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Efficient Galerkin solution of stochastic fractional differential equations

using second kind Chebyshev wavelets
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abstract: Stochastic fractional differential equations (SFDEs) have been used for
modeling many physical problems in the fields of turbulance, heterogeneous, flows
and matrials, viscoelasticity and electromagnetic theory. In this paper, an efficient
wavelet Galerkin method based on the second kind Chebyshev wavelets are proposed
for approximate solution of SFDEs. In this approach, operational matrices of the
second kind Chebyshev wavelets are used for reducing SFDEs to a linear system of
algebraic equations that can be solved easily. Convergence and error analysis of the
proposed method is considered. Some numerical examples are performed to confirm
the applicability and efficiency of the proposed method.
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1. Introduction

Recently, stochastic analysis has been an interesting research area in mathemat-
ics, fluid mechanics, geophysics, biology, chemistry, epidemiology, microelectronics,
physics, economics, and finance [1,2,3]. The behavior of dynamical systems in
these areas are often dependent on a noise source and a Gaussian white noise,
governed by certain probability laws, so that modeling such phenomena naturally
requires use of various stochastic differential equations or, in more complicated
cases, stochastic integral equations and stochastic integro-differential equations.
Since analytic solutions of stochastic integral and differential equations are not
available in many cases, numerical approximation becomes a practical way to face
this difficulty. Therefore, Many researchers have considered numerical solution of
stochastic integral and differential equations. For example, Runge-Kutta method
[4,5,6,7], Galerkin fimite element method [8,9,10], operational method and orthogo-
nal functions [11,12] and spectral methods [13] have been used for solving stochasic
differential and integral equations.

Fractional integrals and derivatives have been applied for modeling many physi-
cal phenomena in fields of nonlinear oscillation of earthquake, fluid-dynamic traffic,
continuum and statistical mechanics, signal processing, control theory, and dy-
namics of interfaces between nanoparticles and subtracts [14,15,16,17,18]. Conse-
quently, considerable attentions have been given for deriving approximate solution
of fractional differential and integral equations. Recently, several numerical meth-
ods such as Fourier transforms method [19], Laplace transforms method [20], frac-
tional differential transform method [21], finite difference method [22], orthogonal
functions [23,24,25,26], wavelets method [27,28], Adomian decomposition method
[29], variational iteration method [30], and homotopy analysis method [31] have
been used for producing approximate solution of fractional differential and integral
equations.

Recently, different orthogonal basis functions, such as block pulse functions,
Walsh functions, Fourier series, orthogonal polynomials and wavelets, were used to
estimate solutions of functional equations. As a powerful tool, wavelets have been
extensively used in computational mathematics, signal processing, image processing
and time-frequency analysis and many other areas [27,28,32,33,34,35,36,37].

In this paper a second kind Chebyshev wavelet Galerkin method is proposed
for numerical solution of the following SFDE

Dα
∗ u(t) = f(t) +

∫ t

0

u(s)k1(s, t)ds+

∫ t

0

u(s)k2(s, t)dB(s), t ∈ [0, 1] , (1.1)

with these initial conditions

u(k)(0) = uk, k = 0, 1, ..., n− 1, n− 1 < α ≤ n, (1.2)

where u(t), f(t) and ki(s, t), i = 1, 2 are the stochastic processes defined on the
same probability space (Ω, F, P ), and u(t) is unknown. Also B(t) is a Brownian

motion process and
∫ t

0
k2(s, t)u(s)dB(s) is the Itô integral. Many phenomena in
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science that have been modeled by fractional differential equations have some un-
certainty, so for deriving a more accurate solution, we need the solution of SFDEs
[13,40,41,42]. For deriving an approximate solution of SFDEs (1.1) we first derive
some operational matrices for the second kind Chebyshev wavelets. Then, these
operational matrices along with second kind Chebyshev wavelet are used to obtain
approximate solution.

The reminder of the paper is organized as follows: In section 2 some prelimi-
nary definitions of stochastic calculus, fractional calculus and Block Pulse Functions
(BPFs) are reviewed. Section 3 is devoted to the basic definitions of the second kind
Chebyshev wavelets and their properties. In section 4 general procedures for form-
ing operational matrices of the second kind Chebyshev wavelets are explained. In
section 5 a wavelet Galerkin method based on the second kind Chebyshev wavelets
and their operational matrices are proposed for solving SFDEs. Numerical exam-
ples are included in section 6. Finally, a conclusion is given in section 7.

2. Preliminary definitions

In this section we review some necessary definitions and mathematical prelim-
inaries about stochastic calculus, fractional calculus and BPFs which are required
for establishing our results in the next sections [1,2].

