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On some metabelian 2-group and applications II

Abdelmalek Azizi, Abdelkader Zekhnini and Mohammed Taous

abstract: Let G be some metabelian 2-group such that G/G′ ≃ Z/2Z× Z/2Z×
Z/2Z. In this paper, we construct all the subgroups of G of index 2 or 4, we give the
abelianization types of these subgroups and we compute the kernel of the transfer
map. Then we apply these results to study the capitulation problem of the 2-ideal

classes of some fields k satisfying the condition Gal(k
(2)
2 /k) ≃ G, where k

(2)
2 is the

second Hilbert 2-class field of k.
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1. Introduction

Let k be an algebraic number field and let Cl(k) denote its class group. Let k(1)

be the Hilbert class field of k, that is the maximal abelian unramified extension
of k. Let k(2) be the Hilbert class field of k(1) and put G = Gal(k(2)/k). Denote
by F a finite extension of k and by H the subgroup of G which fixes F , then we
say that an ideal class of k capitulates in F if it is in ker jk→F , the kernel of the
homomorphism:

jk→F : Cl(k) −→ Cl(F )

induced by extension of ideals from k to F . An important problem in Number
Theory is to explicitly determine the kernel of jk→F , which is usually called the
capitulation kernel. As jk→F corresponds, by Artin reciprocity law, to the group
theoretical transfer (for details see [14]):

VG→H : G/G′ −→ H/H ′,

where G′ (resp. H ′) is the derived group of G (resp. H). So, determining ker jk→F

is equivalent to determine kerVG→H , which transforms the capitulation problem
to a problem of Group Theory. That is why the capitulation problem is completely
solved if G/G′ ≃ (2, 2), since groups G such that G/G′ ≃ (2, 2) are determined and
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well classified (see [11,14]). If G/G′ ≃ (2, 2n), for some integer n ≥ 2, then G is
metacyclic or not; in the first case the capitulation problem is completely solved,
whereas in the second case the problem is open (see [6,7]). If G/G′ ≃ (2, 2, 2),
then the structure of G is unknown in most cases, so the capitulation problem is
also style open, in reality there are some studies which dealt with this problem in
particular cases; see [1,2,3,9,10]. It is the purpose of this paper to provide answers
to this problem in a particular case, it is the continuation of a project we started in
[4,5]; we give some group theoretical results to solve the capitulation problem, in
a particular case, if G satisfies the last condition. For this, we consider the family
of groups defined, for integers n ≥ 1 and m ≥ 2, as follows

Gn,m = 〈σ, τ , ρ : ρ4 = τ2
n+1

= σ2m = 1, ρ2 = τ2
n

σ2m−1

,

[τ , σ] = 1, [ρ, σ] = σ2, [ρ, τ ] = ρ2〉
(1.1)

In this paper, we construct all the subgroups of Gn,m of index 2 or 4, we give the
abelianization types of these subgroups and we compute the kernel of the transfer
map VG→H : Gn,m/G′

n,m → H/H ′, for any subgroup H of Gn,m, defined by the
Artin map. Then we apply these results to study the capitulation problem of the

2-ideal classes of some fields k satisfying the condition Gal(k
(2)
2 /k) ≃ Gn,m, where

k
(2)
2 is the second Hilbert 2-class field of k. Finally, we illustrate our results by

some examples which show that our group is realizable i.e. there is a field k such

that Gal(k
(2)
2 /k) ≃ Gn,m.

2. Main Results

Recall first that a group G is said to be metabelian if its derived group G′ is
abelian, and a subgroup H of a group G, not reduced to an element, is called
maximal if it is the unique subgroup of G distinct from G containing H .

Let Gn,m be the group family defined by the Formula (1.1). Since [τ, σ] = 1,

[ρ, σ] = σ2 and [ρ, τ ] = ρ2 = τ2
n

σ2m−1

, so G′
n,m = 〈σ2, ρ2〉 = 〈σ2, τ2

n

σ2m−1〉 =

〈σ2, τ2
n〉, which is abelian. Then Gn,m is metabelian and Gn,m/G′

n,m ≃ (2, 2, 2n).
Hence Gn,m admits seven subgroups of index 2, denote them by Hi,2, and if n = 1
it admits also seven subgroups of index 4, we denote them by Hi,4, where 1 ≤ i ≤ 7.
These subgroups, their derived groups and the types of their abelianizations are
given in Tables 1 and 2 below, where b = max(m,n+ 1).

