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Travelling wave solutions of nonlinear systems of PDEs by using the
functional variable method

H. Aminikhah, A. Refahi Sheikhani and H. Rezazadeh

Abstract: In this paper, we will use the functional variable method to construct
exact solutions of some nonlinear systems of partial differential equations, including,
the (2+1)-dimensional Bogoyavlenskii’s breaking soliton equation, the Whitham-
Broer-Kaup-Like systems and the Kaup-Boussinesq system. This approach can also
be applied to other nonlinear systems of partial differential equations which can
be converted to a second-order ordinary differential equation through the travelling
wave transformation.
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1. Introduction

Finding the exact solutions nonlinear systems of partial differential equations
plays an important role in the study of many physical phenomena in various fields
such as fluid mechanics, solid state physics, plasma physics, chemical physics and
optical. Thus, it is important to investigate the exact explicit solutions of nonlinear
systems of partial differential equations. In recent years, various powerful methods
have been presented for finding exact solutions of the nonlinear systems of partial
differential equations in mathematical physics, such as modified simple equation
method [1], Algebraic method [2], sine-cosine method [3], F-expansion method
[4], generalized hyperbolic function [5] and functional variable method [6]. Among
these methods, the functional variable method is a powerful mathematical tool
to solve nonlinear systems of partial differential equations. This method were first
proposed by Zerarka et al [7] to find the exact solutions for a wide class of linear and
nonlinear wave equations. The functional variable method was further developed
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by many authors [8,9]. The advantage of this method is that one treats nonlinear
problems by essentially linear methods, based on which it is easy to construct in
full the exact solutions such as soliton-like waves, compacton and noncompacton
solutions, trigonometric function solutions, pattern soliton solutions, black soli-
tons or kink solutions, and so on. The aim of this paper is to construct exact
solutions of the the (2+1)-dimensional Bogoyavlenskii’s breaking soliton equation,
the Whitham-Broer-Kaup-Like systems and the Kaup-Boussinesq system by using
the functional variable method. Also, we presented two useful theorems of the
functional variable method for finding traveling wave solutions of nonlinear partial
differential equations.

The rest of this paper is organized as follows. In Section 2, brief description
of the functional variable method for finding traveling wave solutions of nonlin-
ear system of partial differential equations is given. In Section 3, the method is
employed for obtaining the exact solutions of the (2+1)-dimensional Bogoyavlen-
skii’s breaking soliton equation, the Whitham-Broer-Kaup-Like systems and the
Kaup-Boussinesq system. Finally, some conclusions are given in Section 4.

2. The functional variable method

Now, we describe the main steps of the functional variable method for finding
exact solutions of nonlinear system of partial differential equations.

Consider the following nonlinear system of partial differential equations with
independent variables x and t and dependent variables u and v

P1(u, v, ut, vt, ux, vx, utt, vtt, uxx, vxx, uxt, . . .) = 0,

P2(u, v, ut, vt, ux, vx, utt, vtt, uxx, vxx, uxt, . . .) = 0.
(2.1)

Applying the travelling wave transformations u(x, t) = U(ξ) and v(x, t) = V (ξ)
where ξ = x− wt, converts Eq.(2.1) into a system of ordinary differential like

G1(U, V, Uξ, Vξ, Uξξ, Vξξ, . . .) = 0,

G2(U, V, Uξ, Vξ, Uξξ, Vξξ, . . .) = 0.
(2.2)

Using some mathematical operations, the system (2.2) is converted into a second-
order ordinary differential equation as

H(U,Uξξ) = 0. (2.3)

Then we make a transformation in which the unknown function U is considered as
a functional variable in the form

Uξ = F (U), (2.4)

and

Uξξ =
1

2
(F 2)′, (2.5)
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where ”′” stands for d
dU

.
Substituting (2.5) into Eq.(2.3) and after the mathematical manipulations, we

reduce the ordinary differential equation (2.3) in terms of U , F as

K(U, F ) = 0. (2.6)

The key idea of this particular form Eq.(2.6) is of special interest because it admits
analytical solutions for a large class of nonlinear wave type equations. After in-
tegration, Eq.(2.6) provides the expression of F , and this, together with Eq.(2.4),
give appropriate solutions to the original problem.

