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A fourth order method for finding a simple root of univariate function ∗

D. Sbibih, A. Serghini, A. Tijini and A. Zidna

Abstract: In this paper, we describe an iterative method for approximating
a simple zero z of a real defined function. This method is a essentially based on
the idea to extend Newton’s method to be the inverse quadratic interpolation. We
prove that for a sufficiently smooth function f in a neighborhood of z the order of the
convergence is quartic. Using Mathematica with its high precision compatibility, we
present some numerical examples to confirm the theoretical results and to compare
our method with the others given in the literature.
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1. Introduction

Newton’s method is one of the fundamental tools in numerical analysis, oper-
ations research, optimization and control. It has numerous applications in man-
agement science, industrial and financial research, data mining. Newton’s method
(also known as the Newton-Raphson method), is a method for finding succes-
sively better approximations to the roots (or zeroes) of a real-valued function. The
Newton-Raphson method in one variable has a second order of convergence and
is implemented as follows: Given a function f defined over the reals x, and its
derivative f ′, we begin with a first guess x0 for a root of the function f . Provided
the function is reasonably well-behaved a better approximation x1 is

x1 = x0 −
f(x0)

f ′(x0)
.
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Geometrically, (x1, 0) is the intersection with the x-axis of the line tangent to f at
(x0, f(x0)). The process is repeated as

xn+1 = xn − f(xn)

f ′(xn)
,

until a sufficiently accurate value is reached.
An other manner to obtain the Newton method is that xn+1 can be computed

by a simple osculatory linear interpolation of the inverse function of f at the point
yn = f(xn) using the known data: the value and the first derivative at yn (for more
details on osculatory interpolation of the inverse function of f , one can see [21]).

There exist many iterative methods improving Newton’s method for solving
nonlinear equations. However, many of those iterative methods depend on the
second or higher derivatives in computing process which make their practical ap-
plication restricted strictly. As a result, Newton’s method is frequently and alterna-
tively used to solve nonlinear equations because of higher computational efficiency.
There has been some progress on iterative methods improving Newton’s method
with cubic convergence that require the function and its first derivative evaluations
for solving nonlinear equations, see [4,7,9,10,11,16,18,22] and the reference therein.

To further improve the order of convergence, some fourth-order iterative meth-
ods have been proposed and analyzed (see [1,5,13,14,21], for instance). These
methods are free from second derivatives and require only three evaluations of
both the function and its first derivative.

In this paper, we propose an efficient and rapid fourth order iterative method
for approximating a simple zero of f , and use exactly the same type and number
of data of the third order method given by Kasturiarachi [11] see also [8]. Our
method is essentially based on the idea to extend the Newton’s method, since it
can be obtained by the inverse linear interpolation, to be an inverse quadratic
interpolation. To do this, firstly we compute an intermediate approximation tn of
xn using the Newton’s approximation, and secondly we compute xn+1 using the
quadratic polynomial in y = f(x) which interpolates the inverse function of f at
xn and tn and its first derivative at xn. The expression of our iterative method can
be viewed as a simple modification of the Leap-frogging method’s expression [11].

The paper is organized as follows: In Section 2, we give some tools needed to
prove the convergence of the proposed iterative method. In Section 3, we propose
the method for finding a simple zero of a real-valued function, starting with a
reasonable initial guess and we state the main result concerning the fourth order of
convergence and asymptotic error constant. In Section 4 we give some numerical
example to illustrate the theoretical results and to compare our method to Leap-
frogging method and some existing fourth order methods in the literature.

2. Preliminary

Let f : R −→ R be function having a simple zero z and sufficiently smooth
in a neighborhood of this zero. An alternative sufficient method for computing
a solution of the equation f(x) = 0 is given by rewriting it in the equivalent
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form g(x)−x = 0 where g is a certain real-valued function, defined and sufficiently
smooth in a neighborhood of z. Upon such a transformation the problem of solving
the equation f(x) = 0 is converted into one of finding the fixed point of g. In order
to approximate this fixed point, we use the following theorem.