To check the Tables entries, we use the following lemmas.

Lemma 2.1 ( [12], Prposition 5.1.5). Let x, y and z be elements of some group G,

put xy = y−1xy. Then [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z .

Lemma 2.2. Let Gn,m = 〈σ, τ , ρ〉 denote the group defined above, then

1. ρ2 commutes with σ and τ .

2. ρ−1σρ = σ−1.

3. τ−1ρτ = ρ3 and ρ−1τρ = τρ2.
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Table 1: Subgroups of Gn,m of index 2

i Hi,2 H ′
i,2 Hi,2/H

′
i,2

1 〈σ, τ 〉 〈1〉
(

2m, 2n+1
)

2 〈σ, ρ〉 〈σ2〉 (2, 4)
m = 2 〈τ , ρ〉 〈ρ2〉 (2, 4)

3
m ≥ 3 〈τ , ρ, σ2〉 〈ρ2, σ4〉 (2, 2, 2n)

n = 1 and m = 2 〈στ, ρ, τ2〉 〈τ2〉 (2, 4)
n ≥ 2 and m = 2 〈στ, ρ〉 〈τ2n〉 (4, 2n)

4
n = 1 and m ≥ 3 〈στ, ρ〉 〈(στ)2〉 (2, 4)

n ≥ 2 and m ≥ 3 〈στ, ρ, σ2〉 〈σ2ρ2〉
(

2, 2n+1
)

if n = m− 1
(

4, 2b
)

if n 6= m− 1

m = 2 〈σρ, τ 〉 〈ρ2〉
(

2, 2n+1
)

5
m ≥ 3 〈σρ, τ , σ2〉 〈ρ2, σ4〉 (2, 2, 2n)

6 〈τρ, σ〉 〈σ2〉
(

2, 2n+1
)

7 〈σρ, τρ〉 〈σ2ρ2〉 (4, 2n)

Table 2: Subgroups of G1,m of index 4

i Hi,4 H ′
i,4 Hi,4/H

′
i,4

1 〈σ, τ2〉 〈1〉 (2, 2m)

2 〈τ , σ2〉 〈1〉
(

4, 2m−1
)

3 〈ρ, σ2〉 〈σ4〉 (2, 4)
4 〈στ, τ2〉 〈1〉 (2, 2m)
5 〈σρ, σ2〉 〈σ4〉 (2, 4)
6 〈τρ, σ2〉 〈σ4〉 (2, 4)
7 〈στρ, σ2〉 〈σ4〉 (2, 4)

4. (σρ)2 = ρ2 and (στρ)2 = (τρ)2 = τ2.

5. [ρ, στ ] = ρ2σ2.

6. [ρ, τ2] = 1 and for all r ∈ N, [ρ, σ2r ] = σ2r+1

.

Proof: 1., 2. and 3. are obvious, since ρ2 = τ2
n

σ2m−1

, [ρ, σ] = σ2 and [ρ, τ ] = ρ2.
4. (σρ)2 = σρσρ = σρ2ρ−1σρ = σρ2σ−1 = ρ2.
(στρ)2 = στρστρ = στ2τ−1ρτσρ = στ2ρ−1σρ = στ2σ−1 = τ2. We proceed
similarly to prove the remaining result.
5. Obvious by Lemma 2.1.
6. [ρ, τ2] = ρ−1τ−2ρτ2 = ρ−1τ−1τ−1ρττ = ρ−1τ−1ρ3τ = ρ−1ρ2τ−1ρτ = ρ4 = 1.
As [ρ, τ ] = τ2, so [ρ, τ2] = τ4. By induction, we show that for all r ∈ N∗,

[ρ, σ2r ] = σ2r+1

. ✷

Let us now prove some entries of the Tables, using Lemmas 2.1 and 2.2.
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• For H1,2 = 〈σ, τ ,G′
n,m〉 = 〈σ, τ〉, we have H ′

1,2 = 〈1〉, since [σ, τ ] = 1. As

σ2m = τ2
n+1

= 1, so H1,2/H
′
1,2 ≃

(

2m, 2n+1
)

.

• For H2,2 = 〈σ, ρ,G′
n,m〉 = 〈σ, ρ, τ2n , σ2〉 = 〈σ, ρ, τ2n〉. As ρ2 = τ2

n

σ2m−1

,
so H2,2 = 〈σ, ρ〉. Therefore, by Lemma 2.2, we get H ′

2,2 = 〈σ2〉, thus
H2,2/H

′
2,2 ≃ (2, 4), since ρ4 = 1.