Theorem 2.1. Consider the following second-order ordinary differential equation

Uξξ = k1U − k2U
2, (2.7)

where k1 and k2 6= 0 are constants and U is a functional variable in the form (2.4).
Then using (2.5) transformation, the exact solutions of the Eq.(2.7) are obtained

as

Type I. When k1 > 0, the soliton solutions of Eq.(2.7) are

U1(ξ) =
3k1
2k 2

sech2(

√
k1

2
ξ), (2.8)

U2(ξ) = − 3k1
2k 2

csch2(

√
k1

2
ξ), (2.9)

Type II. When k1 < 0, the periodic wave solutions of Eq.(2.7) are

U3(ξ) =
3k1
2k 2

sec2(

√
−k1

2
ξ), (2.10)

U4(ξ) =
3k1
2k 2

csc2(

√
−k1

2
ξ). (2.11)

Proof: According to Eq.(2.5), we get from (2.7) an expression for the function
F (U)

1

2

(

F 2(U)
)

′

= k1U − k2U
2, (2.12)

where the prime denotes differentiation with respect to ξ. Integrating Eq.(2.12)
with respect to U and after the mathematical manipulations, we have

F (U) = ±U

√

k1 −
2k2

3
U, (2.13)

or

F (U) = ±
√

k1U

√

1− 2k2

3k1
U. (2.14)
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After changing the variables

Z =
2k2

3k1
U, (2.15)

or
3k1
2k2

Z = U, (2.16)

with differentiation from Eq.(2.16)

3k1
2k2

dZ = dU(ξ). (2.17)

Now, using (2.17), (2.4) and (2.14), we have

dZ

Z
√
1− Z

= ±
√

k1dξ, (2.18)

with integrating from Eq.(2.18) and with setting the constant of integration as zero

ln

∣

∣

∣

∣

1−
√
1− Z

1 +
√
1− Z

∣

∣

∣

∣

= ±
√

k1ξ. (2.19)

In this case we have
∣

∣

∣

∣

1−
√
1− Z

1 +
√
1− Z

∣

∣

∣

∣

= e±
√
k1ξ. (2.20)

If θ = ±
√
k1ξ, two cases will be considered separately.

Case 1. suppose that k1 > 0, then

1−
√
1− Z

1 +
√
1− Z

= eθ, (2.21)

thus, according to (2.21), we have

Z =
4

e−θ + eθ + 2
=

2

cosh θ + 1
=

1

cosh2
(

θ
2

)

+ 1
= sech2

(

θ

2

)

,

so

Z = sech2(

√
k1

2
ξ). (2.22)

Now, suppose that k1 < 0, then

1−
√
1− Z

1 +
√
1− Z

= eiθ, (2.23)

thus, according to (2.23), we have

Z =
4

e−iθ + eiθ + 2
=

2

cos θ + 1
=

1

cos2
(

θ
2

)

+ 1
= sec2

(

θ

2

)

,
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hence

Z = sec2(

√
−k1

2
ξ). (2.24)

Case 2. suppose that k1 > 0, then

1−
√
1− Z

1 +
√
1− Z

= −eθ, (2.25)

therefore, according to (2.25), we have

Z = − 4

e−θ + eθ + 2
=

2

cosh θ − 1
=

1

sinh2
(

θ
2

)

+ 1
= − csch2

(

θ

2

)

,

so

Z = −csch2(

√
k1

2
ξ). (2.26)

Now, assume that k1 < 0, then

1−
√
1− Z

1 +
√
1− Z

= −eiθ, (2.27)

thus, according to (2.27), we have

Z = − 4

e−iθ + eiθ − 2
=

2

1− cos θ
=

1

sin2
(

θ
2

) = csc2
(

θ

2

)

,

so

Z = csc2(

√
−k1

2
ξ). (2.28)

Here, using the relations (2.16), (2.22), (2.24), (2.26) and (2.28), the solutions
of Eq.(2.7) are in the following forms

When k1 > 0, the soliton solutions of Eq.(2.7) are

U1(ξ) =
3k1

2k 2

sech2(
√
k1

2
ξ),

U2(ξ) = − 3k1

2k 2

csch2(
√
k1

2
ξ).

When k1 < 0, the periodic wave solutions of Eq.(2.7) are

U3(ξ) =
3k1

2k 2

sec2(
√
−k1

2
ξ),

U4(ξ) =
3k1

2k 2

csc2(
√
−k1

2
ξ).