Theorem 2.1. There exists an interval J centered at z, such that for any x0 ∈ J,
the the sequence {xn}∞n=0 generated according to the following recurrence relation

xn+1 = g(xn) n ≥ 0, (2.1)

converges to z as n → ∞.

Proof:

Let r ∈ N with N be the set of natural numbers. Assume that g is of class Cr

in a neighborhood of z and
{

|g(r)(z)| < 1, if r = 1;
g(i)(z) = 0 for i ∈ {1 . . . r − 1} and g(r)(z) 6= 0, if r ≥ 2.

(2.2)

Suppose also that xn belong to a sufficiently small neighborhood of z for n ≥ 0.
By applying Taylor’s theorem we obtain

xn+1 = g(xn) = g(z) +
g(r)(ξ)(xn − z)r

r!
, (2.3)

where ξ ∈ (a, b) with a = min(z, xn) and b = max(z, xn).
Since g(x) is continuous at z, there exists, for all given ε > 0, a number δ such that

|xn+1 − z| = |g(xn)− g(z)| = |g(r)(ξ)|| (xn − z)r−1

r!
|xn − z| < ε, (2.4)

for every xn with |xn − z| < δ.
Let J = {x ∈ R/|x − z| < δ}. Since g(r) is continuous on J, there exists a strictly
positif real M such that |g(r)(x)| ≤ M, ∀x ∈ J. In the case r = 1, using Relation
(2.2) we can take M < 1.
If we choose

δ <

{

ε, if r = 1;

min
(

ε, (r!/M)
1/(r−1)

)

, if r ≥ 2,

then |xn+1 − z| = |g(xn)− g(z)| < |xn − z|,.Therefore, g(J) ⊂ J.
From Relation (2.4), we obtain

|xn+1 − z| = |g(xn)− g(z)| ≤ K|xn − z|, (2.5)

where

K =

{

M, if r = 1;

Mδ(r−1)/r!, if r ≥ 2,

It is easy to see that the function g is a contraction on J for any r. Consequently g
has a unique fixed point in J. Moreover, the sequence {xn}∞n=0 defined by Relation
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(2.1) converges to z as n → ∞ for any starting value x0 in J (see [2,3,6,12,19,20],
for instance). ✷

From [6,19,21], we have the following definition

Definition 2.2. Put en = |xn − z|, then for the method (2.1) the order of the
convergence is equal to r and the asymptotic error constant η is given by

η = lim
n→∞

|en+1

ern
| = |g(r)(z)|

r!
. (2.6)

3. Fourth order modified Newton’s method

In this Section, we propose a method for finding a simple zero of a real-valued
function, starting with a reasonable initial guess. For this, let f be a real function
having a simple zero z and six times differentiable in a neighborhood of z and x0

be an initial guess. We compute t0 using the Newton’s approximation, i.e.,

t0 = x0 −
f(x0)

f ′(x0)
.

t0 can be obtained as the intersection of the line P1(y) interpolating the inverse
function and its first derivative at f(x0) with the x-axis. This interpolant is written
in recursive Newton’s interpolation form. Then if we denote by F the inverse
function of f , it is easy to see that

P1(y) = P0(y) + (y − f(x0)[f(x0), f(x0)]F,

where P0(y) is the interpolant of degree 0 at f(x0), i.e, P0(y) = x0, and [f(x0),
f(x0)]F is the divided difference of F given by

[f(x0), f(x0)]F = F ′(f(x0)) =
1

f ′(x0)
.

Now if we denote by P2(y) the quadratic polynomial which interpolates the
inverse function of f at the points f(x0) and f(t0) and its first derivative at f(x0),
then P2(y) can be written as follows:

P2(y) = P1(y) + (y − f(x0))
2[f(x0), f(x0), f(t0)]F.

= x0 +
y−f(x0)
f ′(x0)

− (y−f(x0))
2f(t0)

f ′(x0)(f(t0)−f(x0))2
.

