

(3s.) **v. 34** 2 (2016): **189–195**. ISSN-00378712 in press doi:10.5269/bspm.v34i2.25825

On Zweier Sequence Spaces and de la Vallée-Poussin mean of order α and some geometric properties

Bipan Hazarika and Karan Tamang

ABSTRACT: The main purpose of this paper is to study some geometrical properties such as order continuous, the Fatou property and the Banach-Saks property of the new space $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p)$.

Key Words: Zweier operator; order continuous; Fatou property; Banach-Saks property.

Contents

1	Introduction	189
2	New set of sequences of order α	191
3	Some geometric properties of the new space	193

1. Introduction

We denote w, ℓ_{∞}, c and c_0 , the spaces of all, bounded, convergent, null sequences, respectively. Also, by ℓ_1 and ℓ_p , we denote the spaces of all absolutely summable and *p*-absolutely summable series, respectively. Recall that a sequence $(x(i))_{i=1}^{\infty}$ in a Banach space X is called Schauder (or basis) of X if for each $x \in X$ there exists a unique sequence $(a(i))_{i=1}^{\infty}$ of scalars such that $x = \sum_{i=1}^{\infty} a(i)x(i)$, i.e. $\lim_{n\to\infty} \sum_{i=1}^{n} a(i)x(i) = x$. A sequence space X with a linear topology is called a K-space if each of the projection maps $P_i : X \to \mathbb{C}$ defined by $P_i(x) = x(i)$ for $x = (x(i))_{i=1}^{\infty} \in X$ is continuous for each natural i. A Fréchet space is a complete metric linear space and the metric is generated by a *F*-norm and a Fréchet space if X is a complete linear metric space. In other words, X is an *FK*-space if X is a Fréchet space if X is a fréchet space except the space c_{00} which is the space of real sequences which have only a finite number of non-zero coordinates. An *FK*-space X which contains the space c_{00} is said to have the property AK if for every sequence $(x(i))_{i=1}^{\infty} \in X, x = \sum_{i=1}^{\infty} x(i)e(i)$ where $e(i) = (0, 0, \dots 1^{i^{th} place}, 0, 0, \dots)$.

A Banach space X is said to be a $K\"{o}the \ sequence \ space \ if \ X$ is a subspace of w such that

(a) if $x \in w, y \in X$ and $|x(i)| \le |y(i)|$ for all $i \in \mathbb{N}$, then $x \in X$ and $||x|| \le ||y||$

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 40A05, 40C05, 46A45.

(b) there exists an element $x \in X$ such that x(i) > 0 for all $i \in \mathbb{N}$.

We say that $x \in X$ is order continuous if for any sequence $(x_n) \in X$ such that $x_n(i) \leq |x(i)|$ for all $i \in \mathbb{N}$ and $x_n(i) \to 0$ as $n \to \infty$ we have $||x_n|| \to 0$ holds.

A Köthe sequence space X is said to be *order continuous* if all sequences in X are order continuous. It is easy to see that $x \in X$ order continuous if and only if $||(0, 0, ..., 0, x(n+1), x(n+2), ...)|| \to 0$ as $n \to \infty$.

A Köthe sequence space X is said to be the *Fatou property* if for any real sequence x and (x_n) in X such that $x_n \uparrow x$ coordinatewisely and $\sup_n ||x_n|| < \infty$, we have that $x \in X$ and $||x_n|| \to ||x||$.

A Banach space X is said to have the *Banach-Saks property* if every bounded sequence (x_n) in X admits a subsequence (z_n) such that the sequence $(t_k(z))$ is convergent in X with respect to the norm, where

$$t_k(z) = \frac{z_1 + z_2 + \dots + z_k}{k} \text{ for all } k \in \mathbb{N}.$$

Some of works on geometric properties of sequence space can be found in [4,5,9,10,16,20].