✷
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Theorem 2.2. Consider the following second-order ordinary differential equation

Uξξ = k1

[

k22U + 3k2U
2 + 2U3

]

, (2.29)

where k1 6= 0, and k2 are constants and U is a functional variable in the form

(2.4). Then using (2.5) transformation, the exact solutions of the Eq.(2.29) are

obtained as

Type I. When k1 > 0, the soliton solutions of Eq.(2.29) are

U1(ξ) = −k2

2

[

1 + coth(
k2
√
k1

2
ξ)

]

, (2.30)

U2(ξ) = −k2

2

[

1 + tanh(
k2
√
k1

2
ξ)

]

. (2.31)

Type II. When k1 < 0, the periodic wave solutions of Eq.(2.29) are

U3(ξ) = −k2

2

[

1− i cot(
k2
√
−k1

2
ξ)

]

, (2.32)

U4(ξ) = −k2

2

[

1 + i tan(
k2
√
−k1

2
ξ)

]

. (2.33)

Proof: According to Eq.(2.5), we get from (2.29) an expression for the function
F (U)

1

2

(

F 2(U)
)

′

= k1

[

k22U + 3k2U
2 + 2U3

]

, (2.34)

where the prime denotes differentiation with respect to ξ. Integrating Eq.(2.34)
with respect to U and after the mathematical manipulations, we have

F (U) = ±
√

k1U

√

k22 + 2k2U + U2, (2.35)

or
F (U) = ±

√

k1U(U + k2). (2.36)

Now, using (2.4) and (2.36), we have

dU

U(U + k2)
= ±

√

k1dξ, (2.37)

with integrating from Eq.(2.37) and with setting the constant of integration as zero

1

k2
ln

∣

∣

∣

∣

U

U + k2

∣

∣

∣

∣

= ±
√

k1ξ. (2.38)

In this case we have
∣

∣

∣

∣

U

U + k2

∣

∣

∣

∣

= e±k2

√
k1ξ. (2.39)
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If θ = ±k2
√
k1ξ, two cases will be considered separately.

Case 1. suppose that k1 > 0, then

U

U + k2
= eθ, (2.40)

thus, according to (2.40), we have

U = − k2e
θ

eθ − 1
= −k2

2
(

2eθ

eθ − 1
) = −k2

2
(1 +

eθ + 1

eθ − 1
) = −k2

2

[

1 + coth(
θ

2
)

]

,

so

U = −k2

2

[

1 + coth(
k2
√
k1

2
ξ)

]

. (2.41)

Now, suppose that k1 < 0, then

U

U + k2
= eiθ, (2.42)

thus, according to (2.42), we have

U = − k2e
θ

eθ − 1
= −k2

2
(

2eiθ

eiθ − 1
) = −k2

2
(1 +

eiθ + 1

eiθ − 1
) = −k2

2

[

1− i cot(
θ

2
)

]

,

hence

U = −k2

2

[

1− i cot(
k2
√
−k1

2
ξ)

]

. (2.43)

Case 2. suppose that, k1 > 0 then

U

U + k2
= −eθ, (2.44)

therefore, according to (2.44), we have

U = − k2e
θ

eθ + 1
= −k2

2
(

2eθ

eθ + 1
) = −k2

2
(1 +

eθ − 1

eθ + 1
) = −k2

2

[

1 + tanh(
θ

2
)

]

,

so

U = −k2

2

[

1 + tanh(
k2
√
k1

2
ξ)

]

. (2.45)

Now, assume that k1 < 0, then

U

U + k2
= −eiθ, (2.46)

thus, according to (2.46), we have

U = − k2e
θ

eθ + 1
= −k2

2
(

2eiθ

eiθ + 1
) = −k2

2
(1 +

eiθ − 1

eiθ + 1
) = −k2

2

[

1 + i tan(
θ

2
)

]

,
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so

U = −k2

2

[

1 + i tan(
k2
√
−k1

2
ξ)

]

. (2.47)

Here, using the relations (2.41), (2.43), (2.45) and (2.47), the solutions of
Eq.(2.29) are in the following forms

When k1 > 0, the soliton solutions of Eq.(2.29) are

U1(ξ) = −k2

2

[

1 + coth(k2

√
k1

2
ξ)
]

,

U2(ξ) = −k2

2

[

1 + tanh(k2

√
k1

2
ξ)
]

.

When k1 < 0, the periodic wave solutions of Eq.(2.29) are

U3(ξ) = −k2

2

[

1− i cot(k2

√
−k1

2
ξ)
]

,

U4(ξ) = −k2

2

[

1 + i tan(k2

√
−k1

2
ξ)
]

.

✷

3. Applications

Here, we will apply the functional variable method to obtain the exact solutions
for the following three nonlinear systems.