Since we are looking for a zero of f , so we replace y = f(x) by 0 in this equation,
then we can compute x1 by the following relation

x1 = P2(0) = x0 −
f(x0)

f ′(x0)
− f(x0)

2f(t0)

f ′(x0)(f(t0)− f(x0))2
. (3.1)
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Repeating this process, we obtain a sequence of numbers x1, x2, . . . , xn, . . . the
following iterative formula:

xn+1 = tn − f(xn)
2f(tn)

f ′(xn)(f(tn)− f(xn))2
,

tn = xn − f(xn)

f ′(xn)
.

(3.2)

To prove the convergence of the iterative method defined by Relation (3.2) we need
some notations and lemmas. Put

g(x) = t(x)− f(x)2f(t(x))

f ′(x)(f(t(x)) − f(x))2
. (3.3)

where t(x) = x− f(x)
f ′(x) .

Define the following functions:

L(x) = (f(t(x)) − f(x))2, (3.4)

R(x) = f(t(x))f2(x), (3.5)

S(x) = f ′(x)L(x). (3.6)

Using the Relations (3.5), (3.4) and (3.6), we rewrite the function g and we obtain

(g(x)− t(x))S(x) = −R(x). (3.7)

The iterative method (3.2) can be written in a new form:

xn+1 = g(xn). (3.8)

Therefore, to approximate the zero z of f it suffice to approximate the fixed point
of the function g.

Lemma 3.1. The value and the derivatives of t of order 1, . . . , 3 at x = z are given
by

t(z) = z, t′(z) = 0, t′′(z) =
f ′′(z)

f ′(z)
and t′′′(z) = −3

f ′′2(z)

f ′2(z)
+ 2

f ′′′(z)

f ′(z)
.

Proof: Since t(x) = x− f(x)

f ′(x)
, then

t′(x) =
f(x)f ′′(x)

f ′2(x)

and

t′′(x) =
f ′′(x)

f ′(x)
+

f(x)f ′′′(x)

f ′(x)2
− 2f(x)f ′′2(x)

f ′(x)3
.
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Using the fact that f(z) = 0, it is easy to see that t(z) = z, t′(z) = 0 and

t′′(z) =
f ′′(z)

f ′(z)
. By differentiating the function t′′ and using the fact that f(z) = 0,

we obtain easily that

t′′′(z) = −3
f ′′2(z)

f ′2(z)
+ 2

f ′′′(z)

f ′(z)
.

✷

Lemma 3.2. The value and derivatives of L of order 1, . . . , 4 at x = z are given
by

L(z) = L′(z) = L′′′(z) = 0, L′′(z) = 2f ′2(z)

and

L(4)(z) = 8f ′(z)(f ′′′(z)− t′′′(z)f ′(z)).

Proof: Since L(x) = (f(t(x)) − f(x))
2
, then

L′(x) = 2[t′(x)f ′(t(x)) − f ′(x)][f(t(x)) − f(x)],

L′′(x) = 2[t′′(x)f ′(t(x)) + t′2(x)f ′′(t(x)) − f ′′(x)][f(t(x)) − f(x)]

+2[t′(x)f ′(t(x)) − f ′(x)]2,

L′′′(x) = 2[t′′′(x)f ′(t(x)) + 3t′′(x)t′(x)f ′′(t(x))

+t′3f ′′′(t(x)) − f ′′′(x)][f(t(x)) − f(x)]

+6[t′′(x)f ′(t(x)) + t′2(x)f ′′(t(x)) − f ′′(x)][t′(x)f ′(t(x)) − f ′(x)].

Using Lemma 3.1, we get

L(z) = L′(z) = L′′′(z) = 0, and L′′(z) = 2f ′2(z).

By differentiating the function L′′′ and using the fact that f(t(z)) − f(z) = 0,
t′(z) = 0 and t′′(z)f ′(t(z)) + t′2(z)f ′′(t(z))− f ′′(z) = 0, we obtain

L(4)(z) = 8f ′(z) (f ′′′(z)− t′′′(z)f ′(z)) .

