

(3s.) v. 34 2 (2016): 43-52. ISSN-00378712 in press doi:10.5269/bspm.v34i2.19642

Strong Insertion of a γ -continuous Function

Majid Mirmiran and Binesh Naderi*

ABSTRACT: Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a γ -continuous function between two comparable real-valued functions

Key Words: Strong insertion, Strong binary relation, Preopen set, Semi-open set, γ -open set.

Contents

Introduction	43
The Main Result	44
Applications	46
	The Main Result

1. Introduction

The concept of a preopen set in a topological space was introduced by H. H. Corson and E. Michael in 1964 [4]. A subset A of a topological space (X, τ) is called preopen or locally dense or nearly open if $A \subseteq Int(Cl(A))$. A set A is called preclosed if its complement is preopen or equivalently if $Cl(Int(A)) \subseteq A$. The term preopen, was used for the first time by A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb [12], while the concept of a , locally dense, set was introduced by H. H. Corson and E. Michael [4].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [11]. A subset A of a topological space (X, τ) is called *semi-open* [11] if $A \subseteq Cl(Int(A))$. A set A is called *semi-closed* if its complement is semi-open or equivalently if $Int(Cl(A)) \subseteq A$.

Recall that a subset A of a topological space (X, τ) is called γ -open if $A \cap S$ is preopen, whenever S is preopen [1]. A set A is called γ -closed if its complement is γ -open or equivalently if $A \cup S$ is preclosed, whenever S is preclosed.

we have that if a set is γ -open then it is semi-open and preopen.

Recall that a real-valued function f defined on a topological space X is called A-continuous [15] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subset of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [5,6].

Typeset by $\mathbb{B}^{8}\mathcal{P}_{\!\mathcal{M}}$ style. © Soc. Paran. de Mat.

^{*} This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

²⁰⁰⁰ Mathematics Subject Classification: Primary 54C08; Secondary 26A15, 54C10, 54C30, 54C50.

Hence, a real-valued function f defined on a topological space X is called precontinuous (resp. semi-continuous or γ -continuous) if the preimage of every open subset of \mathbb{R} is preopen (resp. semi-open or γ -open) subset of X.

Precontinuity was called by V. Ptak nearly continuity [16].Nearly continuity or precontinuity is known also as almost continuity by T. Husain [7].Precontinuity was studied for real-valued functions on Euclidean space by Blumberg back in 1922 [2].

Results of Katětov [8,9] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [3], are used in order to give necessary and sufficient conditions for the strong insertion of a γ -continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [10].

A property P defined relative to a real-valued function on a topological space is a γ -property provided that any constant function has property P and provided that the sum of a function with property P and any γ -continuous function also has property P. If P_1 and P_2 are γ -property, the following terminology is used:(i) A space X has the weak γ -insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a γ -continuous function h such that $g \leq h \leq f$.(ii) A space Xhas the strong γ -insertion property for (P_1, P_2) if and only if for any functions gand f on X such that $g \leq f, g$ has property P_1 and only if for any functions gand f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a γ -continuous function h such that $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x).

In this paper, we give a sufficient condition for the weak γ -insertion property. Also for a space with the weak γ -insertion property, we give necessary and sufficient conditions for the space to have the strong γ -insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the insertion of a γ -continuous function has also considered by the author in [14]

2. The Main Result

Before giving a sufficient condition for insertability of a γ -continuous function, the necessary definitions and terminology are stated.

The abbreviations pc , sc and γc are used for precontinuous , semicontinuous and $\gamma-{\rm continuous},$ respectively.

