

(3s.) **v. 35** 1 (2017): 139–145. ISSN-00378712 IN PRESS doi:10.5269/bspm.v35i1.27933

On arithmetic continuity

Taja Yaying and Bipan Hazarika

ABSTRACT: In this article we introduce the concept of arithmetic continuity and arithmetic compactness and prove some intresting results related to these notions.

Key Words: Continuity; sequences; summability; compactness.

Contents

1	Introduction	139
2	Arithmetic Continuity	140
3	Arithmetic convergence of sequence of functions	142
4	Arithmetic Compactness	144

1. Introduction

A sequence $x = (x_k)$ defined on \mathbb{N} and $n \in \mathbb{N}$ the notation $\sum_{k|n} x_k$ means the finite sum of all the numbers x_k as k ranges over the integers that divide n including 1 and n. In general for integers k and n we write k|n to mean 'k divides n' or 'n is a multiple of k'. We use the symbol < m, n > to denote the greatest common divisor of two integers m and n.

W.H.Ruckle [11], introduced the notions arithmetically summable and arithmetically convergent as follows.

- (i) A sequence $x = (x_k)$ defined on \mathbb{N} is called *arithmetically summable* if for each $\varepsilon > 0$ there is an integer n such that for every integer m we have $\left|\sum_{k|m} x_k \sum_{k| < m, n > } x_k\right| < \varepsilon.$
- (ii) A sequence $y = (y_k)$ is called *arithmetically convergent* if for each $\varepsilon > 0$ there is an integer n such that for every integer m we have $|y_m y_{(< m, n >)}| < \varepsilon$.

From above two definitions it is clear that a sequence $x = (x_k)$ is arithmetically summable if and only if the sequence $y = (y_k)$ defined by $y_n = \sum_{k|n} x_k$ is arithmetically convergent, but the sequence $y = (y_k)$ is not convergent in the ordinary sense and is in fact periodic.

Typeset by $\mathcal{B}^{s} \mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: Primary: 40A35 Secondaries: 40A05; 26A15 Submitted May 24, 2015. Published October 03, 2015

A sequence $x = (x_k)$ is called periodic if there is a number n such that $x_{k+n} = x_k$ for all $k \in \mathbb{N}$, the smallest such integer n is called the period of the sequence x. Denote by \mathbf{P} the linear space of all periodic sequences and denote by \mathbf{QP} the closure of \mathbf{P} in the space ℓ_{∞} of all bounded sequences. For details about the spaces \mathbf{P} and \mathbf{QP} we refer to [2,3,8,9,13]. For details of arithmetically summable and arithmetical functions we refer to [7,12,14].

A subset E of \mathbb{R} is compact if any open covering of E has a finite subcovering, where \mathbb{R} is the set of real numbers. This is equivalent to the statement that any sequence $x = (x_n)$ of points in E has a convergent subsequence whose limit is in E. A real function f is continuous if and only if $(f(x_n))$ is a convergent sequence whenever (x_n) is. Regardless of limit, this is equivalent to the statement that $(f(x_n))$ is Cauchy whenever (x_n) is. Using the idea of continuity of a real function and the idea of compactness in terms of sequences, we introduce the concept of *arithmetic continuity* and *arithmetic compactness* and establish some interesting results related to these notions. For details on continuity of real valued functions we refer to [1,4,5,6,10]

2. Arithmetic Continuity

Definition 2.1. A function f defined on a subset E of \mathbb{R} is said to be arithmetic continuous if it transforms arithmetic convergent sequences to arithmetic convergent sequences. In other words, the sequence (x_n) is arithmetic convergent implies the sequence $(f(x_n))$ is arithmetic convergent.

Theorem 2.2. Sum of two arithmetic continuous functions is again arithmetic continuous.