✷

Lemma 3.3. The value and derivatives of S of order 1, . . . , 4 at x = z are given
by

S(z) = S′(z) = 0, S′′(z) = 2f ′3(z), S′′′(z) = 6f ′′(z)f ′2(z)

and

S(4)(z) = −8t′′′(z)f ′3(z) + 20f ′′′(z)f ′2(z).

Proof: It suffices to use Leibniz formula and Lemma 3.2. ✷
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Lemma 3.4. The value and derivatives of R of order 1, . . . , 4 at x = z are given
by

R(z) = R′(z) = R′′(z) = R′′′(z) = 0,

R(4)(z) = 12t′′(z)f ′3(z),

R(5)(z) = 20t′′′(z)f ′3(z) + 60t′′(z)f ′2(z)f ′′(z),

and

R(6)(z) = 30t(4)(z)f ′3(z) + 150t′′′(x)f ′2(z)f ′′(z) + 120t′′(z)f ′′′(z)f ′2(z)

+90t′′(z)f ′′2(z)f ′(z) + 90t′′2(z)f ′′(z)f ′2(z).

Proof: Put U(x) = f2(x) and V (x) = f(t(x)). Then R(x) = U(x)V (x). To
compute the derivatives of R at x = z, we need the derivatives of order 1, . . . , 4 of
U and V .
For the function U , we have

U ′(x) = 2f(x)f ′(x),

U ′′(x) = 2f ′2(x) + 2f(x)f ′′(x),

U ′′′(x) = 6f ′(x)f ′′(x) + 2f(x)f ′′′(x)

and
U (4)(x) = 8f ′(x)f ′′′(x) + 6f ′′2(x) + 2f(x)f (4)(x).

Then
U(z) = U ′(z) = 0, U ′′(z) = 2f ′2(z), U ′′′(z) = 6f ′(z)f ′′(z) (3.9)

and
U (4)(z) = 8f ′(z)f ′′′(z) + 6f ′′2(z). (3.10)

For the function V , we have

V ′(x) = t′(x)f ′(t(x)),

V ′′(x) = t′′(x)f ′(t(x)) + t′2(x)f ′′(t(x)),

and
V ′′′(x) = t′′′(x)f ′(t(x)) + 3t′′(x)t′(x)f ′′(x) + t′3(x)f ′′′(t(x)),

Then

V (z) = V ′(z) = 0, V ′′(z) = t′′(z)f ′(z) and V ′′′(z) = t′′′(z)f ′(z). (3.11)

By differentiating the function V ′′′ and using the fact that t′(z) = 0, it is easy to
see that

V (4)(z) = t(4)(z)f ′(z) + t′′′(z)f ′′(z) + 3t′′2(z)f ′′(z). (3.12)

Applying the Leibniz formula to the function R, we get

R(n)(z) =
n
∑

k=0

(

n

k

)

U (k)(z)V (n−k)(z),
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then, using relations (3.9), (3.10), (3.11) and (3.12) we obtain

R(z) = R′(z) = R′′(z) = R′′′(z) = 0, (3.13)

R(4)(z) = 6U ′′(z)V ′′(z) = 12t′′(z)f ′3(z), (3.14)

R(5)(z) = 10U ′′(z)V ′′′(z) + 10U ′′′(z)V ′′(z)

= 20t′′′(z)f ′3(z) + 60t′′(z)f ′2f ′′(z),
(3.15)

we have also

R(6)(z) = 15U (4)(z)V ′′(z) + 20U ′′′(z)V ′′′(z) + 15U ′′(z)V (4)(z)

= 15t′′(z)f ′(z)
(

8f ′′′(z)f ′(z) + 6f ′′2(z)
)

+ 120t′′′(z)f ′2(z)f ′′(z)

+30
(

t(4)(z)f ′3(z) + t′′′(z)f ′2(z)f ′′(z) + 3t′′2(z)f ′′(z)f ′2(z)
)

= 120t′′(z)f ′′′(z)f ′2(z) + 90t′′(z)f ′′2(z)f ′(z) + 120t′′′(z)f ′2(z)f ′′(z)

+30t(4)(z)f ′3(z) + 30t′′′(z)f ′2(z)f ′′(z) + 90t′′2(z)f ′′(z)f ′2(z).

