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On arithmetic continuity
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abstract: In this article we introduce the concept of arithmetic continuity and
arithmetic compactness and prove some intresting results related to these notions.
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1. Introduction

A sequence x = (xk) defined on N and n ∈ N the notation
∑

k|n xk means
the finite sum of all the numbers xk as k ranges over the integers that divide n

including 1 and n. In general for integers k and n we write k|n to mean ’k divides
n’ or ’n is a multiple of k’. We use the symbol < m,n > to denote the greatest
common divisor of two integers m and n.

W.H.Ruckle [11], introduced the notions arithmetically summable and arith-
metically convergent as follows.

(i) A sequence x = (xk) defined on N is called arithmetically summable if for
each ε > 0 there is an integer n such that for every integer m we have
∣

∣

∣

∑

k|m xk −
∑

k|<m,n> xk

∣

∣

∣
< ε.

(ii) A sequence y = (yk) is called arithmetically convergent if for each ε > 0 there
is an integer n such that for every integer m we have

∣

∣ym − y(<m,n>)

∣

∣ < ε.

From above two definitions it is clear that a sequence x = (xk) is arithmetically
summable if and only if the sequence y = (yk) defined by yn =

∑

k|n xk is arith-

metically convergent, but the sequence y = (yk) is not convergent in the ordinary
sense and is in fact periodic.
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A sequence x = (xk) is called periodic if there is a number n such that xk+n = xk

for all k ∈ N, the smallest such integer n is called the period of the sequence x.

Denote by P the linear space of all periodic sequences and denote by QP the clo-
sure of P in the space ℓ∞ of all bounded sequences. For details about the spaces
P and QP we refer to [2,3,8,9,13]. For details of arithmetically summable and
arithmetical functions we refer to [7,12,14].

A subset E of R is compact if any open covering of E has a finite subcovering,
where R is the set of real numbers. This is equivalent to the statement that any
sequence x = (xn) of points in E has a convergent subsequence whose limit is in
E. A real function f is continuous if and only if (f(xn)) is a convergent sequence
whenever (xn) is. Regardless of limit, this is equivalent to the statement that
(f(xn)) is Cauchy whenever (xn) is. Using the idea of continuity of a real function
and the idea of compactness in terms of sequences, we introduce the concept of
arithmetic continuity and arithmetic compactness and establish some interesting
results related to these notions. For details on continuity of real valued functions
we refer to [1,4,5,6,10]

2. Arithmetic Continuity

Definition 2.1. A function f defined on a subset E of R is said to be arithmetic

continuous if it transforms arithmetic convergent sequences to arithmetic conver-

gent sequences. In other words, the sequence (xn) is arithmetic convergent implies

the sequence (f(xn)) is arithmetic convergent.

Theorem 2.2. Sum of two arithmetic continuous functions is again arithmetic

continuous.

Proof: Let f and g be arithmetic continuous functions on a subset E of R. To
prove that the function f+g is arithmetic continuous function on E. Let ε > 0 and
(xn) be any arithmetic convergent sequence on E. By the definition of arithmetic
continuity the sequences (f(xn)) and (g(xn)) are arithmetic convergent sequences.
Since (f(xn)) and (g(xn)) are arithmetic convergent sequences therefore for ε > 0
and a positive integer m

|f(xn)− f(x<n,m>)| <
ε

2
for each n and |g(xn)− g(x<n,m>)| <

ε

2
for each n.

Now

|(f + g)(xn)− (f + g)(x<n,m>)| = |f(xn) + g(xn)− f(x<n,m>)− g(x<n,m>)|

≤ |f(xn)−f(x<n,m>)|+|g(xn)− g(x<n,m>)|

<
ε

2
+

ε

2
= ε for each n.

This proves the theorem. ✷
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Theorem 2.3. The difference of two arithmetic continuous functions is again

arithmetic continuous.

Proof: The proof is similar to the above theorem. ✷

Theorem 2.4. If f is an arithmetic continuous function then |f | is arithmetic

continuous.

Proof: Let f be an arithmetic continuous function on a subset E of R. Let (xn)
be any arithmetic convergent sequence in E. Then by definition of arithmetic con-
tinuity the sequence (f(xn)) is arithmetic convergent.
Therefore for ε > 0 there exists a positive integer m such that

|f(xn)− f(x<n,m>)| < ε for each n.

Now

||f | (xn)− |f | (x<n,m>)| = ||f(xn)| − |f(x<n,m>)||

≤ |f(xn)− f(x<n,m>)| < ε for each n.

Hence the result. ✷

Theorem 2.5. The composition of two arithmetic continuous functions is again

arithmetic continuous.

Proof: Let f and g be two arithmetic continuous functions on a subset E of R.
To prove that the function f ◦ g(xn) = f(g(xn)) is arithmetic continuous function.
Let (xn) be any arithmetic convergent sequence. Since g is arithmetic continuous,so
the sequence (g(xn)) is also arithmetic convergent. Furthermoer, it is given that
f is arithmetic continuous, hence it transforms arithmetic convergent sequence
(g(xn)) to arithmetic convergent sequence (f(g(xn))).
Hence the result follows. ✷

Theorem 2.6. If f is uniformly continuous on a subset E of R then it is arithmetic

continuous.