• For H4,2 = 〈στ, ρ,G′
n,m〉 = 〈στ, ρ, τ2

n

, σ2〉 = 〈στ, ρ, σ2〉 = 〈στ, ρ, τ2〉,
since τ2 = (στ )2σ−2. We get

- If n = 1 and m = 2, then ρ2 = τ2σ2 and τ4 = σ4 = 1. Lemma 2.2 yields
that H ′

4,2 = 〈τ2〉. Thus H4,2/H
′
4,2 ≃ (2, 4) since ρ4 = 1.

- If n ≥ 2 and m = 2, then ρ2 = τ2
n

σ2 and σ4 = 1, thus ρ2 = (στ)2
n

σ2;
which implies that ρ2(στ )−2n = σ2. Hence H4,2 = 〈στ, ρ〉, and Lemma
2.2 yields that H ′

4,2 = 〈ρ2σ2〉 = 〈τ2n〉. Thus H4,2/H
′
4,2 ≃ (4, 2n).

- If n = 1 and m ≥ 3, then ρ2 = τ2σ2m−1

= τ2(στ )2
m−1

and τ4 = 1,
hence H4,2 = 〈στ, ρ〉, and Lemma 2.2 yields that H ′

4,2 = 〈(στ)2〉. Thus
H4,2/H

′
4,2 ≃ (2, 4).

- If n ≥ 2 and m ≥ 3, then H4,2 = 〈στ, ρ, σ2〉, and Lemma 2.2 yields that
H ′

4,2 = 〈ρ2σ2, σ4〉 = 〈ρ2σ2〉 since σ4 = (ρ2σ2)2. On the other hand,
H4,2 = 〈στ, ρ, ρ2σ2〉, thus H4,2/H

′
4,2 = 〈στ, ρ〉/H ′

4,2. We have two cases

to distinguish. If n = m − 1, then ρ2 = (στ )2
n

; hence H4,2/H
′
4,2 ≃

(2, 2n+1) = (2, 2m). If n 6= m− 1, then H4,2/H
′
4,2 ≃

(

4, 2max(n+1,m)
)

.

• For H1,4 = 〈σ, G′
n,m〉 = 〈σ, σ2, τ2〉 = 〈σ, τ2〉, we have H ′

1,4 = 〈1〉, since

[σ, τ ] = 1. As σ2m = τ4 = 1, so H1,4/H
′
1,4 ≃ (2, 2m).

• For H2,4 = 〈τ , G′
n,m〉 = 〈τ , τ2, σ2〉 = 〈τ , σ2〉, we have H ′

2,4 = 〈1〉, hence

H2,4/H
′
2,4 ≃

(

4, 2m−1
)

.

The other entries of the Tables 1 and 2 are similarly checked.

Proposition 2.3. Let Gn,m be the group family defined by Formula (1.1), then

1. The order of Gn,m is 2m+n+2 and that of G′
n,m is 2m.

2. The coclass of Gn,m is n+ 2 and its nilpotency class is m.

3. The center, Z(G), of G is of type (2, 2n).

Proof: 1. Since σ2m = τ2
n+1

= 1 and for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ 1
σ2i 6= τ2

j

, then 〈σ, τ 〉 ≃
(

2m, 2n+1
)

. Moreover, as ρ2 = τ2
n

σ2m−1

, so 〈σ, τ , ρ〉 ≃
(

2m, 2n+1, 2
)

. Thus |Gn,m| = 2m+n+2. Similarly, we prove that |G′
n,m| = 2m,

since G′
n,m = 〈σ2, τ2

n〉 ≃ (2, 2m−1).
2. The lower central series of Gn,m is defined inductively by γ1(Gn,m) = Gn,m

and γi+1(Gn,m) = [γi(Gn,m), Gn,m], that is the subgroup of Gn,m generated by the
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set {[a, b] = a−1b−1ab| a ∈ γi(Gn,m), b ∈ Gn,m}, so the coclass of Gn,m is defined
to be cc(Gn,m) = h− c, where |Gn,m| = 2h and c = c(Gn,m) is the nilpotency class
of Gn,m. We easily get
γ1(Gn,m) = Gn,m.
γ2(Gn,m) = G′

n,m = 〈σ2, ρ2〉 = 〈σ2, τ2
n〉.

γ3(Gn,m) = [G′
n,m, Gn,m] = 〈σ4〉 since [ρ, τ2] = 1.

