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A numerical method for solving time-dependent convection-diffusion

problems

Mhamed El Merzguioui, Abdelmajid El hajaji, Khalid Hilal, and Lalla Saadia Chadli

abstract: In this paper, we develop a new numerical method for solving a time-
dependent convection-diffusion equation with Dirichlet’s type boundary conditions.
We first propose the θ-method, θ ∈ [1/2, 1] (θ = 1 corresponds to the back-ward
Euler method and θ = 1/2 corresponds to the Crank-Nicolson method) to discretize
the temporal variable, resulting in a linear partial differential equation (PDE). To
numerically solve this linear PDE, we develop and we analyze a new cubic spline
collocation method for the spatial discretization. To solve the discretized linear
system, we design a collocation method and we prove that the method is second
order convergent. The computed results are compared wherever possible with those
already available in the literature.
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1. Introduction

The time-dependent convection-diffusion equation is a parabolic partial differ-
ential equation, which describes physical phenomena where energy is transformed
inside a physical system due to two processes: convection and diffusion. The
term convection means the movement of molecules within fluids, whereas, diffusion
describes the spread of particles through random motion from regions of higher
concentration to regions of lower concentration. It is necessary to calculate the
transport of fluid properties or trace constituent concentrations within a fluid for
applications such as water quality modeling, air pollution, meteorology, oceanog-
raphy and other physical sciences. When velocity field is complex, changing in
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time and transport process cannot be analytically calculated, and then numerical
approximations to the time-dependent convection-diffusion equation are indispens-
able. Various numerical techniques have been developed and compared for solving
the time-dependent convection-diffusion equation. Clavero et al. [1] give a uni-
form convergent numerical method with respect to the diffusion parameter to solve
the one-dimensional time-dependent convection-diffusion problem. The used the
implicit Euler method for the time discretization and the simple upwind finite dif-
ference scheme on a Shishkin mesh for the spatial discretization in [1]. Ramos
presented an exponentially fitted method for singularly perturbed parameter [2].
Surla and Jerkovic considered a singularly perturbed boundary value problem using
a spline collocation method in [3]. The main objective of this study is to develop
a user friendly, economical method which can work for time-dependent convection-
diffusion equation by using a cubic splines collocation method and compared with
other numerical methods given in the literature in particular with [7].

Consider the singularly perturbed initial-boundary value problem





∂u

∂t
− Lǫu = f, (x, t) ∈ (0, 1)× (0, T ],

u(x, 0) = φ0(x), x ∈ [0, 1],
u(0, t) = u(1, t) = 0, t ∈]0, T ],

(1.1)

where Lǫ : C(Ω) ∩ C2,1(Ω) → C(Ω), with Ω = (0, 1)× (0, T ], is defined by

Lǫ := ǫ
∂2

∂x2
− a(x)

∂

∂x
− b(x, t)I, (x, t) ∈ Ω× (0, T ), (1.2)

With a(x) ≥ α̃ > 0, b = b(x, t) ≥ 0 on Ω. The diffusion coefficient ǫ is a small
positive parameter. and a, b, φ0 are sufficiently smooth functions.

Here we assume that the problem satisfies sufficient regularity and compatibility
conditions which guarantee the problem has a unique solution u ∈ C(Ω)

⋂
C2,1(Ω)

satisfying (see, [4,5,6]):
∣∣∣∣
∂i+ju(x, t)

∂ri∂tj

∣∣∣∣ ≤ k(1 + ǫ−ie−α(1−x)/ǫ) on Ω; 0 ≤ j ≤ 3 and 0 ≤ i+ j ≤ 4, (1.3)

where k is a constant.
In the present work, we present a numerical method for solving a time-dependent

convection-diffusion problem. The method is based on θ−method to discretize the
temporal variable and a cubic spline collocation method for the spatial discretiza-
tion. The scheme is second-order convergent with respect to the spatial variable.

The organization of the paper is as follows. In Section 2, we discuss time
semi-discretization. Section 3 is devoted to the spline collocation method for time-
dependent convection-diffusion equation using a cubic spline collocation method.
Next, the error bound of the spline solution is analyzed. In order to validate the
theoretical results presented in this paper, we present numerical tests on two known
examples in Section 4. The obtained numerical results are compared to the ones
given in [7]. Finally, a conclusion is given in Section 5.
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2. The time semidiscretization and Description of the θ-method

The observation period has to be specified first and is set from today (time
point t = 0) to time point T . This period will be divided into M equally spaced
time intervals with length ∆t = T

M , and we denote by tm = m∆t.
We discretize the variable time in (1.1) by means of θ-method, θ ∈ [ 12 , 1]. Then the
semi-discretization yiels the following system of equations:

um+1 − um

△t
− θLm

ǫ um+1 − (1− θ)Lm
ǫ um = fm+θ.