2.1. Stochastic calculus

Definition 2.1. (Brownian motion) A real-valued stochastic process B(t), t ∈ [0, T ]
is called Brownian motion, if it satisfies the following properties:
(i) The process has independent increments for 0 ≤ t0 ≤ t1 ≤ ... ≤ tn ≤ T ,
(ii) For all t ≥ 0, B(t+h)−B(t) is a normal distribution with mean 0 and variance
h,
(iii) The function t→ B(t) is a continuous function of t.

Definition 2.2. Let {Nt}t≥0 be an increasing family of σ-algebras of subsets of Ω.
A process g : [0,∞) × Ω → R

n is called Nt-adapted if for each t ≥ 0 the function
ω → g(t, ω) is Nt-measurable.

Definition 2.3. Let V = V(S, T ) be the class of functions f : [0,∞)×Ω → R such
that
(i) The function (t, ω) → f(t, ω) is B × F-measurable, where B denotes the Borel
algebra on [0,∞) and F is the σ -algebra on Ω.
(ii) f is adapted to Ft, where Ft is the σ -algebra generated by the random variables
B(s), s ≤ t.

(iii)E

(

∫ T

S

f2(t, ω)dt

)

<∞.

Definition 2.4. (The Itô integral) Let f ∈ V(S, T ), then the Itô integral of f is
defined by

∫ T

S

f(t, ω)dBt(ω) = lim
n→∞

∫ T

S

ϕn(t, ω)dBt(ω), (lim in L2 (Ω, H)),
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where, ϕn is a sequence of elementary functions such that

E

(

∫ T

s

(f(t, ω)− ϕn(t, ω))
2
dt

)

→ 0, as n→ ∞.

For more details about stochastic calculus and integration please see [1,2,43].

2.2. Fractional calculus

Fractional order calculus is a branch of calculus which deal with integration and
differentiation operators of non-integer order. Among the several formulations of
the generalized derivative, the Riemann-Liouville and Caputo definition are most
commonly used. Here we give some necessary definitions and mathematical pre-
liminaries of the fractional calculus which are required for establishing our results
[20].

Definition 2.5. A real function f(t), t > 0, is said to be in the space Cµ, µ ∈ R

if there exists a real number p > µ and a function f1(t) ∈ C[0,∞) such that
f(t) = tpf1(t), and it is said to be in the space Cn

µ , n ∈ N if f (n) ∈ Cµ.

Definition 2.6. The Riemann-Liouville fractional integration of order α ≥ 0 of a
function f ∈ Cµ, µ ≥ −1, is defined as

(Iαf) (t) =

{

1
Γ(α)

∫ t

0
(t− τ )α−1f(τ)dτ, α > 0,

f(t), α = 0.

(2.1)

The Riemann-Liouville fractional operator Jα has the following properties:

(a) Jα
(

Jβf(t)
)

= Jβ (Jαf(t)),

(b) Jα
(

Jβf(t)
)

= Jα+βf(t),

(c) Jαtν = Γ(ν+1)
Γ(α+ν+1) t

ν+α, α, β ≥ 0, ν > −1.

Definition 2.7. Riemann-Liouville fractional derivative of order α > 0 is defined
as

Dαf(t) =
dn

dtn
Jn−αf(t), n ∈ N, n− 1 < α ≤ n. (2.2)

The Riemann-Liouville derivatives have certain disadvantages when trying to model
real-world phenomena with fractional differential equations. Therefore, a modified
fractional differential operator Dα

∗ was proposed by Caputo [20].

Definition 2.8. The fractional derivative of order α > 0 in the Caputo sense is
defined as

Dα
∗ f(t) =

{

dnf(t)
dtn

, α = n ∈ N,
1

Γ(n−α)

∫ t

0
f(n)(τ)

(t−τ)α−n+1dτ , t > 0, 0 ≤ n− 1 < α < n.
(2.3)

where n is an integer, t > 0, and f ∈ Cn
1 .
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Some useful relation between the Riemann-Liouvill and Caputo fractional operators
is given by the following expression:

(a) JαDα
∗ f(t) = f(t)−∑n−1

k=0 f
(k)(0+) t

k

k! , n− 1 < α ≤ n, t > 0.
(b) Dα

∗ J
αf(t) = f(t).

(c) Jαtβ = Γ(β+1)
Γ(β−α+1) t

β−α.

(d) Dα
∗ t

β =

{

Γ(β+1)
Γ(β−α+1) t

β−α β ≥ α,

0 β < α.

For more details about fractional calculus please see [20].

2.3. Block pulse functions

BPFs have been studied by many authors and applied for solving different
problems. In this section we recall definition and some properties of the block
pulse functions [11,27].