Then

R(6)(z) = 30t(4)(z)f ′3(z) + 150t′′′(x)f ′2(z)f ′′(z) + 120t′′(z)f ′′′(z)f ′2(z)

+90t′′(z)f ′′2(z)f ′(z) + 90t′′2(z)f ′′(z)f ′2(z).
(3.16)

✷

Now we state the main result.

Theorem 3.5. Let f be real valued function which has a simple real zero z and
which is six times differentiable in a small neighborhood of z. Then the Modified
Newton’s method given by Relation 3.2 converges with order 4 and its asymptotic
error constant is given by

η = |3f
′′3(z)− f ′(z)f ′′(z)f ′′′(z)

12f ′3(z)
| (3.17)

Proof: To prove this theorem, it suffice to prove that

g′(z) = g′′(z) = g′′′(z) = 0 and g(4)(z) =
6f ′′3(z)− 2f ′(z)f ′′(z)f ′′′(z)

f ′3(z)
.

To do this, we begin by computing the derivatives of order 3 of both sides of
Equation (3.7). Then, by the Leibnitz formula we obtain

3
∑

k=0

(

3

k

)

(

g(k)(z)− t(k)(z)
)

S(3−k)(z) = −R′′′(z).
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Using the fact that g(z) = z and Lemmas 3.1, 3.3 and 3.4, we get 6g′(z)f ′3(z) = 0.
Therefore, g′(z) = 0. By the same technique we compute the derivatives of order
4 of both sides of Equation (3.7). Then we get

12 (g′′(z)− t′′(z)) f ′3(z) = −12t′′(z)f ′3(z).

Consequently g′′(z) = 0. We continue with the Leibnitz formula and we differ-
entiate Equation (3.7) to the order 5 and 6 at x = z. Then, for the order 5, we
obtain

20(g′′′(z)−t′′′(z)) f ′3(z)−60t′′(z)f ′2(z)f ′′(z)=−
(

20t′′′(z)f ′3(z)+60t′′(z)f ′2f ′′(z)
)

.

Therefore
g′′′(z) = 0.

For the order 6, we have

15
(

g(4)(z)− t(4)(z)
)

S′′(z)− 20t′′′(z)S′′′(z)− 15t′′(z)S(4)(z) = −R(6)(z). (3.18)

Using Lemmas 3.1, 3.3 and 3.4 and by eliminating the terms −30t(4)(z)f ′3(z) and
−120t′′′(z)f ′2(z)f ′′(z), Equality (3.18) becomes

15g(4)(z)S′′(z)−270f ′′3(z)−120f ′(z)f ′′(z)f ′′′(z)=−90f ′′3(z)−180f ′(z)f ′′(z)f ′′′(z)

and therefore

g(4)(z) =
6f ′′3(z)− 2f ′(z)f ′′(z)f ′′′(z)

f ′3(z)
.

By the results given in Section 2, it is easy to see that the iterative method (3.2)
converge to the unique fixed point of g which is the simple zero of f . Furthermore,
the order of convergence is 4 and the asymptotic error constant is given by Relation
(3.17). ✷

Remark 3.6. The method proposed in this paper can be viewed as a simple modi-
fication of the Leap-frogging Newton’s method by taking the same type and number
of data. We mention that our method is the fourth order of convergence. In the
other side the Leap-frogging Newton’s method is the third one. Furthermore, the
efficiency index for our method is 41/3 ≈ 1.5874 which is better than 31/3 ≈ 1.4422
the one for the Leap-frogging Newton’s method.