Then Lemma 2.2(6) yields that for j ≥ 2, γj+1(Gn,m) = [γj(Gn,m), Gn,m] = 〈σ2j 〉.
Hence γm+1(Gn,m) = 〈σ2m〉 = 〈1〉 and γm(Gn,m) = 〈σ2m−1〉 6= 〈1〉, so c(Gn,m) =
m. Since | Gn,m |= 2m+n+2, then

cc(Gn,m) = m+ n+ 2−m = n+ 2.

3. To prove the last assertion, we use Lemma 12.12 of [13, pp. 204] which
states that if G is a p-group and A is a normal abelian subgroup of G such that G/A
is cyclic, then A/A ∩ Z(G) ≃ G′. Let A = H1,2, so A is abelian and [G : A] = 2,
thus Z(G) ⊂ A and A/Z(G) ≃ G′. Hence |G| = |A|[G : A] = 2|G′||Z(G)|, thus

|Z(G)| = 1
2 |G/G′| = 2n+1. On the other hand, by Lemma 2.2 we have [ρ, σ2m−1

] =

σ2m = 1 and [ρ, τ2] = 1, so 〈σ2m−1

, τ2〉 ⊂ Z(G). As
∣

∣

∣
〈σ2m−1

, τ2〉
∣

∣

∣
= 2n+1, so

〈σ2m−1

, τ2〉 = Z(G) ≃ (2, 2n). ✷

We continue with the following results.

Proposition 2.4 ( [14]). Let H be a normal subgroup of a group G. For g ∈ G,

put f = [〈g〉.H : H ] and let {x1, x2, . . . , xt} be a set of representatives of G/〈g〉H.

The transfer map VG→H : G/G′ → H/H ′ is given by the following formula

VG→H(gG′) =
t
∏

i=1

x−1
i gfxi.H

′. (2.1)

Easily, we prove the following corollaries.

Corollary 2.5. Let H be a subgroup of Gn,m of index 2. If Gn,m/H = {1, zH},
then VG→H(gG′

n,m) =

{

gz−1gz.H ′ = g2[g, z].H ′ if g ∈ H,
g2.H ′ if g 6∈ H.

Corollary 2.6. Let H be a normal subgroup of Gn,m of index 4. If Gn,m/H =
{1, zH, z2H, z3H}, then

VG→H(gG′
n,m) =







gz−1gz−1gz−1gz3.H ′ if g ∈ H,
g4.H ′ if gH = zH,
g2z−1g2z.H ′ if g 6∈ H and gH 6= zH.

Corollary 2.7. Let H be a normal subgroup of Gn,m of index 4. If Gn,m/H =
{1, z1H, z2H, z3H} with z3 = z1z2, then

VG→H(gG′
n,m) =

{

gz−1
1 gz1z

−1
2 gz−1

1 gz1z2.H
′ if g ∈ H,

g2z−1
i g2zi.H

′ if gH = zjH with i 6= j.
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We can now establish our main result. Let kerVH denote the kernel of the
transfer map VGn,m→H : Gn,m/G′

n,m → H/H ′, where H is a subgroup of Gn,m.

Theorem 2.8. Keep the previous notations. Then

1. kerVH1,2 = 〈σG′
n,m〉.

2. kerVH2,2 = 〈σG′
n,m, ρG′

n,m〉.

3. kerVH3,2 =







〈τρG′
n,m, σρG′

n,m〉 if m = 2 and n = 1,
〈τG′

n,m, σρG′
n,m〉 if m ≥ 3 and n = 1,

〈σρG′
n,m〉 otherwise .

4. kerVH4,2 =







〈τG′
n,m, ρG′

n,m〉 if m = 2 and n = 1,
〈ρG′

n,m, στG′
n,m〉 if m ≥ 3 and n = 1,

〈ρG′
n,m〉 otherwise .

5. kerVH5,2 =







〈ρG′
n,m, στG′

n,m〉 if m = 2 and n = 1,
〈ρG′

n,m, τG′
n,m〉 if m ≥ 3 and n = 1,

〈ρG′
n,m〉 otherwise .

6. kerVH6,2 =

{

〈τρG′
n,m, σG′

n,m〉 if n = 1,
〈σG′

n,m〉 if n ≥ 2.

7. kerVH7,2 =







〈σρG′
n,m, τG′

n,m〉 if m = 2 and n = 1,
〈σρG′

n,m, τρG′
n,m〉 if m ≥ 3 and n = 1,

〈σρG′
n,m〉 otherwise .