The m-set of BPFs are defined as

bi(t) =

{

1 (i− 1)h ≤ t < ih

0 otherwise
(2.4)

in which t ∈ [0, T ), i = 1, 2, ...,m and h = T
m

. The set of BPFs are disjoint with
each other in the interval [0, T ) and

bi(t)bj(t) = δijbi(t), i, j = 1, 2, ...,m, (2.5)

where δij is the Kronecker delta. The set of BPFs defined in the interval [0, T ) are
orthogonal with each other, that is

∫ T

0

bi(t)bj(t)dt = hδij , i, j = 1, 2, ...,m. (2.6)

If m → ∞ the set of BPFs is a complete basis for L2[0, T ), so an arbitrary real
bounded function f(t), which is square integrable in the interval [0, T ), can be
expanded into a block pulse series as

f(t) ≃
m
∑

i=1

fibi(t), (2.7)

where

fi =
1

h

∫ T

0

bi(t)f(t)dt, i = 1, 2, ...,m. (2.8)

Rewritting Eq. (2.7) in the vector form we have

f(t) ≃
m
∑

i=1

fibi(t) = FTΦ(t) = ΦT (t)F, (2.9)
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in which

Φ(t) = [b1(t), b2(t), ...., bm(t)]
T
, (2.10)

F = [f1, f2, ...., fm]T . (2.11)

Morever, a two dimensional function k(s, t) ∈ L2 ([0, T1]× [0, T2]) can be expanded
with respect to BPFs such as

k(s, t) = ΦT (t)KΦ(t), (2.12)

where Φ(t) is the m-dimensional BPFs vectors and K is the m×m BPFs coefficient
matrix with (i, j)-th element

kij =
1

h1h2

∫ T1

0

∫ T2

0

k(s, t)bi(t)bj(s)dtds, i, j = 1, 2, ...,m, (2.13)

and h1 = T1

m
and h2 = T2

m
. Let Φ(t) be the BPFs vector, then we have

ΦT (t)Φ(t) = 1, (2.14)

and

Φ(t)ΦT (t) =













b1(t) 0 . . . 0

0 b2(t)
. . .

...
...

. . .
. . . 0

0 . . . 0 bm(t)













m×m

. (2.15)

For an m-vector F we have

Φ(t)ΦT (t)F = F̃Φ(t), (2.16)

where F̃ is an m ×m matrix, and F̃ = diag(F ). Also, it is easy to show that for
an m×m matrix A

ΦT (t)AΦ(t) = ÂTΦ(t), (2.17)

where Â = (a11, a22, ..., amm) is an m-vector.

3. Second kind Chebyshev wavelets

Wavelets constitute a family of functions constructed from dilation and transla-
tion of a single function ψ called the mother wavelet. When the dilation parameter
a and the translation parameter b vary continuously, we have the following family
of continuous wavelets [10,32,35,36]

ψa,b(t) = a−
1
2ψ

(

t− b

a

)

, a, b ∈ R, a 6= 0. (3.1)
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The second kind Chebyshev wavelets ψnm(x) = ψ(k, n,m, x) are defined on the
interval [0, 1) by

ψnm(t) =

{ √

2
π
2

k+1
2 Um

(

2k+1t− 2n− 1
)

, n
2k

≤ x ≤ n+1
2k

0, otherwise
, (3.2)

where Um(t) is the second kind Chebyshev polynomials of degree m, given by [44]

Um(t) =
sin ((m+ 1)θ)

sin(θ)
, t = cos(θ) (3.3)

The second kind Chebyshev wavelets {ψnm(t)|n = 0, 1, . . . , 2k − 1,m = 0, 1, 2, ...,
M−1} forms an orthonormal basis for L2

wnk
[0, 1] with respect to the weight function

wnk(t) = w
(

2k+1t− 2n− 1
)

, in which w(t) =
√
1− t2.

By using the orthonormality of the second kind Chebyshev wavelets, any square
inegrable function f(t) defined over [0, 1) can be expanded in terms of the second
kind Chebyshev wavelets as

f(t) ≃
∞
∑

n=0

∞
∑

m=0

cnmψnm(t) = CTΨ(t), (3.4)

where cmn = (f(t), ψmn(t))wnk
and (., .)wnk

denotes the inner product on L2
wnk

[0, 1]
. If the infinite series in (3.4) is truncated, then it can be written as

f(t) ≃
2k−1
∑

n=0

M−1
∑

m=0

cmnψmn(x) = CTΨ(t), (3.5)

where C and Ψ(t) are m̂ = 2kM column vectors given by

C =
[

c00, . . . , c0(M−1)|c10, . . . , c1(M−1)|, . . . , |c(2k−1)0, . . . , c(2k−1)(M−1)

]T
, (3.6)

Ψ(x) =
[

ψ00(t), . . . , ψ0(M−1)(t)|ψ10(t), . . . , ψ1(M−1)(t)|, . . . , |ψ(2k−1)0(t),

. . . , ψ(2k−1)(M−1)(t)
]T

.