4. Numerical examples

In this section we give some numerical examples for testing the performance of
the proposed method. To programming this method we used Mathematica which
allows us to find the zero with higher precision. In the first part of this Section, we
compare our results with the results given by the Leap-frogging Newton’s method.
For this, we consider two test functions and we compute |xn − z| the error between
the zero obtained by our method and the exact zero for n = 0, . . . , 6.
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Exemple1:

In this example we consider the function f defined by

f(x) = x3 − 3x2 − 5,

which has as a simple zero

z = 1 +

(

7− 3
√
5

2

)1/3

+

(

7 + 3
√
5

2

)1/3

.

We choose as initial guess x0 = 5.
Exemple2:

In this example we consider the function f defined by

f(x) = (x6 − x+ 27) sin (πx),

which has as a simple zero z = 2. We choose as initial guess x0 = 2.5.
In Table 1 and Table 2, we give, respectively in each column, the errors obtained

by the Leap-frogging Newton’s method, the errors obtained by our method, the
quantity en+1/e

4
n which gives the practical order of convergence and the value of

the theoretical quantity asymptotic error constant η. These examples present the
higher performance of our method comparing with the Leap-frogging Newton’s
method and illustrate the fourth order of convergence and confirm the value of the
asymptotic error constant shown in the previous Section.

Table 1: Comparative rates of convergence between Leap-frogging Newton’s
method ( noted LFN) and our method for f(x) = x3 − 3x2 − 5.

n LFN error |en| for our method en+1/e
4
n η

0 1.57401 1.57401 0.0237551419 0.2110192770

1 2.50482× 10−1 1.14581× 10−1 0.1630703290 −
2 2.98355× 10−3 7.37107× 10−5 0.2109911146 −
3 7.59060× 10−9 6.22855× 10−18 0.2110192770 −
4 6.85976× 10−26 3.17592× 10−70 0.2110192770 −
5 7.95976× 10−77 2.14686× 10−279 0.2110192770 −
6 1.24358× 10−229 4.48272× 10−1116 − −

In the second part of this Section we present some numerical experiments using
our iterative method and we compare these results to well known fourth-order
schemes. All computations were done using Mathematica programming using 128
digit floating point arithmetics. We accept an approximate solution rather than
the exact root, depending on the precision ǫ of the computer. We use the following
stopping criteria for computer programs:
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Table 2: Comparative rates of convergence between Leap-frogging Newton’s
method ( noted LFN) and our method for f(x) = (x6 − x+ 27) sin (πx).

n LFN error |en| for our method en+1/e
4
n η

0 0.50000 0.50000 0.2788407969 17.5108704694

1 1.85038× 10−2 1.74275× 10−2 15.2601020680 −
2 2.66167× 10−5 1.40767× 10−6 17.5106746899 −
3 8.68347× 10−14 6.87565× 10−23 17.5108704694 −
4 3.01555× 10−39 3.91348× 10−88 17.5108704694 −
5 1.26295× 10−115 4.10735× 10−349 17.5108704694 −
6 1.03088× 10−265 4.98734× 10−1393 − −

i) |xn+1 − xn| < ǫ;

ii) |f(xn+1)| < ǫ,

and so, when the stopping criterion is satisfied, xn+1 is taken as the exact zero z.
For numerical illustrations in this section we used the fixed stopping criterion

ǫ < 10−25. We used the test functions given in [5,15,22].
We present some numerical test results for various fourth-order iterative schemes

in Table 4. We compare our method with King’s method with β = 3 [13] (KM),
Kou’s method [14] (KouM) and fourth order Chun’s method [5](CM).

The comparison is about the number of iterations to approximate the zero (IT),
the number of functional evaluations (NFE) counted as the sum of the number of
evaluations of the function itself plus the number of evaluations of the derivative,
the value f(z) and the distance δ of two consecutive approximations for the zero.
The test results in Table 4 show that for most of the functions we tested, the itera-
tive method introduced in this work have equal or better performance as compared
to the other methods of the same order and use the same number and type of data.



208 D. Sbibih, A. Serghini, A. Tijini and A. Zidna

Table 3: Test functions, zeros and initial guess.