Proof: Let f and g be arithmetic continuous functions on a subset E of \mathbb{R} . To prove that the function f + g is arithmetic continuous function on E. Let $\varepsilon > 0$ and (x_n) be any arithmetic convergent sequence on E. By the definition of arithmetic continuity the sequences $(f(x_n))$ and $(g(x_n))$ are arithmetic convergent sequences. Since $(f(x_n))$ and $(g(x_n))$ are arithmetic convergent sequences therefore for $\varepsilon > 0$ and a positive integer m

$$|f(x_n) - f(x_{< n,m>})| < \frac{\varepsilon}{2} \text{ for each } n \text{ and } |g(x_n) - g(x_{< n,m>})| < \frac{\varepsilon}{2} \text{ for each } n.$$

Now

$$\begin{aligned} |(f+g)(x_n) - (f+g)(x_{< n,m>})| &= |f(x_n) + g(x_n) - f(x_{< n,m>}) - g(x_{< n,m>})| \\ &\leq |f(x_n) - f(x_{< n,m>})| + |g(x_n) - g(x_{< n,m>})| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{ for each } n. \end{aligned}$$

This proves the theorem.

Theorem 2.3. The difference of two arithmetic continuous functions is again arithmetic continuous.

Proof: The proof is similar to the above theorem.

Theorem 2.4. If f is an arithmetic continuous function then |f| is arithmetic continuous.

Proof: Let f be an arithmetic continuous function on a subset E of \mathbb{R} . Let (x_n) be any arithmetic convergent sequence in E. Then by definition of arithmetic continuity the sequence $(f(x_n))$ is arithmetic convergent.

Therefore for $\varepsilon > 0$ there exists a positive integer m such that

$$|f(x_n) - f(x_{\leq n,m \geq})| < \varepsilon$$
 for each n .

Now

$$\begin{aligned} ||f|(x_n) - |f|(x_{< n,m>})| &= ||f(x_n)| - |f(x_{< n,m>})|| \\ &\leq |f(x_n) - f(x_{< n,m>})| < \varepsilon \text{ for each } n \end{aligned}$$

Hence the result.

Theorem 2.5. The composition of two arithmetic continuous functions is again arithmetic continuous.

Proof: Let f and g be two arithmetic continuous functions on a subset E of \mathbb{R} . To prove that the function $f \circ g(x_n) = f(g(x_n))$ is arithmetic continuous function. Let (x_n) be any arithmetic convergent sequence. Since g is arithmetic continuous, so the sequence $(g(x_n))$ is also arithmetic convergent. Furthermoer, it is given that f is arithmetic continuous, hence it transforms arithmetic convergent sequence $(g(x_n))$ to arithmetic convergent sequence $(f(g(x_n)))$. Hence the result follows.

Theorem 2.6. If f is uniformly continuous on a subset E of \mathbb{R} then it is arithmetic continuous.

Proof: Let f be uniformly continuous and (x_n) be any arithmetic convergent sequence in E. Since f is uniformly continuous in E, for a given $\varepsilon > 0$ there exists $\delta > 0$ such that for every $x, y \in E$ with $|x - y| < \delta$, $|f(x) - f(y)| < \varepsilon$. Again the sequence (x_n) is arithmetic convergent, hence for the same $\delta > 0$ there exists a positive integer m such that

$$\begin{aligned} |x_n - x_{< n,m>}| < \delta \text{ for each } n & \Rightarrow \quad |f(x_n) - f(x_{< n,m>})| < \varepsilon \text{ for each } n \\ & \Rightarrow \quad \text{the sequence } (f(x_n)) \text{ is arithmetic convergent.} \\ & \Rightarrow \quad \text{the function} f \text{ is arithmetic continuous.} \end{aligned}$$

This completes the proof.

3. Arithmetic convergence of sequence of functions

Definition 3.1. A sequence of functions (f_n) defined on a subset E of \mathbb{R} is said to be arithmetic convergent if for any $\varepsilon > 0$ and $\forall x \in E$ there exists a positive integer m such that

$$|f_n(x) - f_{\leq n,m \geq}(x)| < \varepsilon \ \forall x \in E \ and \ n \in \mathbb{N}.$$

Theorem 3.2. If (f_n) be a sequence of arithmetic functions defined on a subset E of \mathbb{R} and x_0 is a point in E such that

$$\lim_{x \to x_0} f_n(x) = y_n, \ n = 1, 2, 3 \dots$$

then (y_n) is arithmetic convergent.