By changing indices in the vectors Ψ(t) and C the series (3.5) can be rewritten as

f(t) ≃
m̂
∑

i=1

ciψi(t) = CTΨ(t), (3.7)

where
C = [c1, c2, ..., cm̂] , Ψ(x) = [ψ1(x), ψ2(x), ..., ψm̂(x)] , (3.8)

and
ci = cnm, ψi(t) = ψnm(t), i = (n− 1)M +m+ 1. (3.9)
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Similarly, a two dimensional function k(s, t) ∈ L2 ([0, 1]× [0, 1]) can be expanded
into second kind Chebyshev wavelets basis as

k(s, t) ≈
m̂
∑

i=1

m̂
∑

j=1

kijψi(s)ψj(t) = ΨT (s)KΨ(t), (3.10)

where K = [kij ] and kij =
(

ψi(s),
(

u(s, t), ψj(t)
)

wnk

)

wnk

.

3.1. Second kind Chebyshev wavelets and BPFs

In this section we will review the relation between the second kind Chebyshev
wavelets and BPFs. It is worth mention that here we set T = 1 in definition of
BPFs.

Theorem 3.1. Let Ψ(t) and Φ(t) be the m̂-dimensional second kind Chebyshev
wavelets and BPFs vector respectively, the vector Ψ(t) can be expanded by BPFs
vector Φ(t) as

Ψ(t) ≃ QΦ(t), (3.11)

where Q is an m̂× m̂ block matrix and

Qij = ψi

(

2j − 1

2m̂

)

, i, j = 1, 2, ..., m̂ (3.12)

Proof: Let ψi(t), i = 1, 2, ..., m̂ be the i-th element of second kind Chebyshev
wavelets vector. Expanding ψi(t) into an m̂-term vector of BPFs, we have

ψi(t) ≃
m̂
∑

k=1

Qikbk(t), i = 1, 2, ..., m̂, (3.13)

taking the collocation points ηj =
2j−1
2m̂ and evaluating relation (3.13) we get

ψi(ηj) ≃
m̂
∑

k=1

Qikbk(ηj) = Qij , i, j = 1, 2, ..., m̂, (3.14)

and this prove the desired result. ✷

The following remarks are consequence of relations (2.16), (2.17) and Theorem
3.1.

Remark 3.2. For an m̂-vector F we have

Ψ(t)ΨT (t)F = F̃Ψ(t), (3.15)

in which F̃ is an m̂× m̂ matrix as

F̃ = QF̄Q−1, (3.16)

where F̄ = diag
(

QTF
)

.
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Remark 3.3. Let A be an arbitrary m̂ × m̂ matrix, then for the second kind
Chebyshev wavelets vector Ψ(t) we have

ΨT (t)AΨ(t) = ÂTΨ(t), (3.17)

where ÂT = UQ−1 and U is an m̂-vector that its elements are diagonal entries of
matrix QTAQ.

4. Operational matrices for second kind Chebyshev wavelets

In this section some operational matrices for the second kind Chebyshev wavelets
vector Ψ(t) are derived. Next theorems provide general procedures for forming
these matrices. First, we remind some useful results for BPFs [11].

Lemma 4.1. [11] Let Φ(t) be the m̂-dimensional BPFs vector defined in (2.10),
then integration of this vector can be derived as

∫ t

0

Φ(s)ds ≃ PΦ(t), (4.1)

where P is called the operational matrix of integration for BPFs and is given by

P =
h

2

















1 2 2 . . . 2
0 1 2 . . . 2

0 0 1
...

...
...

...
...

. . . 2
0 0 0 . . . 1

















m̂×m̂

. (4.2)

Lemma 4.2. [45] Let Φ(t) be the m̂-dimensional BPFs vector defined in (2.10),
then integration of this vector can be derived as

JαΦ(t) = PαΦ(t) (4.3)

where Pα is called the operational matrix of integration for BPFs and is given by

Pα =
hα

Γ(α+ 2)















1 ξ1 ξ2 . . . ξm−1

0 1 ξ1 . . . ξm−2

0 0 1 . . . ξm−3

0 0 0
. . .

...
0 0 0 0 1















. (4.4)

Lemma 4.3. [11] Let Φ(t) be the m̂-dimensional BPFs vector defined in (2.10),
the Itô integral of this vector can be derived as

∫ t

0

Φ(s)dB(s) ≃ PsΦ(t), (4.5)
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where Ps is called the stochastic operational matrix of BPFs and is given by

Ps=

















B
(

h
2

)

B (h) B (h) . . . B (h)
0 B

(

3h
2

)

−B(h) B(2h)−B(h) . . . B(2h)−B(h)
0 0 B

(

5h
2

)

−B(2h) . . . B(3h)−B(2h)
...

...
...

. . .
...

0 0 0 . . . B
(

(2m̂−1)h
2

)

−B((m̂−1)h)

















m̂×m̂

(4.6)

Now we are ready to derive operational matrices of stochastic and fractional
integration for the second kind Chebyshev wavelets.

