmeyer R.L, Some Bounds and An
Algorithm For The Edge-integrity of Trees, Ars Combinatoria.35-A,225- 238, (1993).

3. Bagga K.S., Beineke L.W., and Pippert R.E, On the Honesty of Graph Complements,
Discrete Math. 122, 1-6, (1993).

4. Bagga K.S, Beineke L.W., and Pippert R.E., Edge Integrity: A Survey, Discrete Math.,
124, 3-12, (1994).

5. Barefoot C.A, Entringer R., and Swart H., Vulnerability in Graphs-A Comparative Survey.
J.Comb.Math.Comb.Comput. 1, 13-22, (1987).

6. Barefoot placecountry-regionC.A., Entringer R., and Swart H., Integrity of Trees and
Powers of Cycles, Congressus Numeratum 58, 103-114, (1987).

7. Beineke L.W., Oellermann O.R., Pippert R.E., The Common Connectivity of A Graph,
Discrete Mathematics,252,pp.31-45, (2002).

8. Chvatal V., Tough Graphs and Hamiltonian Circuits, Discrete Math.5, 215- 218, (1973).

9. Cozzens M., Stability Measures and Data Fusion Networks, Graph Theory Notes of New
York XXVI, pp.8-14, (1994).

10. Cozzens M., Moazzami D., Stueckle S., The Tenacity of A Graph, Graph Theory, Com-
binatorisc, Algorithms and Applications. Vol 2., (1995).

11. Cozzens. M., Moazzami D., and Stueckle S., The Tenacity of Harary Graphs, J.Comb.
Math. Comb. Comput. 16, 33-56, (1994).

12. Cozzens M.B., Stability Measures and Data Fusion Networks, Graph Theory Notes of
Newyork XXVI, 8-14, (1994).

13. Cozzens M.B., and Wu S.Y, Bounds of Edge Neighbour-integrity of Graphs, Australian
J.of Combinatorics 15, 71-80, (1997).

14. Cozzens, M.B. and Wu S.Y., Vertex Neighbour-integrity of Trees, Ars. Combinatoria 43,
169-180, (1996).

15. Dündar P., Aytac A., Integrity of Total Graphs via Some Parameters, Mathematical
Notes Vol.76, N5, 665-672, (2004).

16. Dündar P., Accessibility Number and the Neighbour-integrity of Generalised Petersen
Graphs, Neural Network World, Vol.2, 167-174, (2001).

17. Dündar P., Aytaç A. and Aytaç V., Calculation of Accessibility Number and Neighbour-
integrity of a Graph, Mathematical Notes,Vol.78, N5,631-640, (2005).

18. Dündar P., Stability Measures of Some Static Interconnection Networks, Int.J. Computer
Math. Vol.76, 455-462, (2001).

19. Dündar P., and Ozan A., The Neighbour-integrity of Sequential Joined Graphs, Intern.
J. Computer Math.vol.74, 45-52, (2000).

20. Lesniak L., Chartrand G., Graphs and Digraphs, placeStateCalifornia Wadsworth &
Brooks, (1986)

21. West D.B., Introduction to Graph Theory, Prentice Hall, NJ, (2001).



32 P. Dundar, A. Aytac and E. Kilic

P. Dundar, A. Aytac and E. Kilic

Faculty of Science

Department of Mathematics

Ege University Postal Code 35100

Bornova-IZMIR, Turkey

E-mail address: pinar.dundar@ege.edu.tr

E-mail address: aysun.aytac@ege.edu.tr

E-mail address: elgin.kilic@ege.edu.tr


	Introduction
	Basic Results on Common-Neighbourhood of Some Graphs
	Common-Neighbourhood and Other Parameters
	Algorithm for the Common-Neighbourhood Number of a Graph