Test functions Initial Zeros
guess

f1(x) = x3 + 4x2 − 10 1.6 1.3652300134140968457608068290

f2(x) = sin2(x) − x2 + 1 1.0 1.4044916482153412260350868178

f3(x) = (x− 1)3 − 1 3.5 2.0

f4(x) = x3 − 10 4.0 2.1544346900318837217592935665

f5(x) = xex
2 − sin2 x

+3cosx+ 5 −1.0 −1.2076478271309189270094167584

f6(x) = sinx− x
2 2.0 1.8954942670339809471440357381

f7(x) = x5 + x− 10000 4.0 6.3087771299726890947675717718

f8(x) =
√
x− 1

x − 3 9.0 9.6335955628326951924063127092

f9(x) = ex + x− 20 0.0 2.8424389537844470678165859402

f10(x) = ln(x) +
√
x− 5 10.0 8.3094326942315717953469556827

5. Conclusion

In this paper, we have described an efficient iterative method for approximating
a simple zero z of a real defined function. This method is a essentially based on
the idea to extend Newton’s method to be the inverse quadratic interpolation. We
have proved that for a sufficiently smooth function f in a neighborhood of z, this
method is a fourth order of convergence. We have used Mathematica programming
with its high precision compatibility and we have presented some example tests
to confirm the theoretical results. We also have showed the performance of our
method comparing with the third order and fourth order existing methods in the
literature.
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Table 4: A Comparison of various existing fourth order methods and our method.

f KM KouM CM Our Method

f1 IT 4 4 4 4
NFE 12 12 12 12

f(z) −6.0× 10−127 −6.0 × 10−127 −6.0 × 10−127 0.0

δ 4.94 × 10−48 7.83 × 10−55 1.64 × 10−45 2.59 × 10−58

f2 IT 9 5 6 5
NFE 27 15 18 15

f(z) −1.0× 10−127 −2.0 × 10−127 −1.0 × 10−127 0.0

δ 5.27 × 10−76 1.71 × 10−42 1.15 × 10−94 6.35 × 10−73

f3 IT 6 5 6 5
NFE 18 15 18 15

f(z) 0.0 1.11 × 10−120 0.0 0.0

δ 4.28 × 10−85 6.10 × 10−31 1.10 × 10−88 5.23 × 10−36

f4 IT 5 5 5 4
NFE 15 15 15 12
f(z) 0.0 0.0 0.0 0.0

δ 3.78 × 10−42 7.40 × 10−56 1.23 × 10−32 2.62 × 10−67

f5 IT 5 5 4 4
NFE 15 15 12 12

f(z) −1.94 × 10−101 −1.20 × 10−126 −1.10 × 10−126 −4.0 × 10−123

δ 1.46 × 10−26 9.01 × 10−90 1.04 × 10−55 8.67 × 10−32

f6 IT 4 4 4 4
NFE 12 12 12 12

f(z) −2.0× 10−128 −6.0 × 10−128 −2.0 × 10−128 0.0

δ 4.59 × 10−64 1.40 × 10−70 3.84 × 10−62 1.36 × 10−73

f7 IT 48 12 14 12
NFE 144 36 42 36

f(z) 0.0 −5.93 × 10−102 0.0 0.0

δ 1.12 × 10−63 9.85 × 10−27 2.12 × 10−40 1.63 × 10−39

f8 IT 4 3 4 3
NFE 12 9 12 9

f(z) 0.0 −3.98 × 10−109 −3.10 × 10−126 0.0

δ 1.28 × 10−93 1.69 × 10−26 1.55 × 10−31 1.68 × 10−33

f9 IT 14 10
NFE 42 30

f(z) div div −3.98 × 10−109 0.0

δ 2.72 × 10−57 3.44 × 10−88

f10 IT 4 4 4 4
NFE 12 12 12 12

f(z) −1.0× 10−127 −1.0 × 10−127 −7.17 × 10−116 0.0

δ 1.23 × 10−57 2.62 × 10−71 4.92 × 10−29 3.76 × 10−85
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