Theorem 4.4. Suppose Ψ(t) be the m̂-dimensional second kind Chebyshev wavelets
vector defined in (3.8), the integral of this vector can be derived as

∫ t

0

Ψ(s)ds ≃ QPQ−1Ψ(t) = ΛΨ(t), (4.7)

where Q is introduced in (3.11) and P is the operational matrix of integration for
BPFs derived in (4.2).

Proof: Let Ψ(t) be the second kind Chebyshev wavelets vector, by using Theorem
3.1 and Lemma 4.2 we have

∫ t

0

Ψ(s)ds ≃
∫ t

0

QΦ(s)ds =Q

∫ t

0

Φ(s)ds = QPΦ(t), (4.8)

now Theorem 3.1 gives

∫ t

0

Ψ(s)ds ≃QPΦ(t) = QPQ−1Ψ(t) = ΛΨ(t), (4.9)

by using this identity we obtain the desired result. ✷

Theorem 4.5. Let Ψ(t) be the m̂-dimensional second kind Chebyshev wavelets
vector defined in (3.8), the operational matrix of the fractional order integration
for Ψ(t) can be derived as

JαΨ(t) = QPαQ−1Ψ(t) = ΛαΨ(t), (4.10)

where Λα is called the operational matrix of second kind Chebyshev wavelets, Q
is the matrix introduced in (3.11) and Fα is the operational matrix of fractional
integration for BPFs derived in (4.4).

Proof: By using Theorem 3.1 we have

JαΨ(t) = JαQΦ(t) = QFαΦ(t) = QFαQ−1Ψ(t) = PαΨ(t), (4.11)
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so, the second kind Chebyshev wavelet operational matrix of the fractional order
integration Pα is given by

Pα = QFαQ−1. (4.12)

and this completes the proof. ✷

Theorem 4.6. Suppose Ψ(t) be the m̂-dimensional second kind Chebyshev wavelets
vector defined in (3.8), the Itô integral of this vector can be derived as

∫ t

0

Ψ(s)dB(s) ≃ QPsQ
−1Ψ(t) = ΛsΨ(t), (4.13)

where Λs is called stochastic operational matrix for second kind Chebyshev wavelets,
Q is introduced in (3.11) and Ps is the stochastic operational matrix of integration
for BPFs derived in (4.6).

Proof: Let Ψ(t) be the second kind Chebyshev wavelets vector, by using Theorem
3.1 and Lemma 4.3 we have

∫ t

0

Ψ(s)dB(s) ≃
∫ t

0

QΦ(s)dB(s) =Q

∫ t

0

Φ(s)dB(s) = QPsΦ(t), (4.14)

now Theorem 3.1 result
∫ t

0

Ψ(s)dB(s) =QPsΦ(t) = QPsQ
−1Ψ(t) = ΛsΨ(t), (4.15)

and this complete the proof. ✷

5. Description of the numerical method

Here we present a wavelet Galerkin method based on the second kind Chebyshev
wavelets and their operational matrices for solving SFDEs (1.1). For this purpose,
and by using the relation of the fractional derivative and integral, the solution u(t)
can be derived as

u(t) =

n−1
∑

k=0

u(k)(0+) + Jαf(t) + Jα

(∫ t

0

u(s)k1(s, t)ds

)

+Jα

(∫ t

0

u(s)k2(s, t)dB(s)

)

, (5.1)

now functions u(t), f(t) and ki(s, t), i = 1, 2, can be expanded in term of the second
kind Chebyshev wavelets as

f(t) ≃ FTΨ(t) = ΨT (t)F, (5.2)
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u(t) ≃ CTΨ(t) = ΨT (t)C, (5.3)

ki(s, t) ≃ ΨT (t)KiΨ(s) = ΨT (s)KT
i Ψ(t), i = 1, 2, (5.4)

where C and F are second kind Chebyshev wavelets coefficients vectors, andKi, i =
1, 2, are second kind Chebyshev wavelets coefficient matrices defined in Eqs. (3.8)
and (3.10). Substituting above approximations in Eq. (5.1), we get

CTΨ(t) = FT
0 Ψ(t) + JαFTΨ(t) + Jα

(

ΨT (t)K1

∫ t

0

Ψ(s)ΨT (s)Cds

)

+Jα

(

ΨT (t)K1

∫ t

0

Ψ(s)ΨT (s)CdB(s)

)

,

now remarks 3.2 results

CTΨ(t) = FT
0 Ψ(t) + FTΛαΨ(t) + Jα

(

HT (t)K1

∫ t

0

C̃Ψ(s)ds

)

+Jα

(

ΨT (t)K2

∫ t

0

C̃Ψ(s)dB(s)

)

= FT
0 Ψ(t) + FTΛαΨ(t) + Jα

(

ΨT (t)K1C̃ΛΨ(t)
)

+ Jα
(

ΨT (t)K2C̃ΛsΨ(t)
)

= FT
0 Ψ(t) + FTΛαΨ(t) + Jα

(

CT
1 Ψ(t)