Proof: Let f be uniformly continuous and (xn) be any arithmetic convergent
sequence in E. Since f is uniformly continuous in E, for a given ε > 0 there
exists δ > 0 such that for every x, y ∈ E with |x− y| < δ, |f(x)− f(y)| < ε.
Again the sequence (xn) is arithmetic convergent, hence for the same δ > 0 there
exists a positive integer m such that

|xn− x<n,m>| < δ for each n ⇒ |f(xn)− f(x<n,m>)| < ε for each n

⇒ the sequence (f(xn)) is arithmetic convergent.

⇒ the functionf is arithmetic continuous.

This completes the proof. ✷
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3. Arithmetic convergence of sequence of functions

Definition 3.1. A sequence of functions (fn) defined on a subset E of R is said

to be arithmetic convergent if for any ε > 0 and ∀ x ∈ E there exists a positive

integer m such that

|fn(x)− f<n,m>(x)| < ε ∀x ∈ E and n ∈ N.

Theorem 3.2. If (fn) be a sequence of arithmetic functions defined on a subset E

of R and x0 is a point in E such that

lim
x→x0

fn(x) = yn, n = 1, 2, 3 . . . .

then (yn) is arithmetic convergent.

Proof: Since the sequence (fn) is arithmetic convergent therefore for ε > 0 and a
positive integer m

|fn(x)− f<n,m>(x)| < ε ∀x ∈ E and n ∈ N.

Keeping n,m fixed and letting x → xo,

|yn − y<n,m>| < ε ∀ n.

Hence the sequence (yn) is arithmetic convergent. ✷

Theorem 3.3. If (fn) is a sequence of arithmetic continuous functions and (fn)
is uniformly convergent to a function f on a subset E of R, then f is arithmetic

continuous.

Proof: Let ε > 0 and (xn) be any arithmetic convergent sequence on a subset E

of R. Since fn → f uniformly, we have for a positive integer n1 such that

|fn(x)− f(x)| < ε ∀n ≥ n1 and ∀x ∈ E. (3.1)

In particular for n = n1

|fn1
(x) − f(x)| < ε ∀x ∈ E. (3.2)

Furthermore (fn) is given to be a sequence of arithmetic continuous functions,
therefore

|fn1
(xn)− fn1

(x<n,m>)| < ε. (3.3)

Also from (3.1) we get

|fn1
(x<n,m>)− f(x<n,m>)| < ε. (3.4)
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Therefore using (3.2),(3.3),(3.4) we get

|f(xn)− f(x<n,m>)| = |f(xn)− fn1
(xn) + fn1

(xn)− fn1
(x<n,m>)

+fn1
(x<n,m>)− f(x<n,m>)|

≤ |f(xn)− fn1
(xn)|+ |fn1

(xn)− fn1
(x<n,m>)|

+ |fn1
(x<n,m>)− f(x<n,m>)|

< ε+ ε+ ε = 3ε

Hence f is arithmetic continuous, which concludes the proof. ✷

Theorem 3.4. The set of all arithmetic continuous functions defined on a subset

E of R is a closed subset of all continuous function on E, i.e. acf(E)=acf(E),
where acf(E) denotes the set of all arithmetic continuous functions defined on E

and acf(E) denotes the set of all limit points of acf(E).

Proof: Let f be any element of acf(E). Then there exists a sequence of points in
acf(E) such that lim fn = f. Now let (xn) be any arithmetic convergent sequence
in E. Since (fn) converges to f, there exists a positive integer n1 such that

|f(x)− fn(x)| < ε ∀n ≥ n1 and ∀x ∈ E. (3.5)

Also since fn1
is arithmetic continuous on E, there exists a positive integer m such

that

|fn1
(xn)− fn1

(x<n,m>)| < ε. (3.6)

Again from(3.5),

|fn1
(xn)− f(xn)| < ε , n = 1, 2, 3 . . . . (3.7)

Also

|fn1
(x<n,m>)− f(x<n,m>)| < ε. (3.8)

Using (3.6),(3.7),(3.8) we get

|f(xn)− f(x<n,m>)| = |f(xn)− fn1
(xn) + fn1

(xn)− fn1
(x<n,m>)

+fn1
(x<n,m>)− f(x<n,m>)|

≤ |f(xn)− fn1
(xn)|+ |fn1

(xn)− fn1
(x<n,m>)|

+ |fn1
(x<n,m>)− f(x<n,m>)|

< ε+ ε+ ε = 3ε.

Hence f is arithmetic continuous on E. This completes the proof of the theorem.
✷

Corollary 3.5. The set of all arithmetic continuous functions defined on a subset

E of R is a complete subspace of the space of all continuous functions.
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4. Arithmetic Compactness

Definition 4.1. A subset E of R is called aritmetic compact if every sequence of

points in E has arithmetic convergent subsequence.

Theorem 4.2. An arithmetic continuous image of an arithmetic compact subset

of R is arithmetic compact.

Proof: Let f be an arithmetic continuous function on a subset E of R and E

is arithmetic compact. Let (yn) be a sequence of points in f(E). Then we can
write yn = f(xn) where (xn) ∈ E for each n ∈ N. Since E is arithmetic compact,
there exists an arithmetic convergent subsequence (xnk

) of (xn). Again it is given
that f is arithmetic continuous, this implies that f(xnk

) is arithmetic convergent
subsequence of f(xn). Hence f(E) is arithmetic compact. ✷

Corollary 4.3. An arithmetic continuous image of a compact subset of R is arith-

metic compact.
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