Let (X, τ) be a topological space, the family of all γ -open, γ -closed, semiopen, semi-closed, preopen and preclosed will be denoted by $\gamma O(X, \tau)$, $\gamma C(X, \tau)$, $sO(X, \tau)$, $sC(X, \tau)$, $pO(X, \tau)$ and $pC(X, \tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ) . Respectively, we define the γ -closure, γ -interior, s-closure, s-interior, p-closure and p-interior

of a set A, denoted by $\gamma Cl(A), \gamma Int(A), sCl(A), sInt(A), pCl(A)$ and pInt(A) as follows:

$$\begin{split} &\gamma Cl(A) = \cap \{F: F \supseteq A, F \in \gamma C(X, \tau)\}, \\ &\gamma Int(A) = \cup \{O: O \subseteq A, O \in \gamma O(X, \tau)\}, \\ &sCl(A) = \cap \{F: F \supseteq A, F \in sC(X, \tau)\}, \\ &sInt(A) = \cup \{O: O \subseteq A, O \in sO(X, \tau)\}, \\ &pCl(A) = \cap \{F: F \supseteq A, F \in pC(X, \tau)\} \text{ and } \\ &pInt(A) = \cup \{O: O \subseteq A, O \in pO(X, \tau)\}. \end{split}$$

Respectively, we have $\gamma Cl(A)$, sCl(A), pCl(A) are γ -closed, semi-closed, preclosed and $\gamma Int(A)$, sInt(A), pInt(A) are γ -open, semi-open, preopen.

The following first two definitions are modifications of conditions considered in [8,9].

Definition 2.2. If ρ is a binary relation in a set S then $\overline{\rho}$ is defined as follows: $x \overline{\rho} y$ if and only if $y \rho \nu$ implies $x \rho \nu$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a strong binary relation in P(X) in case ρ satisfies each of the following conditions:

1) If $A_i \ \rho \ B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in P(X) such that $A_i \ \rho \ C$ and C $\rho \ B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

2) If $A \subseteq B$, then $A \bar{\rho} B$.

3) If $A \ \rho \ B$, then $\gamma Cl(A) \subseteq B$ and $A \subseteq \gamma Int(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [3] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f, \ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f, \ell)$ is called a lower indefinite cut set in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on a topological space X with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$, then there exists a γ -continuous function h defined on X such that $g \leq h \leq f$.

Proof: Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [9] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \leq h \leq f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g, t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f, t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = \gamma Int(H(t_2)) \setminus \gamma Cl(H(t_1))$. Hence $h^{-1}(t_1, t_2)$ is a γ -open subset of X, i. e., h is a γ -continuous function on X.

The above proof used the technique of proof of Theorem 1 of [8].

If a space has the strong γ -insertion property for (P_1, P_2) , then it has the weak γ -insertion property for (P_1, P_2) . The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak γ -insertion property to satisfy the strong γ -insertion property.

Theorem 2.2. Let P_1 and P_2 be γ -property and X be a space that satisfies the weak γ -insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that $g \leq f, g$ has property P_1 and f has property P_2 . The space X has the strong γ -insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 2^{-n})$ and there exists a sequence $\{F_n\}$ of subsets of X such that (i) for each n, F_n and $A(f - g, 2^{-n})$ are completely separated by γ -continuous functions, and (ii) $\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$.

Proof: Theorem 3.1, of [13].

Theorem 2.3. Let P_1 and P_2 be γ -properties and assume that the space X satisfied the weak γ -insertion property for (P_1, P_2) . The space X satisfies the strong γ -insertion property for (P_1, P_2) if and only if X satisfies the strong γ -insertion property for $(P_1, \gamma c)$ and for $(\gamma c, P_2)$.

Proof: Theorem 3.2, of [13].

3. Applications

Corollary 3.1. If for each pair of disjoint preclosed (resp. semi-closed) sets F_1, F_2 of X, there exist γ -open sets G_1 and G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the weak γ -insertion property for (pc, pc) (resp. (sc, sc)).