)

+ Jα
(

CT
2 Ψ(t)

)

= FT
0 Ψ(t) + FTΛαΨ(t) + CT

1 Λ
αΨ(t) + CT

2 Λ
αΨ(t),

where C̃ = diag(C) is a m̂× m̂ matrix, C1 = diag(K1C̃Λ) and C2 = diag(K2C̃Λs)
are m̂-vectors. As this equation is hold for all t ∈ [0, 1), the standard Galerkin
method results

CT = FT
0 + FTΛα + CT

1 Λ
α + CT

2 Λ
α. (5.5)

The vectors C1 and C2 are linear functions of vector C, so Eq. (5.5) is a linear
system of algebraic equations for unknown vector C. Solving this linear system
we obtain vector C, which can be used to approximate solution of SFDE (1.1) by
substituting in Eq. (5.3).

6. Convergence analysis

The aim of this section is to analyze the proposed the second kind Chebyshev
wavelets numerical scheme for solving SFDEs.
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Theorem 6.1. Suppose f(x) ∈ L2
wn

[0, 1] with bounded second derivative, say
|f ′′(x)| ≤ L, and let

∑∞
n=0

∑∞
m=0 cmnψmn(x) be its infinite second kind Cheby-

shev wavelets expansion, then

|cmn| ≤
L
√
π

23 (n+ 1)
5
2 (m2 + 2m− 3)

, (6.1)

this means the second kind Chebyshev wavelets series converges uniformly to f(x)
and

f(x) =

∞
∑

n=1

∞
∑

m=0

cnmψnm(x), (6.2)

Proof: From definition of coefficient cmn we have

cmn =

∫ 1

0

f(t)ψmn(t)wnk(t)dt (6.3)

=
2

k

2+1

√
π

∫
n+1

2k

n

2k

f(t)Um(2k+1t− 2n− 1)w(2k+1t− 2n− 1)dt, (6.4)

by substituting 2k+1t− 2n− 1 = cos(θ) in (6.4) we get

cmn =
2−

k

2

√
π

∫ π

0

f

(

cos(θ) + 2n+ 1

2k+1

)

sin ((m+ 1)θ) sin(θ)dθ (6.5)

=
2

−k

2 −1

√
π

∫ π

0

f

(

cos(θ) + 2n+ 1

2k+1

)

[cos (mθ)− cos ((m+ 2) θ)] dθ, (6.6)

using integration by part two times we obtain

cmn =
1

2
5k
2 +3

√
π

∫ π

0

f
′′

(

cos(θ) + 2n+ 1

2k+1

)

hm(θ)dθ, (6.7)

where

hm(θ) =
sin(θ)

m

(

sin ((m− 1)θ)

m− 1
− sin ((m+ 1)θ)

m+ 1

)

− sin(θ)

m+ 2

(

sin ((m+ 1)θ)

m+ 1
− sin ((m+ 3)θ)

m+ 3

)

,

so, we have

|cmn| ≤
L

2
5k
2 +3

√
π

∫ π

0

|hm(θ)| dθ ≤ L
√
π

2
5k
2 +3 (m2 + 2m− 3)

, (6.8)

since n ≤ 2k − 1, we obtain

|cmn| ≤
L
√
π

2
5k
2 +3 (m2 + 2m− 3)

≤ L
√
π

23 (n+ 1)
5
2 (m2 + 2m− 3)

. (6.9)

✷
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Theorem 6.2. Let f(x) be a continuous function defined on [0, 1), with second
derivatives f ′′(x) bounded by L, then we have the following accuracy estimation

σM,k ≤
(

πL2

26

∞
∑

n=0

∞
∑

m=M

1

(n+ 1)
5
(m2 + 2m− 3)

2

+
πL2

26

∞
∑

n=2k

M−1
∑

m=0

1

(n+ 1)
5
(m2 + 2m− 3)

2

)

1
2

,

where

σM,k =







∫ 1

0



f(x)−
2k−1
∑

n=0

M−1
∑

m=0

cnmψnm(x)





2

dx







1
2

.

Proof: We have

σ2
M,k =

∫ 1

0



f(x)−
2k−1
∑

n=0

M−1
∑

m=0

cnmψnm(x)





2

dx

=

∫ 1

0





∞
∑

n=0

∞
∑

m=0

cnmψnm(x) −
2k−1
∑

n=0

M−1
∑

m=0

cnmψnm(x)





2

dx

=

∞
∑

n=0

∞
∑

m=M

c2nm

∫ 1

0

ψ2
nm(x)dx +

∞
∑

n=2k

M−1
∑

m=0

c2nm

∫ 1

0

ψ2
nm(x)dx

=

∞
∑

n=0

∞
∑

m=M

c2nm +

∞
∑

n=2k

M−1
∑

m=0

c2nm,

now by considering the relation (6.1) we achive the desired result. ✷

Now we state the main result of this section which investigate the convergency
of the proposed method for the approximate solution of SFDE (1.1). Hereafter
en(t) is error function of the second kind Chebyshev wavelets approximate solution
un(t) and ‖.‖ denotes L2 norm in [0, 1] defined by

‖u(t)‖ =

(∫ 1

0

|u(t)|2 dt
)

1
2

.