3.1. The (2+1)-dimensional Bogoyavlenskii’s breaking soliton equation

Let us consider the (2+1)-dimensional Bogoyavlenskii’s breaking soliton equa-
tion which reads

ut + uxxy + 4uuy + 4ux∂
−1uy = 0, (3.1)

its equivalent form [10]

{

ut + uxxy + 4uvx + 4uxv = 0,
vx = uy,

(3.2)

which describes the (2+1)-dimensional interaction of a Riemann wave propagating
along the y axis with a long wave long the x axis. The u = u(x, y, t) represents
the physical field and v = v(x, y, t) some potential. This equation is typical of
the so-called ”breaking soliton” equation and was studied by Bogoyavenskii, where
overlapping solutions were generated [11]. Now, to look for travelling wave solutions
of eq. (3.2), we first make the transformations

u(x, y, t) = U(ξ), v(x, y, t) = V (ξ), ξ = x+ y − wt. (3.3)

Substituting (3.3) into (3.2), we obtain ordinary differential equations

− wUξ + Uξξξ + 4UUξ + 4UξV = 0, (3.4)
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Uξ = Vξ. (3.5)

By integrating the Eq.(3.5) with respect to ξ, and neglecting the constant of inte-
gration, we have

V = U. (3.6)

Substituting Eq.(3.6) into Eq.(3.4), after integrating with respect to ξ choosing
constant of integration to zero, we obtain

Uξξ + 4U2 − ωU = 0, (3.7)

or
Uξξ = −4U2 + ωU. (3.8)

Then we use the transformation

Uξ = F (U), (3.9)

substituting Eq.(2.5) into Eq.(3.8) we obtain

1

2

(

F 2(U)
)

′

= −4U2 + ωU, (3.10)

where the prime denotes differentiation with respect to ξ. Integrating Eq.(3.10)
with respect to U and after the mathematical manipulations, we have

F (U) = ±
√

−8

3
U4 + ωU2 = ±

√
ωU

√

1− 8w

3
U2. (3.11)

Using the relations (3.9), (2.8), (2.9), (2.10) and (2.11), when w > 0, the
solutions of Eq.(3.7) are in the following forms

U1(ξ) =
3w

8
sech2(

√
w

2
ξ), (3.12)

U2(ξ) = −3w

8
csch2(

√
w

2
ξ), (3.13)

and, when w < 0, the solutions of Eq.(3.7) are in the following forms

U3(ξ) =
3w

8
sec2(

√
−w

2
ξ), (3.14)

U4(ξ) =
3w

8
csc2(

√
−w

2
ξ). (3.15)

For w > 0, using the travelling wave transformations (3.3), we obtain the follow-
ing soliton solutions of the (2+1)-dimensional Bogoyavlenskii’s breaking soliton
equation

u1(x, y, t) = v1(x, y, t) =
3w

8
sech2(

√
w

2
(x+ y − wt)), (3.16)
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Figure 1: Plot of Eq.(3.2): u4(x, y, t) on the left and v4(x, y, t) on the right, where
y = 0.5, w = −2.

u2(x, y, t) = v2(x, y, t) = −3w

8
csch2(

√
w

2
(x+ y − wt)). (3.17)

For w < 0, we obtain the periodic wave solutions

u3(x, y, t) = v3(x, y, t) =
3w

8
sec2(

√
−w

2
(x+ y − wt)), (3.18)

u4(x, y, t) = v4(x, y, t) =
3w

8
csc2(

√
−w

2
(x+ y − wt)). (3.19)

These solutions are all new exact solutions.
Figure 1 shown that the periodic wave solution u4(x, y, t) and v4(x, y, t) of the
Eq.(3.2) with y = 0.5, w = −2 and x in the interval [−20, 20] and time in the
interval [−20, 20].

3.2. The Whitham-Broer-Kaup-Like systems

Let us consider the the Whitham-Broer-Kaup-Like systems [12,13], in the form

{

ut + uux + γvx + βuxx = 0,
vt + (vu)x + αuxxx − βvxx = 0,

(3.20)

where u = u(x, t) is the field of horizontal velocity, v = v(x, t) is the height that
deviates from the equilibrium position of the liquid and α, β, γ are constants. It is
necessary to point out that when the parameters are taken as different values, the
following celebrated nonlinear systems can be derived from Eq.(3.20).