Proof: Let g and f be real-valued functions defined on the X, such that f and g are pc (resp. sc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $pCl(A) \subseteq pInt(B)$ (resp. $sCl(A) \subseteq sInt(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a preclosed (resp. semi-closed) set and since $\{x \in X : g(x) < t_2\}$ is a preopen (resp. semi-open) set, it follows that $pCl(A(f,t_1)) \subseteq pInt(A(g,t_2))$ (resp. $sCl(A(f,t_1)) \subseteq sInt(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint preclosed (resp. semi-closed) sets F_1, F_2 , there exist γ -open sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then every precontinuous (resp. semi-continuous) function is γ -continuous.

Proof: Let f be a real-valued precontinuous (resp. semi-continuous) function defined on the X. Set g = f, then by Corollary 3.1, there exists a γ -continuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint preclosed (resp. semi-closed) sets F_1, F_2 of X, there exist γ -open sets G_1 and G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the strong γ -insertion property for (pc, pc) (resp. (sc, sc)).

Proof: Let g and f be real-valued functions defined on the X, such that f and g are pc (resp. sc), and $g \leq f$. Set h = (f+g)/2, thus $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). Also, by Corollary 3.2, since g and f are γ -continuous functions hence h is γ -continuous function.

Corollary 3.4. If for each pair of disjoint subsets F_1, F_2 of X, such that F_1 is preclosed and F_2 is semi-closed, there exist γ -open subsets G_1 and G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X have the weak γ -insertion property for (pc, sc) and (sc, pc).

Proof: Let g and f be real-valued functions defined on the X, such that g is pc (resp. sc) and f is sc (resp. pc), with $g \leq f$. If a binary relation ρ is defined by $A \ \rho B$ in case $sCl(A) \subseteq pInt(B)$ (resp. $pCl(A) \subseteq sInt(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a semi-closed (resp. preclosed) set and since $\{x \in X : g(x) < t_2\}$ is a preopen (resp. semi-open) set, it follows that $sCl(A(f, t_1)) \subseteq$

 $pInt(A(g,t_2))$ (resp. $pCl(A(f,t_1)) \subseteq sInt(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Before stating the consequences of Theorems 2.2, and 2.3, we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets F_1, F_2 of X, such that F_1 is preclosed and F_2 is semi-closed, there exist γ -open subsets G_1, G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$.

(ii) If F is a semi-closed (resp. preclosed) subset of X which is contained in a preopen (resp. semi-open) subset G of X, then there exists an γ -open subset H of X such that $F \subseteq H \subseteq \gamma Cl(H) \subseteq G$.

Proof: (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are semi-closed (resp. preclosed) and preopen (resp. semi-open) subsets of X, respectively. Hence, G^c is a preclosed (resp. semi-closed) and $F \cap G^c = \emptyset$.

By (i) there exists two disjoint γ -open subsets G_1, G_2 of X s. t., $F \subseteq G_1$ and $G^c \subseteq G_2$. But

$$G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G,$$

and

$$G_1 \cap G_2 = \emptyset \Rightarrow G_1 \subseteq G_2^c$$

hence

$$F \subseteq G_1 \subseteq G_2^c \subseteq G$$

and since G_2^c is a γ -closed set containing G_1 we conclude that $\gamma Cl(G_1) \subseteq G_2^c$, i. e.,

$$F \subseteq G_1 \subseteq \gamma Cl(G_1) \subseteq G.$$

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that F_1, F_2 are two disjoint subsets of X, such that F_1 is preclosed and F_2 is semi-closed.

This implies that $F_2 \subseteq F_1^c$ and F_1^c is a preopen subset of X. Hence by (ii) there exists a γ -open set H s. t., $F_2 \subseteq H \subseteq \gamma Cl(H) \subseteq F_1^c$. But

$$H \subseteq \gamma Cl(H) \Rightarrow H \cap (\gamma Cl(H))^c = \emptyset$$

and

$$\gamma Cl(H) \subseteq F_1^c \Rightarrow F_1 \subseteq (\gamma Cl(H))^c$$

Furthermore, $(\gamma Cl(H))^c$ is a γ -open set of X. Hence $F_2 \subseteq H, F_1 \subseteq (\gamma Cl(H))^c$ and $H \cap (\gamma Cl(H))^c = \emptyset$. This means that condition (i) holds. \Box

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets F_1, F_2 of X, where F_1 is preclosed and F_2 is semi-closed, can separate by γ -open subsets of X then there exists a γ -continuous function $h : X \to [0,1]$ s. t., $h(F_1) = \{0\}$ and $h(F_2) = \{1\}$.