Theorem 6.3. Suppose u(t) is the exact solution of (1.1) and un(t), k1n(s, t),
k2n(s, t) are the second kind Chebyshev wavelets approximate solution for u(t),
k1(s, t), k2(s, t) respectively. Also assume that

a) ‖u(t)‖ ≤ ρ, t ∈ [0, 1] , (6.10)
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b) ‖ki(s, t)‖ ≤Mi, (s, t) ∈ [0, 1]× [0, 1] , i = 1, 2, (6.11)

b) MB = sup|B(t)|, t ∈ [0, 1] , (6.12)

then lim
n→∞

‖en(t)‖ = 0.

Proof: Let en(t) = u(t)− un(t), from (5.1) we get

en(t) =
1

Γ(α)

∫ τ

0

f(τ )− fn(τ )

(t− τ )1−α
dτ

+
1

Γ(α)

∫ t

0

∫ τ

0

k1 (s, τ)u(s)− k1n (s, τ )un(s)

(t− τ )1−α
dsdτ

+
1

Γ(α)

∫ t

0

∫ τ

0

k2 (s, τ)u(s)− k2n (s, τ )un(s)

(t− τ )1−α
dB(s)dτ , (6.13)

consequently, we can write

‖en(t)‖ ≤ 1

Γ(α)

∫ τ

0

∥

∥

∥

∥

f(τ)− fn(τ )

(t− τ )1−α

∥

∥

∥

∥

dτ

+
1

Γ(α)

∫ t

0

∫ τ

0

∥

∥

∥

∥

k1 (s, τ )u(s)− k1n (s, τ)un(s)

(t− τ )1−α

∥

∥

∥

∥

dsdτ

+
1

Γ(α)

∫ t

0

∫ τ

0

∥

∥

∥

∥

k2 (s, τ )u(s)− k2n (s, τ)un(s)

(t− τ )1−α

∥

∥

∥

∥

dsdτ . (6.14)

So we get

‖en(t)‖ ≤ 1

Γ(α)

∫ τ

0

∥

∥

∥

∥

f(τ )− fn(τ )

(t− τ)1−α

∥

∥

∥

∥

dτ

+
1

Γ(α)

∫ t

0

∫ τ

0

∥

∥

∥

∥

k1 (s, τ ) (u(s)− un(s))

(t− τ )1−α

∥

∥

∥

∥

dsdτ

+
1

Γ(α)

∫ t

0

∫ τ

0

∥

∥

∥

∥

(k1 (s, τ)− k1n (s, τ)) (u(s)− un(s))

(t− τ )1−α

∥

∥

∥

∥

dsdτ

+
1

Γ(α)

∫ t

0

∫ τ

0

∥

∥

∥

∥

(k1 (s, τ)− k1n (s, τ))u(s)

(t− τ )1−α

∥

∥

∥

∥

dsdτ

+
1

Γ(α)

∫ t

0

∫ τ

0

∥

∥

∥

∥

k2 (s, τ ) (u(s)− un(s))

(t− τ )1−α

∥

∥

∥

∥

dB(s)dτ

+
1

Γ(α)

∫ t

0

∫ τ

0

∥

∥

∥

∥

(k2 (s, τ)− k2n (s, τ)) (u(s)− un(s))

(t− τ )1−α

∥

∥

∥

∥

dB(s)dτ

+
1

Γ(α)

∫ t

0

∫ τ

0

∥

∥

∥

∥

(k1 (s, τ)− k2n (s, τ))u(s)

(t− τ )1−α

∥

∥

∥

∥

dB(s)dτ . (6.15)
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Theorem 6.1 shows that second kind Chebyshev wavelets expansion of any squar
intgrable function converges uniformly. So, for any ε > 0 there exist n such that

‖fn(t)− f(t)‖ ≤ ε,

‖un(t)− u(t)‖ ≤ ε,

‖k1n(s, t)− k1(s, t)‖ ≤ ε,

‖k2n(s, t)− k2(s, t)‖ ≤ ε,

(6.16)

therefore from (6.15) we get

‖en(t)‖ ≤ ε

Γ(α+ 1)
+
M1 ‖en(t)‖
Γ(α+ 3)

+
ε ‖en(t)‖
Γ(α+ 3)

+
ερ

Γ(α+ 3)

+
MBM2 ‖en(t)‖

Γ(α+ 2)
+
MBε ‖en(t)‖
Γ(α+ 2)

+
MBερ

Γ(α+ 2)

=
Γ(α+ 2) (M1 + ε) + Γ(α+ 3)MB (M2 + ε)