(i) When γ = 1, we have the Whitham-Broer-Kaup equations [14,15]

{

ut + uux + vx + βuxx = 0,
vt + (vu)x + αuxxx − βvxx = 0,

(3.21)
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(ii) When α = 0, γ = 1, we get the approximate equations for long wave equa-
tions

{

ut + uux + vx + βuxx = 0,
vt + (vu)x − βvxx = 0,

(3.22)

(iii) When α = γ = 1, β = 0, we obtain the variant Boussinesq equations [16]

{

ut + uux + uxx = 0,
vt + (vu)x + αuxxx = 0,

(3.23)

(iv) When α = 1

3
, γ = 1, β = 0, we get the dispersive long wave equations [17]

{

ut + uux + vx = 0,
vt + (vu)x + 1

3
uxxx = 0.

(3.24)

It is clear to see that Eq.(3.20) is very important in the field of mathematical
physics. Therefore, it is a significant task to search for explicit solutions of the
Eq.(3.20). Now, we apply the functional variable method to find the solitary wave
solutions for Whitham-Broer-Kaup-Like systems. Firstly, we let

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x− wt. (3.25)

Then (3.20) is converted to ordinary differential equations

− wUξ + UUξ + γVξ + βUξξ = 0, (3.26)

− wVξ + (V U)ξ + αUξξξ − βVξξ = 0. (3.27)

By integrating the Eq.(3.26) with respect to ξ, and neglecting the constant of
integration, we have

− wU +
1

2
U2 + γV + βUξ = 0, (3.28)

or

V =
1

γ

[

wU − 1

2
U2 − βUξ

]

. (3.29)

Integrating Eq.(3.27) with respect to ξ choosing constant of integration to zero, we
obtain

− wV + V U + αUξξ − βVξ = 0. (3.30)

Substituting Eq.(3.29) into Eq.(3.30) yields

(αγ + β2)Uξξ −
1

2
U3 +

3w

2
U2 − w2U = 0, (3.31)

or

Uξξ =
1

(αγ + β2)

[

1

2
U3 − 3w

2
U2 + w2U

]

. (3.32)

Then we use the transformation

Uξ = F (U), (3.33)
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and Eq.(2.5) to convert Eq.(3.32) to

1

2

(

F 2(U)
)

′

=
1

(αγ + β2)

[

1

2
U3 − 3w

2
U2 + w2U

]

, (3.34)

where the prime denotes differentiation with respect to ξ. Integrating Eq.(3.34)
with respect to U and after the mathematical manipulations, we have

F (U) =

√

1

αγ + β2
U

√

w2 − wU +
1

4
U2 =

1

2

√

1

αγ + β2
U(U − 2w). (3.35)

Using the relations (3.33), (2.30), (2.31), (2.32) and (2.33), when 1

αγ+β2 > 0,

the solutions of Eq.(3.32) are in the following forms

U1(ξ) = w

(

1− coth(
1

2

w
√

αγ + β2
ξ)

)

, (3.36)

U2(ξ) = w

(

1− tanh(
1

2

w
√

αγ + β2
ξ)

)

, (3.37)

and, when 1

αγ+β2 < 0, the solutions of Eq.(3.32) are in the following forms

U1(ξ) = w

(

1 + i cot(
1

2

w
√

−αγ − β2
ξ)

)

, (3.38)

U2(ξ) = w

(

1− i tan(
1

2

w
√

−αγ − β2
ξ)

)

. (3.39)

For 1

αγ+β2 > 0, we can easily obtain following solito solutions

u1(x, t) = w

(

1− coth(
1

2

w
√

αγ + β2
(x− wt))

)

, (3.40)

v1(x, t) = −1

2

w2(
√

αγ + β2 + β)

γ
√

αγ + β2

(

cosh2(1
2

w√
αγ+β2

(x− wt)) − 1

) , (3.41)

u2(x, t) = w

(

1− tanh(
1

2

w
√

αγ + β2
(x − wt))

)

, (3.42)

v2(x, t) =
1

2

w2(
√

αγ + β2 + β)

γ
√

αγ + β2

(

cosh2(1
2

w√
αγ+β2

(x− wt))

) . (3.43)
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Figure 2: Plot of Eq.(3.2): u1(x, t) on the left and v1(x, t) on the right, where
α = 1, β = 0, γ = 3 and w = 1.