Proof: Suppose F_1 and F_2 are two disjoint subsets of X, where F_1 is preclosed and F_2 is semi-closed. Since $F_1 \cap F_2 = \emptyset$, hence $F_2 \subseteq F_1^c$. In particular, since F_1^c is a preopen subset of X containing semi-closed subset F_2 of X, by Lemma 3.1, there exists a γ -open subset $H_{1/2}$ of X s. t.,

$$F_2 \subseteq H_{1/2} \subseteq \gamma Cl(H_{1/2}) \subseteq F_1^c.$$

Note that $H_{1/2}$ is also a preopen subset of X and contains F_2 , and F_1^c is a preopen subset of X and contains a semi-closed subset $\gamma Cl(H_{1/2})$ of X. Hence, by Lemma 3.1, there exists γ -open subsets $H_{1/4}$ and $H_{3/4}$ s. t.,

$$F_2 \subseteq H_{1/4} \subseteq \gamma Cl(H_{1/4}) \subseteq H_{1/2} \subseteq \gamma Cl(H_{1/2}) \subseteq H_{3/4} \subseteq \gamma Cl(H_{3/4}) \subseteq F_1^c.$$

By continuing this method for every $t \in D$, where $D \subseteq [0, 1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain γ -open subsets H_t of X with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin F_1$ and h(x) = 1 for $x \in F_1$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i. e., h maps X into [0,1]. Also, we note that for any $t \in D, F_2 \subseteq H_t$; hence $h(F_2) = \{0\}$. Furthermore, by definition, $h(F_1) = \{1\}$. It remains only to prove that h is a γ -continuous function on X. For every $\beta \in \mathbb{R}$, we have if $\beta \leq 0$ then $\{x \in X : h(x) < \beta\} = \emptyset$ and if $0 < \beta$ then $\{x \in X : h(x) < \beta\} = \cup \{H_t : t < \beta\}$, hence, they are γ -open subsets of X. Similarly, if $\beta < 0$ then $\{x \in X : h(x) > \beta\} = X$ and if $0 \leq \beta$ then $\{x \in X : h(x) > \beta\} = \cup \{(\gamma Cl(H_t))^c : t > \beta\}$ hence, every of them is a γ -open subset of X. Consequently h is a γ -continuous function. \Box

Lemma 3.3. Suppose that X is a topological space. If each pair of disjoint subsets F_1, F_2 of X, where F_1 is preclosed and F_2 is semi-closed, can separate by γ -open subsets of X, and F_1 (resp. F_2) is a countable intersection of γ -open subsets of X, then there exists a γ -continuous function $h: X \to [0,1]$ s. t., $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$) and $h(F_2) = \{1\}$ (resp. $h(F_1) = \{1\}$).

Proof: Suppose that $F_1 = \bigcap_{n=1}^{\infty} G_n$ (resp. $F_2 = \bigcap_{n=1}^{\infty} G_n$), where G_n is a γ -open subset of X. We can suppose that $G_n \cap F_2 = \emptyset$ (resp. $G_n \cap F_1 = \emptyset$), otherwise we can substitute G_n by $G_n \setminus F_2$ (resp. $G_n \setminus F_1$). By Lemma 3.2, for every $n \in \mathbb{N}$, there exists a γ -continuous function $h_n : X \to [0,1]$ s. t., $h_n(F_1) = \{0\}$ (resp. $h_n(F_2) = \{0\}$) and $h_n(X \setminus G_n) = \{1\}$. We set $h(x) = \sum_{n=1}^{\infty} 2^{-n}h_n(x)$.