That is

(I − θ △ tLm
ǫ )um+1 = (I + (1− θ)△ tLm

ǫ )um +△tfm+θ, (2.1)

where, Lm
ǫ : C(Ωx)

⋂
C2(Ωx) → C(Ωx) is the differential operator defined by

Lm
ǫ = ǫ

∂2

∂x2
+ βm+θ ∂

∂x
+ γm+θI,

with
um approximate the exacte solution u(x, tm) at the time level tm = m∆t,
βm+θ = −a(x),
γm+θ = −b(x, tm + θ△ t).

θ = 1/2, corresponds to the CrankŰNicolson method, and θ = 1, corresponds to
the back-ward Euler method.

Then, the approximate problem of (1.1) is






pm+θum+1
xx + qm+θ(x)um+1

x + lm+θ(x)um+1 = gm+θ, x ∈ Ωx,
u0(x) = φ0(x), x,∈ Ωx,
um+1(0) = um+1(1) = 0, 0 ≤ m < M,

(2.2)

where, for any m ≥ 0 and for any x ∈ Ωx = (0, 1), we have

pm+θ = θ△ tǫ,
qm+θ(x) = θ △ tβm+θ(x),
lm+θ(x) = θ △ tγm+θ(x) − 1,
gm+θ(x) = −(I + (1− θ)△ tLm

x )um −△tfm+θ.

We have u0(x) = φ0(x). Then, for 0 ≤ m ≤ M − 1, um being known, we obtain
um+1 as a solution of problem (2.2).

The following theorem proves the order of convergence of the solution um to
u(x, tm).
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Theorem 2.1. (see [8,9]) Problem (2.2) is second order convergent for θ =
1

2
and

first order convergent for θ ∈]
1

2
, 1] i.e.,

‖u(x, tm)− um‖∞ ≤ Cte(△t)2 for θ =
1

2

‖u(x, tm)− um‖∞ ≤ Cte△ t for θ ∈]
1

2
, 1].

For any m ≥ 0, problem (2.2) has a unique solution and can be written on the
following form:

{
p u′′(x) + q(x)u′(x) + l(x)u(x) = g(x), x ∈ Ωx

u(0) = u(1) = 0
(2.3)

In the sequel of this paper, we will focus on the solution of problem (2.3).

3. Spatial discretization and cubic spline collocation method

In this section we construct a cubic spline which approximates the solution u
of problem (2.3), in the interval Ωx = (0, 1) ⊂ R.

We denote by ‖ . ‖ the Euclidean norm on R
n+1, ‖ . ‖∞ the uniform norm.

Let Θ = {0 = x−3 = x−2 = x−1 = x0 < x1 < · · · < xn−1 < xn = xn+1 =
xn+2 = xn+3 = 1} be a subdivision of the interval Ωx. Without loss of generality,

we put xj = jh, where 0 ≤ j ≤ n and h =
1

n
. Denote by S4(Ωx,Θ) = P

2
3(Ωx,Θ)

the space of piecewise polynomials of degree 3 over the subdivision Θ and of class
C2 everywhere on Ωx. Let Bi, i = −3, · · · , n − 1, be the B-splines of degree 3
associated with Θ. These B-splines are positives and form a basis of the space
S4(Ωx,Θ).

Proposition 3.1. Let u be the solution of problem (2.3). Then, there exists a
unique cubic spline interpolant S ∈ S4(Ωx,Θ) of u which satisfies:

S(τ j) = u(τ j), j = 0, · · · , n+ 2,

where τ0 = x0, τ i =
xj−1 + xj

2
, j = 1, · · · , n, τn+1 = xn−1 and τn+2 = xn.

Proof: Using the Schoenberg-Whitney theorem (see [10]), it is easy to see that
there exits a unique cubic spline which interpolates u at the points τ i, i = 0, · · · , n+
2.