Γ(α+ 3)Γ(α+ 2)
‖en(t)‖

+
εΓ(α+ 2)Γ(α+ 3) + ερΓ(α+ 1)Γ(α+ 3) + ερMBΓ(α+ 1)Γ(α+ 1)

Γ(α+ 1)Γ(α+ 2)Γ(α+ 3)
,

or

‖en(t)‖≤
εΓ(α+ 2)Γ(α+ 3) + ερΓ(α+ 1)Γ(α+ 3) + ερMBΓ(α+ 1)Γ(α+ 1)

Γ(α+1) [Γ(α+3)Γ(α+2)− Γ(α+2) (M1+ε) + Γ(α+3)MB (M2+ε)]
,

and the proof is complete. ✷

7. Numerical results

In this section, we implement the proposed algorithm in section 5 for solving
SFDEs. In all examples the algorithms are performed by Maple 17 with 20 digits
precision.

Example 7.1. Consider the following SFDE

Dαu(t) =
Γ(2)t1−α

Γ(2− α)
− t3

3
+

∫ t

0

su(s)ds+

∫ t

0

u(s)dB(s), s, t ∈ [0, 1] ,

subject to the initial condition u(0) = 0. The exact solution of this SFDE is un-
known. Here we use the wavelet Galerkin method proposed in section 5 to solve it.
Table 1 lists the approximate solution for different values of t and α with m̂ = 128.
Moreover, Fig. 1 shows the approximate solutions obtained for different values of
α.
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Table 1: Numerical results for different values of t, α and m̂ = 128.

t α = 0.25 α = 0.5 α = 0.75

0.1 0.0927744211 0.0922521030 0.0917906320
0.3 0.2721378110 0.2863044024 0.2928005524
0.5 0.7682012950 0.8361875094 0.8953568153
0.7 0.6550951414 0.6509386054 0.6556671400
0.9 0.9781496416 0.9214944630 0.8970816620

Figure 1: The approximate solution for α = 0.25, α = 0.5 and α = 0.75.

Example 7.2. As the second example consider the following SFDE

Dαu(t) =
7

12
t4 − 5

6
t3 +

2t2−α

Γ(3− α)
+

t1−α

Γ(2− α)
+

∫ t

0

(s+ t)u(s)ds+

∫ t

0

su(s)dB(s),

s, t ∈ [0, 1] ,

subject to the initial condition u(0) = 0. The exact solution of this SFDE is
unknown. The approximate solution obtained by the proposed method for various
values of t and α are listed in Table 2. Fig. 2 plots the approximate solution for
different values of α with m̂ = 128.

Example 7.3. Consider the following SFDE

Dαu(t)=
Γ(3)t2−α

Γ(3− α)
− t4 sin(t)

4
+

∫ t

0

sin(t)s2u(s)ds+

∫ t

0

setu(s)dB(s), s, t ∈ [0, 1] ,

subject to the initial condition u(0) = 0. The exact solution of this SFDE is un-
known. Here the proposed wavelet Galerkin method is used for deriving numerical
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Figure 2: The approximate solution for α = 0.25, α = 0.5 and α = 0.75.

Table 2: Numerical results for different values of t and α.

t α = 0.25 α = 0.5 α = 0.75

0.1 0.0848476129 0.0845854008 0.0836981075
0.3 0.2030817352 0.2061982209 0.2070198626
0.5 0.4178064937 0.4486021937 0.4686001068
0.7 0.1671430740 0.1804842703 0.1890702090
0.9 0.0289527458 0.0480352224 0.0592956315

solution of it. The approximate solution for diffrent values of α and t with m̂ = 128
is listed in Table 3. Moreover, Fig. 3 shows the approximate solutions for different
values of α and m̂ = 128.

Table 3: Numerical results for different values of t and α.

t α = 0.25 α = 0.5 α = 0.75

0.1 0.0088179999 0.0088039620 0.0087980641
0.3 0.0851554626 0.0867376737 0.0875707189
0.5 0.4390176500 0.4566864654 0.4713103382
0.7 0.4950304749 0.4876362989 0.4832995027
0.9 0.9761532307 0.8973556536 0.8564481929

8. Conclusion

Many phenomena in science that have been modeled by fractional differential
equations have some uncertainty, so for deriving a more accurate solution, we have
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Figure 3: The approximate solution for α = 0.25, α = 0.5 and α = 0.75.

to solve a SFDEs. In this paper, we proposed a Galerkin scheme based on the
second kind Chebyshev wavelets for solving SFDEs. In this scheme, we used the
operational matrices of fractional and stochastic integration for the second kind
Chebyshev wavelets. The main advantage of this method is to reduce the SFDEs
into a problem consisting of a system of algebraic equations. The reduction is
based on the operational matrices and the Galerkin method. The efficiency and
applicability of the suggested scheme is confirmed on some examples.
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