8. If n = 1, then for all 1 ≤ i ≤ 7, kerVHi,4 = G1,m/G′
1,m.

Proof: We prove only some assertions, the others are similarly shown.
1. We know, from the Table 1, that H1,2 = 〈σ, τ〉, then Gm,n/H1,2 = {1, ρH1,2}
and H ′

1,2 = 〈1〉. Hence, by Corollary 2.5 and Lemma 2.2, we get

∗ VGm,n→H1,2 (σG
′
m,n) = σ2[σ, ρ]H ′

1,2 = σ2σ−2H ′
1,2 = H ′

1,2.

∗ VGm,n→H1,2 (τG
′
m,n) = τ2[τ, ρ]H ′

1,2 = τ2ρ−2H ′
1,2 = τ2ρ2H ′

1,2 6= H ′
1,2.

∗ VGm,n→H1,2 (ρG
′
m,n) = ρ2H ′

1,2 6= H ′
1,2.

∗ VGm,n→H1,2 (στG
′
m,n) = (στ )2[στ, ρ]H ′

1,2 = (στ )2σ−2ρ2H ′
1,2 = τ2ρ2H ′

1,2 6=
H ′

1,2.

∗ VGm,n→H1,2 (σρG
′
m,n) = (σρ)2H ′

1,2 = ρ2H ′
1,2 6= H ′

1,2.

∗ VGm,n→H1,2 (τρG
′
m,n) = (τρ)2H ′

1,2 = τ2H ′
1,2 6= H ′

1,2.

∗ VGm,n→H1,2 (στρG
′
m,n) = (στρ)2H ′

1,2 = τ2H ′
1,2 6= H ′

1,2.
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Therefore kerVH1,2 = 〈σG′
m,n〉.

3. Similarly, from the Table 1, we get H3,2 =

{

〈τ , ρ〉 if m = 2,
〈τ , ρ, σ2〉 if m ≥ 3.

Then

Gm,n/H3,2 = {1, σH3,2} and H ′
3,2 =















〈ρ2〉 = 〈(στ )2〉 if m = 2 and n = 1,
〈ρ2〉 = 〈σ2τ2

n〉 if m = 2 and n ≥ 2,
〈ρ2, σ4〉 = 〈σ4, τ2〉 if m ≥ 3 and n = 1,
〈ρ2, σ4〉 = 〈σ4, τ2

n〉 if m ≥ 3 and n ≥ 2.
Hence, by Corollary 2.5 and Lemma 2.2, we get
1st case: m=2.

∗ VGm,n→H3,2 (σG
′
m,n) = σ2H ′

3,2 6= H ′
3,2.

∗ VGm,n→H3,2 (τG
′
m,n) = τ2[τ, σ]H ′

3,2 = τ2H ′
3,2 = H ′

3,2.

∗ VGm,n→H3,2 (ρG
′
m,n) = ρ2[ρ, σ]H ′

3,2 = ρ2σ2H ′
3,2 6= H ′

3,2.

∗ VGm,n→H3,2 (σρG
′
m,n) = ρ2H ′

3,2 = H ′
3,2.

∗ VGm,n→H3,2 (στG
′
m,n) = (στ )2H ′

3,2 =

{

H ′
3,2 if n = 1,

(στ )2H ′
3,2 6= H ′

3,2 if n ≥ 2.

Therefore kerVH3,2 =

{

〈τρG′
m,n, σρG

′
m,n〉 if m = 2 and n = 1,

〈σρG′
m,n〉 if m = 2 and n ≥ 2.

2nd case: m ≥ 3.

∗ VGm,n→H3,2 (σG
′
m,n) = σ2H ′

3,2 6= H ′
3,2.

∗ VGm,n→H3,2 (τG
′
m,n) = τ2[τ, σ]H ′

3,2 = τ2H ′
3,2 =

{

H ′
3,2 if n = 1,

τ2H ′
3,2 6= H ′

3,2 if n ≥ 2.

∗ VGm,n→H3,2 (ρG
′
m,n) = ρ2[ρ, σ]H ′

3,2 = ρ2σ2H ′
3,2 6= H ′

3,2.

∗ VGm,n→H3,2 (σρG
′
m,n) = ρ2H ′

3,2 = H ′
3,2.

∗ VGm,n→H3,2 (στG
′
m,n) = (στ )2H ′

3,2 6= H ′
3,2.