Proof: Since the sequence (f_n) is arithmetic convergent therefore for $\varepsilon > 0$ and a positive integer m

$$|f_n(x) - f_{\leq n,m \geq}(x)| < \varepsilon \ \forall x \in E \text{ and } n \in \mathbb{N}.$$

Keeping n, m fixed and letting $x \to x_o$,

$$|y_n - y_{< n, m >}| < \varepsilon \ \forall \ n.$$

Hence the sequence (y_n) is arithmetic convergent.

Theorem 3.3. If (f_n) is a sequence of arithmetic continuous functions and (f_n) is uniformly convergent to a function f on a subset E of \mathbb{R} , then f is arithmetic continuous.

Proof: Let $\varepsilon > 0$ and (x_n) be any arithmetic convergent sequence on a subset E of \mathbb{R} . Since $f_n \to f$ uniformly, we have for a positive integer n_1 such that

$$|f_n(x) - f(x)| < \varepsilon \ \forall n \ge n_1 \text{ and } \forall x \in E.$$
(3.1)

In particular for $n = n_1$

$$|f_{n_1}(x) - f(x)| < \varepsilon \ \forall x \in E.$$
(3.2)

Furthermore (f_n) is given to be a sequence of arithmetic continuous functions, therefore

$$|f_{n_1}(x_n) - f_{n_1}(x_{< n, m >})| < \varepsilon.$$
(3.3)

Also from (3.1) we get

$$|f_{n_1}(x_{< n,m>}) - f(x_{< n,m>})| < \varepsilon.$$
(3.4)

Therefore using (3.2), (3.3), (3.4) we get

$$\begin{aligned} |f(x_n) - f(x_{< n,m>})| &= |f(x_n) - f_{n_1}(x_n) + f_{n_1}(x_n) - f_{n_1}(x_{< n,m>}) \\ &+ f_{n_1}(x_{< n,m>}) - f(x_{< n,m>})| \\ &\leq |f(x_n) - f_{n_1}(x_n)| + |f_{n_1}(x_n) - f_{n_1}(x_{< n,m>})| \\ &+ |f_{n_1}(x_{< n,m>}) - f(x_{< n,m>})| \\ &< \varepsilon + \varepsilon + \varepsilon = 3\varepsilon \end{aligned}$$

Hence f is arithmetic continuous, which concludes the proof.

Theorem 3.4. The set of all arithmetic continuous functions defined on a subset E of \mathbb{R} is a closed subset of all continuous function on E, i.e. acf(E) = acf(E), where acf(E) denotes the set of all arithmetic continuous functions defined on E and acf(E) denotes the set of all limit points of acf(E).

Proof: Let f be any element of $\overline{acf(E)}$. Then there exists a sequence of points in acf(E) such that $\lim f_n = f$. Now let (x_n) be any arithmetic convergent sequence in E. Since (f_n) converges to f, there exists a positive integer n_1 such that

$$|f(x) - f_n(x)| < \varepsilon \ \forall n \ge n_1 \text{ and } \forall x \in E.$$
(3.5)

Also since f_{n_1} is arithmetic continuous on E, there exists a positive integer m such that

$$|f_{n_1}(x_n) - f_{n_1}(x_{< n, m >})| < \varepsilon.$$
(3.6)

Again from (3.5),

$$|f_{n_1}(x_n) - f(x_n)| < \varepsilon , n = 1, 2, 3 \dots$$
(3.7)

Also

$$|f_{n_1}(x_{< n,m>}) - f(x_{< n,m>})| < \varepsilon.$$
(3.8)