Since the above series is uniformly convergent, it follows that h is a γ - continuous function from X to [0,1]. Since for every $n \in \mathbb{N}, F_2 \subseteq X \setminus G_n$ (resp. $F_1 \subseteq X \setminus G_n$), therefore $h_n(F_2) = \{1\}$ (resp. $h_n(F_1) = \{1\}$) and consequently $h(F_2) = \{1\}$ (resp. $h(F_1) = \{1\}$). Since $h_n(F_1) = \{0\}$ (resp. $h_n(F_2) = \{0\}$), hence $h(F_1) = \{0\}$ (resp. $h(F_2) = \{0\}$). It suffices to show that if $x \notin F_1$ (resp. $x \notin F_2$), then $h(x) \neq 0$.

Now if $x \notin F_1$ (resp. $x \notin F_2$), since $F_1 = \bigcap_{n=1}^{\infty} G_n$ (resp. $F_2 = \bigcap_{n=1}^{\infty} G_n$), therefore there exists $n_0 \in \mathbb{N}$ s. t., $x \notin G_{n_0}$, hence $h_{n_0}(x) = 1$, i. e., h(x) > 0. Therefore $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$). **Lemma 3.4.** Suppose that X is a topological space such that every two disjoint semi-closed and preclosed subsets of X can be separated by γ -open subsets of X. The following conditions are equivalent:

(i) For every two disjoint subsets F_1 and F_2 of X, where F_1 is preclosed and F_2 is semi-closed, there exists a γ -continuous function $h: X \to [0,1]$ s. t., $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$) and $h^{-1}(1) = F_2$ (resp. $h^{-1}(1) = F_1$).

(ii) Every preclosed (resp. semi-closed) subset of X is a countable intersection of γ -open subsets of X.

(iii) Every preopen (resp. semi-open) subset of X is a countable union of γ -closed subsets of X.

Proof: (i) \Rightarrow (ii) Suppose that F is a preclosed (resp. semi-closed) subset of X. Since \emptyset is a semi-closed (resp. preclosed) subset of X, by (i) there exists a γ -continuous function $h: X \to [0, 1]$ s.t., $h^{-1}(0) = F$. Set $G_n = \{x \in X : h(x) < \frac{1}{n}\}$. Then for every $n \in \mathbb{N}$, G_n is a γ -open subset of X and $\bigcap_{n=1}^{\infty} G_n = \{x \in X : h(x) = h(x) = 0\} = F$.

(ii) \Rightarrow (i) Suppose that F_1 and F_2 are two disjoint subsets of X, where F_1 is preclosed and F_2 is semi-closed. By Lemma 3.3, there exists a γ -continuous function $f: X \to [0,1]$ s. t., $f^{-1}(0) = F_1$ and $f(F_2) = \{1\}$. Set $G = \{x \in X : f(x) < \frac{1}{2}\}$, $F = \{x \in X : f(x) = \frac{1}{2}\}$, and $H = \{x \in X : f(x) > \frac{1}{2}\}$. Then $G \cup F$ and $H \cup F$ are two γ -closed subsets of X and $(G \cup F) \cap F_2 = \emptyset$. By Lemma 3.3, there exists a γ -continuous function $g: X \to [\frac{1}{2}, 1]$ s. t., $g^{-1}(1) = F_2$ and $g(G \cup F) = \{\frac{1}{2}\}$. Define h by h(x) = f(x) for $x \in G \cup F$, and h(x) = g(x) for $x \in H \cup F$. Then h is well-defined and a γ -continuous function, since $(G \cup F) \cap (H \cup F) = F$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to [0, 1]. Also, we have $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$.

(ii) \Leftrightarrow (iii) By De Morgan law and noting that the complement of every γ -open subset of X is a γ -closed subset of X and complement of every γ -closed subset of X is a γ -open subset of X, the equivalence is hold.