Therefore, kerVH3,2 =

{

〈σρG′
m,n, τG

′
m,n〉 if m ≥ 3 and n = 1,

〈σρG′
m,n〉 if m ≥ 3 and n ≥ 2.

8. We know, from the Table 2, that H1,4 = 〈σ, τ2〉, then
Gn,m/H1,4 = {1, τH1,4, ρH1,4, τρH1,4} and H ′

1,4 = 〈1〉. Hence Corollary 2.7 and
Lemma 2.2 yield that

∗ VGn,m→H1,4 (σG
′
n,m) = στ−1στρ−1στ−1στρH ′

1,4 = σ2ρ−1σ2ρH ′
1,4 = H ′

1,4.

∗ VGn,m→H1,4 (τG
′
n,m) = τ2ρ−1τ2ρH ′

1,4 = τ4τ−2ρ−1τ2ρH ′
1,4 = τ4H ′

1,4 = H ′
1,4.

∗ VGn,m→H1,4 (ρG
′
n,m) = ρ2τ−1ρ−2τH ′

1,4 = ρ4ρ−2τ−1ρ−2τH ′
1,4 = H ′

1,4.

Therefore, kerVH1,4 = 〈σG′
n,m, τG′

n,m, ρG′
n,m〉 = Gn,m/G′

n,m. ✷
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3. Applications

Let k be a number field and Ck,2 be its 2-class group, that is the 2-Sylow

subgroup of the ideal class group Ck of k, in the wide sens. Let k
(1)
2 be the Hilbert

2-class field of k in the wide sens. Then the Hilbert 2-class field tower of k is defined
inductively by: k

(0)
2 = k and k

(ℓ+1)
2 = (k

(ℓ)
2 )(1), where ℓ is a positive integer. Let

M be an unramified extension of k and CM be the subgroup of Ck associated to
M by Class Field Theory. Denote by jk→M : Ck −→ CM the homomorphism that
associates to the class of an ideal A of k the class of the ideal generated by A in
M, and by NM/k the norm of the extension M/k.

Throughout all this section, assume that Gal(k
(2)
2 /k) ≃ Gn,m. Hence, accord-

ing to Class Field Theory, Ck,2 ≃ Gn,m/G′
n,m ≃ (2, 2, 2n), thus Ck,2 = 〈a, b, c〉 ≃

〈σG′
n,m, τG′

n,m, ρG′
n,m〉, where (a,k

(2)
2 /k) = σG′

n,m, (b,k
(2)
2 /k) = τG′

n,m and

(c,k
(2)
2 /k) = ρG′

n,m, with ( . ,k
(2)
2 /k) denotes the Artin symbol in k

(2)
2 /k.

It is well known that each subgroup Hi,j , where 1 ≤ i ≤ 7 and j = 2 or 4, of
Ck,2 is associated, by class field theory, to a unique unramified extension Ki,j of

k
(1)
2 such that Hi,j/H

′
i,j ≃ CKi,j ,2.

Our goal is to study the capitulation problem of the 2-ideal classes of k in its
unramified quadratic extensions Ki,2 and in its unramified biquadratic extensions
Ki,4 if n = 1. By Class Field Theory, the kernel of jk→M, ker jk→M, is determined

by the kernel of the transfer map VG→H : G/G′ → H/H ′, where G = Gal(k
(2)
2 /k)

and H = Gal(M
(2)
2 /M).

Theorem 3.1. Keep the previous notations.

1. ker jk→K1,2 = 〈a〉.

2. ker jk→K2,2 = 〈a, c〉

3. ker jk→K3,2 =







〈bc, ac〉 if m = 2 and n = 1,
〈b, ac〉 if m ≥ 3 and n = 1,
〈ac〉 otherwise.

4. ker jk→K4,2 =







〈b, c〉 if m = 2 and n = 1,
〈ab, c〉 if m ≥ 3 and n = 1,
〈c〉 otherwise.

5. ker jk→K5,2 =







〈c, ab〉 if m = 2 and n = 1,
〈c, b〉 if if m ≥ 3 and n = 1,
〈c〉 otherwise.

6. ker jk→K6,2 =

{

〈bc, a〉 if n = 1,
〈a〉 if if n ≥ 2.

7. ker jk→K7,2 =







〈ac, b〉 if m = 2 and n = 1,
〈ac, bc〉 if if m ≥ 3 and n = 1,
〈ac〉 otherwise.
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8. If n = 1, then for all 1 ≤ i ≤ 7, ker jk→Ki,4 = Ck,2.