Using (3.6), (3.7), (3.8) we get

$$\begin{aligned} |f(x_n) - f(x_{< n,m>})| &= |f(x_n) - f_{n_1}(x_n) + f_{n_1}(x_n) - f_{n_1}(x_{< n,m>}) \\ &+ f_{n_1}(x_{< n,m>}) - f(x_{< n,m>})| \\ &\leq |f(x_n) - f_{n_1}(x_n)| + |f_{n_1}(x_n) - f_{n_1}(x_{< n,m>})| \\ &+ |f_{n_1}(x_{< n,m>}) - f(x_{< n,m>})| \\ &< \varepsilon + \varepsilon + \varepsilon = 3\varepsilon. \end{aligned}$$

Hence f is arithmetic continuous on E. This completes the proof of the theorem. \Box

Corollary 3.5. The set of all arithmetic continuous functions defined on a subset E of \mathbb{R} is a complete subspace of the space of all continuous functions.

4. Arithmetic Compactness

Definition 4.1. A subset E of \mathbb{R} is called aritmetic compact if every sequence of points in E has arithmetic convergent subsequence.

Theorem 4.2. An arithmetic continuous image of an arithmetic compact subset of \mathbb{R} is arithmetic compact.

Proof: Let f be an arithmetic continuous function on a subset E of \mathbb{R} and E is arithmetic compact. Let (y_n) be a sequence of points in f(E). Then we can write $y_n = f(x_n)$ where $(x_n) \in E$ for each $n \in \mathbb{N}$. Since E is arithmetic compact, there exists an arithmetic convergent subsequence (x_{n_k}) of (x_n) . Again it is given that f is arithmetic continuous, this implies that $f(x_{n_k})$ is arithmetic convergent subsequence of $f(x_n)$. Hence f(E) is arithmetic compact. \Box

Corollary 4.3. An arithmetic continuous image of a compact subset of \mathbb{R} is arithmetic compact.

References

- J. Antoni and T. Šalát, On the A-continuity of real functions, Acta Math. Univ. Comenian. 39(1980), 159-164.
- I. D. Berg and A. Wilansky, Periodic, almost periodic and semi-periodic sequences, Michigan Math. J., 9(1962),263-268.
- I. D. Berg, The conjugate space of the space of semiperiodic sequences, Michigan Math. J., 13(1962),293-297.
- I. Çanak, M. Dik, New Types of Continuities, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2010, Article ID 258980, (2010).
- J. Connor, K. G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math., 33(1)(2003), 93-121.
- 6. M. Et, Muhammed Çinar, Murat Karakaş, On λ -statistical convergence of order α of sequences of function, J. Ineq. Appl., 2013, 2013:204.
- P. Haukkanen, T. Tossavainen, Approximation of arithmetical functions by even functions, JP. J. Algebra Number Theory Appl., 10(1)(2008), 51-63.
- 8. G. H. Hardy and E. M. Wright, An introduction to the theory of Numbers, Fourth Edition, 1960, Oxford.
- 9. M. N. Jimenez, Multipliers on the space of semiperiodic sequences, Trans. Amer. Math. Soc., 291(1985),801-811.
- 10. E. C. Posner, Summability preserving functions, Proc.Amer.Math.Soc. 12(1961), 73-76.
- 11. W. H. Ruckle, Arithmetical Summability, J. Math. Anal. Appl. 396(2012),741-748.
- 12. W. Schwarz, J. Spilker, Arithmetical functions. An Introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, in : London Math. Soc. Lecture Note Series, Vol 184, Cambridge University Press, Cambridge, 1994.
- J. A. Siddiqi, Infinite matrices summing every almost periodic sequence, Pacific J. Math., 39(1971), 235-251.
- 14. Taja Yaying and Bipan Hazarika, On arithmetical summability and multiplier sequences (preprint).

On arithmetic continuity

Taja Yaying Department of Mathematics, Dera Natung Govt. College, Itanagar-791 111, Arunachal Pradesh, India E-mail address: tajayaying20@gmail.com

and

Bipan Hazarika (Corresponding author) Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791 112, Arunachal Pradesh, India E-mail address: bh_rgu@yahoo.co.in