For 1

αγ+β2 < 0, we obtain the periodic wave solutions

u3(x, t) = w

(

1 + i cot(
1

2

w
√

−αγ − β2
(x− wt))

)

, (3.44)

v3(x, t) = −1

2

w2(β
√

αγ + β2 + αγ + β2)

γ(αγ + β2)

(

cos2(1
2

w√
−αγ−β2

(x− wt)) − 1

) , (3.45)

u4(x, t) = w

(

1− i tan(
1

2

w
√

−αγ − β2
(x− wt))

)

, (3.46)

v4(x, t) =
1

2

w2(β
√

αγ + β2 + αγ + β2)

γ(αγ + β2)

(

cos2(1
2

w√
−αγ−β2

(x − wt))

) . (3.47)

Figure 2 shown that the soliton solution u1(x, t) and v1(x, t) of the Eq.(3.2)
with α = 1, β = 0, γ = 3, w = 1 and x in the interval [−20, 20] and time in the
interval [−20, 20].
Note that Eq.(3.40) is same as obtained in [13].

3.3. The Kaup-Boussinesq system

Consider the Kaup-Boussinesq system [18]
{

ut − uxxx − 2vux − 2uvx = 0,
vt − ux − 2vvx = 0,

(3.48)

where = u(x, t) denotes the height of the water surface above a horizontal bottom
and v = v(x, t) is related to the horizontal velocity field. At this time, by means
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of the functional variable method, we will find some solitary wave solutions of the
Kaup-Boussinesq system. By considering the wave transformations

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x− wt. (3.49)

We change Eq.(3.49) into a system of ordinary differential equations given by

− wUξ − Vξξξ − 2V Uξ − 2UVξ = 0, (3.50)

− wVξ − Uξ − 2V Vξ = 0. (3.51)

Integrating Eq.(3.51) with respect to ξ once, considering the zero constant for the
integration, yields

U = −wV − V 2, (3.52)

substituting Eq.(3.52) into Eq.(3.50) yields

w2Vξ + 6wV Vξ + 6V 2Vξ − Vξξξ = 0. (3.53)

Now, integrating Eq.(3.53) with respect to ξ and choosing constant of integration
to zero, we obtain

Vξξ = w2V + 3wV 2 + 2V 3. (3.54)

Then we use the transformation

Vξ = F (V ), (3.55)

and Eq.(2.5) to convert Eq.(3.54) to

1

2

(

F 2(V )
)

′

= w2V + 3wV 2 + 2V 3, (3.56)

where the prime denotes differentiation with respect to ξ. Integrating Eq.(3.56)
with respect to V and after the mathematical manipulations, we have

F (V ) = ±V
√

w2 + 2wV + V 2 = ±V (V + w). (3.57)

Since k1 = 1 and k2 = w, then, using the relations (3.55), (2.30) and (2.31),
the solutions of Eq.(3.54) are in the following forms

V1(ξ) =
−w

2

(

1 + coth(
w

2
ξ)
)

, (3.58)

V2(ξ) =
−w

2

(

1 + tanh(
w

2
ξ)
)

. (3.59)

We can easily obtain following soliton solutions

v1(x, t) =
−w

2

(

1 + coth(
w

2
(x − wt))

)

, (3.60)

u1(x, t) =
w2

2

(

1 + coth(
w

2
(x− wt))

)

− w2

4

(

1 + coth(
w

2
(x− wt))

)2

. (3.61)
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Figure 3: Plot of Eq.(3.48): u2(x, t) on the left and v2(x, t) on the right, where
w = 1.5.

v2(x, t) =
−w

2

(

1 + tanh(
w

2
(x− wt))

)

, (3.62)

u2(x, t) =
w2

2

(

1 + tanh(
w

2
(x− wt))

)

− w2

4

(

1 + tanh(
w

2
(x− wt))

)2

. (3.63)

Figure 3 shown that the soliton solution u2(x, t) and v2(x, t) of the Eq.(3.48)
with w = 1.5 and x in the interval [−20, 20] and time in the interval [−20, 20].
Solutions (3.60), (3.61) and (3.62), (3.63) are new types of exact traveling wave
solutions to the Kaup-Boussinesq system.

Remark 3.1. We have verified all the obtained solutions by putting them back into

the original equations (3.2), (3.20) and (3.48) with the aid of Maple 13.

4. Conclusion

In this paper, the functional variable method was successfully applied to ob-
tain travelling wave solutions of some important nonlinear systems, including, the
(2+1)-dimensional Bogoyavlenskii’s breaking soliton equation, the Whitham-Broer-
Kaup-Like systems and the Kaup-Boussinesq systems, which were not discussed
elsewhere using that method. The travelling wave solutions were expressed by the
hyperbolic functions and the trigonometric functions. Also, we conclude that the
proposed method is powerful for nonlinear partial differential systems which can be
converted to a second-order ordinary differential equations through the travelling
wave transformation.
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