9. The 2-class group of k
(1)
2 is of type

(

2, 2m−1
)

.

10. The Hilbert 2-class field tower of k stops at k
(2)
2 .

Proof: According to the Theorem 2.8, we have
1. Since kerVH1,2 = 〈σG′

n,m〉, so ker jk→K1,2 = 〈a〉.
2. As kerVH2,2 = 〈σG′

n,m, ρG′
n,m〉, ker jk→K3,2 = 〈a, c〉.

3. Similarly, as kerVH3,2 =







〈τρG′
n,m, σρG′

n,m〉 if m = 2 and n = 1,
〈τG′

n,m, σρG′
n,m〉 if m ≥ 3 and n = 1,

〈σρG′
n,m〉 otherwise .

Then ker jk→K3,2 =







〈bc, ac〉 if m = 2 and n = 1,
〈b, ac〉 if m ≥ 3 and n = 1,
〈ac〉 otherwise .

The other assertions are similarly proved.
8. It is well known, by class field theory, that C

k
(1)
2 ,2

≃ G′
n,m, where C

k
(1)
2 ,2

is the

2-class group of k
(1)
2 . As G′

n,m = 〈σ2, τ2
n〉 ≃

(

2, 2m−1
)

, since σ2m = τ4 = 1. So
the result.
9. For every n ≥ 1, we have H1,4 = 〈σ,G′

n,m〉 = 〈σ, τ2n〉 ≃ (2, 2n), H2,4 = 〈τ , σ2〉 ≃
(2n+1, 2m−1) and H4,4 = 〈στ,G′

n,m〉 = 〈στ, σ2〉 ≃
(

2min(m−1,n), 2max(m,n+1)
)

are
the three subgroups of index 2 of the group H1,2, then K1,4, K2,4 and K4,4 are
the three unramified quadratic extensions of K1,2. On the other hand, the 2-class
groups of these fields are of rank 2, since, by Class Field Theory, CKi,j ,2 ≃ Hi,j/H

′
i,j

with i = 1, 2 or 4 and j = 2 or 4. Thus CK1,2,2 ≃ (2m, 4) and CK2,4,2 ≃
(

2m, 2n+1
)

. Hence h2(K2,4) =
h2(K1,2)

2 , where h2(K) denotes the 2-class number
of the field K. Therefore, we can apply Proposition 7 of [8], which says that
K1,2 has an abelian 2-class field tower if and only if it has a quadratic unramified

extension K2,4/K1,2 such that h2(K2,4) =
h2(K1,2)

2 . Thus K1,2 has abelian 2-class
field tower which terminates at the first stage; this implies that the 2-class field

tower of k terminates at k
(2)
2 , since k ⊂ K1,2. Moreover, we know, from Proposition

2.3, that |Gn,m| = 2m+n+2 and
∣

∣G′
n,m

∣

∣ = 2m, hence k
(1)
2 6= k

(2)
2 . ✷

4. Example

Let k = Q(
√
d) be an imaginary quadratic number field with discriminant

d = −4pqq′, where p ≡ 5 mod 8, q ≡ 3 mod 8 and q′ ≡ 7 mod 8 are primes such

that

(

q

p

)

=

(

q′

p

)

= −1. Let k
(1)
2 be the Hilbert 2-class field of k, k

(2)
2 its second

Hilbert 2-class field and G be the Galois group of k
(2)
2 /k. According to [10], k has

an elementary abelian 2-class group Ck,2 of rank 3, that is of type (2, 2, 2). Denote
by h2(−qq′) the 2-class number of Q(

√−qq′), then by [15,10] h2(−qq′) = 2m and
the 2-class group of Q(

√−qq′) is of type (2, 2m−1) with m ≥ 2. By [10, Theorem
1], we have G ≃ G1,m. As Ck,2 ≃ (2, 2, 2), then k has seven unramified quadratic
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extensions and seven unramified biquadratic extensions within his first Hilbert 2-

class field k
(1)
2 . For more details about the results given in this section and about the

following theorem the reader can see [10]. This theorem is given here to illustrate
the results shown in the above sections.

Theorem 4.1. Let k = Q(
√
d) be an imaginary quadratic number field with dis-

criminant d = −4pqq′, where p ≡ 5 mod 8, q ≡ 3 mod 8 and q′ ≡ 7 mod 8 are

primes such that

(

q

p

)

=

(

q′

p

)

= −1. k has fourteen unramified extensions within

his first Hilbert 2-class field, k
(1)
2 . Denote by Ck,2 the 2-class group of k. Then the

following assertions hold.