Corollary 3.5. If for every two disjoint subsets F_1 and F_2 of X, where F_1 is preclosed (resp. semi-closed) and F_2 is semi-closed (resp. preclosed), there exists a γ -continuous function $h: X \to [0,1]$ s. t., $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$ then X has the strong γ -insertion property for (pc, sc) (resp. (sc, pc)).

Proof: Since for every two disjoint subsets F_1 and F_2 of X, where F_1 is preclosed (resp. semi-closed) and F_2 is semi-closed (resp. preclosed), there exists a γ -continuous function $h: X \to [0,1]$ s. t., $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$, define $G_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $G_2 = \{x \in X : h(x) > \frac{1}{2}\}$. Then G_1 and G_2 are two disjoint γ -open subsets of X that contain F_1 and F_2 , respectively. Hence by Corollary 3.4, X has the weak γ -insertion property for (pc, sc) and (sc, pc). Now, assume that g and f are functions on X such that $g \leq f, g$ is pc(resp. sc) and f is γc . Since f - g is pc (resp. sc), therefore the lower cut set $A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \leq 2^{-n}\}$ is a preclosed (resp. semi-closed) subset of X. By Lemma 3.4, we can choose a sequence $\{F_n\}$ of γ -closed subsets of X s. t., $\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$ and for every $n \in \mathbb{N}, F_n$ and $A(f - g, 2^{-n})$ are disjoint subsets of X. By Lemma 3.2, F_n and $A(f - g, 2^{-n})$ can be completely separated by γ -continuous functions. Hence by Theorem 2.2, X has the strong γ -insertion property for $(pc, \gamma c)$ (resp. $(sc, \gamma c)$).

By an analogous argument, we can prove that X has the strong γ -insertion property for $(\gamma c, sc)$ (resp. $(\gamma c, pc)$). Hence, by Theorem 2.3, X has the strong γ -insertion property for (pc, sc) (resp. (sc, pc)).

Acknowledgments

This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

- D. Andrijevic and M. Ganster, On PO-equivalent topologies, IV International Meeting on Topology in Italy (Sorrento, 1988), *Rend. Circ. Mat. Palermo (2) Suppl.* 24 (1990), 251-256.
- 2. H. Blumberg, New properties of all functions, Trans. Amer. Math. soc. 24 (1922) 113-128.
- 3. F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly 78 (1971) 1007-1010.
- H. H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.* 8 (1964) 351-360.
- J. Dontchev, The characterization of some peculiar topological space via α- and β-sets, Acta Math. Hungar. 69 (1-2) (1995) 67-71.
- M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar. 56 (3-4) (1990) 299-301.
- 7. T. Husain, Almost continuous mappings, Prace Mat. 10 (1966) 1-7.
- 8. M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951) 85-91.
- M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math. 40 (1953) 203-205.
- 10. E. Lane, Insertion of a continuous function, Pacific J. Math. 66 (1976) 181-190.
- N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly 70 (1963) 36-41.
- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47-53.
- M. Mirmiran, Insertion of a function belonging to a certain subclass of R^X, Bull. Iran. Math. Soc. Vol. 28, No. 2 (2002) 19-27.
- M. Mirmiran, Insertion of a γ-continuous function, Bull. Iran. Math. Soc. Vol. 37, No. 3 (2011) 171-181.
- M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar. 61 (1-2) (1993) 93-98.
- 16. V. Ptak, On complete topological linear spaces, Czech. Math. J. 78 (1953) 301-360.

Majid Mirmiran and Binesh Naderi

Majid Mirmiran Department of Mathematics, University of Isfahan Isfahan 81746-73441, Iran. E-mail address: mirmir@sci.ui.ac.ir

and

Binesh Naderi School of Management and Medical Information Medical University of Isfahan, Iran. E-mail address: naderi@mng.mui.ac.ir

52