✷

If we put S =
∑n−1

i=−3 ciBi, then by using the boundary conditions of problem
(2.3) we obtain c−3 = S(0) = u(0) = 0 and cn−1 = S(1) = u(1) = 0. Hence

S =
n−2∑

i=−2

ciBi
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Furthermore, since the interpolation with splines of degree d gives uniform norm
errors of order O(hd+1) for the interpolant, and of order O(hd+1−r) for the rth
derivative of the interpolant (see [2], for instance), then for any u ∈ C4(Ωx) we
have

p.S(2)(τ j) + q(τ j)S
(1)(τ j) + l(τ j)S

(0)(τ j) = g(τ j) +O(h2), j = 1, ..., n+ 1, (3.1)

The cubic spline collocation method, that we present in this paper, constructs
numerically a cubic spline S̃ =

∑n−1
i=−3 c̃iBi which satisfies the equation of problem

(2.3) at the points τ j , j = 0, . . . , n+2. It is easy to see that c̃−3 = 0 and c̃n−1 = 0,
and the coefficients c̃i, i = −2, . . . , n− 1 satisfy the following:

p.S̃(2)(τ j) + q(τ j)S̃
(1)(τ j) + l(τ j)S̃

(0)(τ j) = g(τ j), j = 1, ..., n+ 1. (3.2)

Taking C = [c−2, . . . , cn−2]
T and C̃ = [c̃−2, . . . , c̃n−2]

T , and using equations (3.1)
and (3.2), we get:

(PA
(2)
h +QA

(1)
h + LA

(0)
h )C = F + E, (3.3)

(PA
(2)
h +QA

(1)
h + LA

(0)
h )C̃ = F, (3.4)

with:
F = [f1, . . . , fn+1]

T , and fj = g(τ j),

E = [O(h2), . . . , O(h2)]T ∈ R
n+1,

P = (diag(△t θ ǫ Ij)1≤j≤n+1,

Q = (diag(△t θβm+θ(τ j))1≤j≤n+1,

L = (diag(△t θγm+θ(τ j)− 1)1≤j≤n+1,

A
(k)
h = (B

(k)
−3+l(τ j))1≤j,l≤n+1, k = 0, 1, 2.

It is well known that A
(k)
h =

1

hk
Ak for k = 0, 1, 2 where matrices A0, A1 and

A2 are independent of h, with the matrix A2 is invertible [11].

We deduce that (3.3) and (3.4) can be written also in the following form

PA2

(
I +A−1

2 P−1(hQA1 + h2LA0)
)
C = h2F + h2E (3.5)

PA2

(
I +A−1

2 P−1(hQA1 + h2LA0)
)
C̃ = h2F, (3.6)

In order to determine the bounded of ‖ C − C̃ ‖, we need the following remark.

Remark 3.2. For a small real h such that

‖A−1
2 P−1‖∞

(
h‖Q‖∞‖A1‖∞ + h2‖L‖∞‖A0‖∞

)
< 1,
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the matrix
(
I +A−1

2 P−1(hQA1 + h2LA0)
)−1

exists, and

‖
(
I +A−1

2 P−1(hQA1 + h2LA0)
)−1

‖∞ <
1

1− (h‖Q‖∞‖A1‖∞ + h2‖L‖∞‖A0‖∞)
.

Hence, in this case, there exists a unique cubic spline that approximates the exact
solution u of problem (2.3).

Proposition 3.3. If we choose the real h such that

‖A−1
2 P−1‖∞

(
h‖Q‖∞‖A1‖∞ + h2‖L‖∞‖A0‖∞

)
≤

1

2
, (3.7)

then there exists a constant cte that depends only on the functions p, q, l and f
such that

‖C − C̃‖ ≤ cte.h2. (3.8)

Proof: from relations (3.5) and (3.6) we have

C − C̃ = h2(PA2)
−1

(
I + (PA2)

−1(hQA1 + h2LA0)
)−1

E.

Since E = O(h2), then there exists a constant K1 such that ‖E‖ ≤ K1h
2. This

implies that

‖C − C̃‖ ≤ K1
h2‖(A2P )−1‖∞

1− h2‖(A2P )−1‖∞(h−1‖Q‖∞‖A1‖∞ + ‖L‖∞‖A0‖∞)
h2

Using the inequality ‖A−1
2 P−1‖∞

(
h‖Q‖∞‖A1‖∞ + h2‖L‖∞‖A0‖∞

)
≤

1

2
, and

0 < h ≤ 1, we deduce that

‖C − C̃‖ ≤ K1
h2‖(A2P )−1‖∞

‖Q‖∞‖A1‖∞ + ‖L‖∞‖A0‖∞)
h2

Finally, we deduce that

‖C − C̃‖ ≤ cte.h2.

✷

Now, we are in position to prove the main theorem of our work.

Theorem 3.4. The spline approximation S̃ converges quadratically to the exact
solution u of problem (2.3), i.e., ‖u− S̃‖∞ = O(h2).
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Proof: It is well known that ‖u − S‖∞ = O(h4) (see [10]), so ‖u− S‖∞ ≤ Kh4,
where K is a positive constant. On the other hand we have

S(x)− S̃(x) =

n−2∑

i=−2

(ci − c̃i)Bi(x).