1. Ck,2 is of type (2, 2, 2).

2. Exactly four elements of Ck,2 capitulate in each unramified quadratic exten-

sion of k except one where only 2 classes capitulate.

3. All the 2-classes of k capitulate in each unramified biquadratic extension of

k.

4. The Hilbert 2-class field tower of k stops at k
(2)
2 .

5. C
k
(1)
2 ,2

≃ (2, 2m−1).

6. The coclass of G is 3 and its nilpotency class is m.

7. The 2-class groups of the unramified quadratic extensions of k are of types

(2, 4), (2, 2, 2) or (4, 2m).

8. The 2-class groups of the unramified biquadratic extensions of k are of types

(2, 4), (2, 2m) or (4, 2m−1).

Acknowledgments

We thank the referees for their suggestions and comments.

References

1. A. Azizi, A. Zekhnini and M. Taous, Coclass of Gal(k
(2)
2 /k) for some fields k =

Q
(√

p1p2q,
√
−1

)

with 2-class groups of type (2, 2, 2), to appear in J. Algebra Appl, (2015).
DOI: 10.1142/S0219498816500274.

2. A. Azizi, A. Zekhnini and M. Taous, Structure of Gal(k
(2)
2 /k) for some fields k =

Q(
√
2p1p2, i) with Cl2(k) ≃ (2, 2, 2), Abh. Math. Sem. Univ. Hamburg, Volume 84, 2 (2014),

203-231.

3. A. Azizi, A. Zekhnini, M. Taous and Daniel C. Mayer, Principalization of 2-class groups of
type (2, 2, 2) of biquadratic fields Q(

√
p1p2q, i), Int. J. Number Theory, Vol. 11, No. 04, pp.

1177-1215 (2015).

4. A. Azizi, A. Zekhnini and M. Taous, On some metabelian 2-group whose
abelianization is of type (2, 2, 2) and applications, J. Taibah Univ. Sci. (2015),
http://dx.doi.org/10.1016/j.jtusci.2015.01.007.



On some metabelian 2-group... 85

5. A. Azizi, A. Zekhnini and M. Taous, On some metabelian 2-group and applications I, to
appear in Colloquium Mathematicum.

6. A. Azizi, M. Taous and A. Zekhnini, On the 2-groups whose abelianizations are of type (2, 4)
and applications, to appear in Publicationes Mathematicae Debrecen.

7. E. Benjamin and C. Snyder, Number Fields with 2-class Number Isomorphic to (2, 2m),
preprint, 1994.

8. E. Benjamin, F. Lemmermeyer and C. Snyder, Real Quadratic Fields with Abelian 2-Class
Field tower, J. of Number Theory, Volume 73, Number 2, December (1998), pp. 182-194 (13).

9. E. Benjamin, F. Lemmermeyer, C. Snyder, Imaginary quadratic fields with Cl2(k) ≃ (2, 2, 2),
J. Number Theory 103 (2003), 38-70.

10. F. Lemmermeyer, On 2-class field towers of some imaginary quadratic number fields, Abh.
Math. Sem. Hamburg 67 (1997), 205-214

11. H. Kisilevsky, Number fields with class number ongruent to 4 mod 8 and Hilbert’s thorem
94, J. Number Theory 8 (1976), 271-279.

12. D. J. Robinson, A course in the Theory of Groups, 2nd ed. Springer-Verlag New York, (1996).

13. I. M. Isaacs, Character Theory of Finite Groups, New York: Academic Press, (1976).

14. K. Miyake, Algebraic Investigations of Hilbert’s Theorem 94, the Principal Ideal theorem and
Capitulation Problem, Expos. Math. 7 (1989), 289-346.

15. P. Kaplan, Sur le 2-groupe de classes d’idéaux des corps quadratiques. J. Reine angew. Math.
283/284 (1976), 313-363.

Abdelmalek Azizi and Abdelkader Zekhnini,

Department of Mathematics, Faculty of Sciences,

Mohammed First University, Oujda, Morocco.

Mohammed Taous, Department of Mathematics, Faculty of Sciences and Technology,

Moulay Ismail University, Errachidia, Morocoo.

E-mail address: abdelmalekazizi@yahoo.fr

E-mail address: zekha1@yahoo.fr

E-mail address: taousm@hotmail.com


	Introduction
	Main Results
	Applications
	Example