Therefore, by using (3.8) and
n−2∑

i=−2

Bi(x) ≤ 1, we get

|S(x)− S̃(x)| ≤ ‖C − C̃‖

n−2∑

i=−2

Bi(x) ≤ ‖C − C̃‖ ≤ cte.h2.

Since ‖u− S̃‖∞ ≤ ‖u− S‖∞ + ‖S − S̃‖∞, we deduce the stated result. ✷

Theorem 3.5. We suppose that u(x, t) is the solution of (1.1) and uc(x, t) is the
approximate solution by our presented method, then we have,

‖u(x, tm)− uc(x, tm)‖∞ ≤ C1(△t2 + h2) for θ =
1

2

‖u(x, tm)− uc(x, tm)‖∞ ≤ C2(△t+ h2) for θ ∈]
1

2
, 1].

where C1 and C2 are finite constants. Therefore for sufficiently small △t and h,
the solution of presented scheme (3.3) converges to the solution of initial.boundary
value problem (1.1) in the discrete L∞ − norm and the rates of convergence are
O(△t+ h2) and O(△t2 + h2).

4. Numerical Experiments

In this section we verify experimentally theoretical results obtained in the pre-
vious section. If the exact solution is known, then at time t ≤ T the maximum
error Emax

ǫ can be calculated as:

Emax
ǫ = max

x∈[0,1], t∈[0,T ]
| SM,N(x, t)− u(x, t) | .

Otherwise it can be estimated by the following double mesh principle:

Emax
ǫ,M,N = max

x∈[0,1], t∈[0,T ]
| SM,N(x, t) − S2M,2N(x, t) |,

where SM,N (x, t) is the numerical solution on the M + 1 grids in space and N + 1
grids in time, and S2M,2N(x, t) is the numerical solution on the 2M + 1 grids in
space and 2N + 1 grids in time.

In this section, we present the numerical results of present method on two
problems presented in the paper of the authors C.Clavero et al. [7]. We tested the
accuracy of this method for different values of N , M , ǫ and compared the obtained
results to the ones given in [7].
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4.1. Example 1.

Consider the time-dependent convection-diffusion problem (1.1) with the fol-
lowing data:

Ω = (0, 1)× (0, 1), and φ0 = 0,

a(x) = 1 + x2 +
1

2
sin(πx),

b(x, t) = 1 + x2 + sin(
πt

2
),

f(x, t) = x3(1− x)3 + t(1 − t) sin(πt).

Table 1 shows values of the maximum error (max_error) obtained in our nu-
merical experiments for different values of N , M and ǫ, we note the convergence
of the solution S to the function u depends on the discretization parameters h, ∆t
and the parameter ǫ. Theorem 6 shown the convergence of the method provided
that the parameters ǫ, h and ∆t satisfy the relation (3.7).

Table 2 shows values of the maximum error (max_error) obtained in our numer-
ical experiments and the one obtained in [7]. Table 2 illustrates the comparative
performance of our method over another existing method [7]. The obtained ap-
proximate numerical solutions show that our proposed method maintains better
accuracy compared with a recent other existing method [7] based on the hybrid
numerical method.

From these tables, we can say that the results of our schemes are acceptable,
and conclude that the proposed schemes are feasible and valid. We observe that
present method is nearly of second order of convergence with respect to these error
norms.

Table 1: Numerical results for θ =
1

2
.

N 32 64 128 256 512
M 16 32 64 128 256

For ǫ=2−2

max_error 0.56075×10−3 0.23896×10−3 0.11801×10−3 0.61301×10−4 0.24511×10−4

For ǫ=2−3

max_error 0.59979×10−3 0.25169×10−3 0.12173×10−3 0.61512×10−4 0.24633×10−4

For ǫ=2−4

max_error 0.62299×10−3 0.25910×10−3 0.12374×10−3 0.61633×10−4 0.24645×10−4

For ǫ=2−5

max_error 0.63569×10−3 0.26310×10−3 0.12479×10−3 0.61708×10−4 0.24667×10−4
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4.2. Example 2.

Consider the time-dependent convection-diffusion problem (1.1) with the fol-
lowing data:

Ω = (0, 1)× (0, 1), and φ0 = 0,

a(x) = 4 + 4x− x2 − ex,

b(x, t) = 5xt,

f(x, t) = 3 sin(πx) + 5(et − 1).

Table 3 shows values of the maximum error (max_error) obtained in our nu-
merical experiments for different values of N , M and ǫ, we note the convergence
of the solution S to the function u depends on the discretization parameters h, ∆t
and the parameter ǫ. Theorem 6 shown the convergence of the method provided
that the parameters ǫ, h and ∆t satisfy the relation (3.7).

Table 4 shows values of the maximum error (max_error) obtained in our nu-
merical experiments and the one obtained in [7]. The results show that the errors
in our methods are smaller than errors of the methods in [7].

Table 2: Numerical results for θ =
1

2
.

N 32 64 128 256 512
M 16 32 64 128 256

For ǫ = 2−6

our max_error 0.6423×10−3 0.2651×10−3
∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗

max_error in [7] 0.249×10−2 0.142×10−2
∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗

For ǫ = 2−9

our max_error 0.6482×10−3 0.2670×10−3 0.1247×10−3 0.6170×10−4 0.2466×10−4

max_error in [7] 0.262×10−2 0.153×10−2 0.829×10−3 0.434×10−3 0.222×10−3

For ǫ = 2−12

our max_error 0.6490×10−3 0.2672×10−3 0.1247×10−3 0.6172×10−4 0.2467×10−4

max_error in [7] 0.265×10−2 0.154×10−2 0.840×10−3 0.439×10−3 0.225×10−3

For ǫ = 2−15

our max_error 0.6490×10−3 0.2673×10−3 0.1247×10−3 0.6173×10−4 0.2468×10−4

max_error in [7] 0.265×10−2 0.154×10−2 0.841×10−3 0.440×10−3 0.225×10−3

...
...

...
...

...
...

For ǫ = 2−30

our max_error 0.6491×10−3 0.2673×10−3 0.1247×10−3 0.6173×10−4 0.2468×10−4

max_error in [7] 0.265×10−2 0.155×10−2 0.841×10−3 0.440×10−3 0.225×10−3
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Table 3: Numerical results for θ =
1

2
.

N 84 168 336 672 1344
M 5 20 80 320 1280

For ǫ = 2−2

max_error 0.60231×10−3 0.25895×10−3 0.10874×10−3 0.32201×10−4 0.14300×10−4

For ǫ = 2−4

max_error 0.65814×10−3 0.27101×10−3 0.11365×10−3 0.32107×10−4 0.14408×10−4

For ǫ = 2−6

max_error 0.67545×10−3 0.27412×10−3 0.11541×10−3 0.32213×10−4 0.14413×10−4

For ǫ = 2−8

max_error 0.68000×10−3 0.28061×10−3 0.11627×10−3 0.32358×10−4 0.14427×10−4

Table 4: Numerical results for θ =
1

2
.

N 84 168 336 672 1344
M 5 20 80 320 1280

For ǫ = 2−9

our max_error 0.6807×10−3 0.2812×10−3 0.1162×10−3
∗ ∗ ∗∗ ∗ ∗ ∗∗

max_error in [7] 0.616×10−2 0.230×10−2 0.681×10−3
∗ ∗ ∗∗ ∗ ∗ ∗∗

For ǫ = 2−12

our max_error 0.6814×10−3 0.2818×10−3 0.1164×10−3 0.3235×10−4 0.0142×10−4

max_error in [7] 0.618×10−2 0.232×10−2 0.689×10−3 0.181×10−3 0.457×10−4

For ǫ = 2−15

our max_error 0.6815×10−3 0.2819×10−3 0.1165×10−3 0.3236×10−4 0.0143×10−4

max_error in [7] 0.619×10−2 0.232×10−2 0.690×10−3 0.181×10−3 0.458×10−4

...
...

...
...

...
...

For ǫ = 2−30

our max_error 0.6815×10−3 0.2819×10−3 0.1165×10−3 0.3236×10−4 0.0143×10−4

max_error in [7] 0.619×10−2 0.232×10−2 0.690×10−3 0.181×10−3 0.458×10−4

5. Conclusion

A numerical method is developed to solve a time-dependent convection-diffusion
problems. This method is based on θ−method for the temporal discretization
and the cubic spline collocation method in the spatial direction. We have shown
the convergence of the method provided that the parameters ǫ, h and ∆t satisfy
the relation (3.7). Moreover we have provided an error estimate of order O(h2 +
∆t2) with respect to the maximum norm: ‖ . ‖∞. Numerical experiments were
performed on two known models to validate the convergence and efficiency of the
method. Comparisons of the computed results with exact solutions showed that the
scheme is capable of solving the time-dependent convection-diffusion equation and
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is also capable of producing highly accurate solutions with minimal computational
effort for both time and space. The computational results show that the proposed
numerical method is an efficient alternative method to the one proposed in [7].
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