Şengönül [22] defined the sequence $y = (y_k)$ which is frequently used as the Z^i -transformation of the sequence $x = (x_k)$ i.e.

$$y_k = ix_k + (1-i)x_{k-1}$$

where $x_{-1} = 0, k \neq 0, 1 < k < \infty$ and Z^i denotes the matrix $Z^i = (z_{nk})$ defined by

$$z_{nk} = \begin{cases} i, & \text{if } n = k; \\ 1 - i, & \text{if } n - 1 = k; \\ 0, & \text{otherwise.} \end{cases}$$

Sengönül [22] introduced the Zweier sequence spaces \mathcal{Z} and \mathcal{Z}_0 as follows

$$\mathcal{Z} = \{ x = (x_k) \in w : Z^i x \in c \}$$

and

$$\mathcal{Z}_0 = \{ x = (x_k) \in w : Z^i x \in c_0 \}.$$

For details on Zweier sequence spaces we refer to [6,12,13,15,17,18].

Let $\lambda = (\lambda_r)$ be an increasing sequence of positive real numbers tending to ∞ such that $\lambda_r \leq \lambda_r + 1, \lambda_1 = 1$. The generalized de la Vallée-Poussin mean is defined by $t_r(x) = \frac{1}{\lambda_r} \sum_{k \in I_r} x_k$ where $I_r = [r - \lambda_r + 1, r]$ for r = 1, 2, 3, ... A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L if $t_r(x) \to L$ as $r \to \infty$ (see [19]). If $\lambda_r = r$, then (V, λ) -summability is reduced to Cesáro summability.

We denote Λ the set of all increasing sequences of positive real numbers tending to ∞ such that $\lambda_r \leq \lambda_r + 1, \lambda_1 = 1$. For details on (V, λ) -summability we refer to [1,2,3,7,8,11,14,21].

2. New set of sequences of order α

In this section let $\alpha \in (0, 1]$ be any real number, let $\lambda = (\lambda_r)$ be an increasing sequence of positive real numbers tending to ∞ such that $\lambda_r \leq \lambda_r + 1, \lambda_1 = 1$, and p be a positive real number such that $1 \leq p < \infty$. Now we define the following sequence space.

$$[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p) = \left\{ x \in w : \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \sum_{k \in I_{r}} |\left(Z^{i}x\right)_{k}|^{p} < \infty \right\}.$$

Special cases:

- (a) For p = 1 we have $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p) = [\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}$.
- (b) For $\alpha = 1$ and p = 1 we have $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p) = [\mathcal{Z}_{\lambda}]_{\infty}$.

Theorem 2.1. Let $\alpha \in (0,1]$ and p be a positive real number such that $1 \leq p < \infty$. Then the sequence space $[\mathbb{Z}_{\lambda}^{\alpha}]_{\infty}(p)$ is a BK-space normed by

$$||x||_{\alpha} = \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} |\left(Z^{i}x\right)_{k}|^{p} \right)^{\frac{1}{p}}.$$

Proof: The proof of the result is straightforward, so omitted.

Theorem 2.2. Let $\alpha \in (0,1]$ and p be a positive real number such that $1 \leq p < \infty$. Then $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty} \subset [\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p)$.

Proof: The proof of the result is straightforward, so omitted.

Theorem 2.3. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. Then $[\mathcal{I}_{\lambda}^{\alpha}]_{\infty}(p) \subset [\mathcal{I}_{\lambda}^{\beta}]_{\infty}(p)$.

Proof: The proof of the result is straightforward, so omitted.

Theorem 2.4. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. For any two sequences $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ for all r, then $[\mathbb{Z}^{\alpha}_{\lambda}]_{\infty}(p) \subset [\mathbb{Z}^{\beta}_{\mu}]_{\infty}(p)$ if and only if $\sup_r \left(\frac{\lambda_r^{\alpha}}{\mu_r^{\beta}}\right) < \infty$.

Proof: Let $x = (x_k) \in [\mathbb{Z}_{\lambda}^{\alpha}]_{\infty}(p)$ and $\sup_r \left(\frac{\lambda_r^{\alpha}}{\mu_r^{\beta}}\right) < \infty$. Then $\sup_r \frac{1}{\lambda_r^{\alpha}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p < \infty$

and there exists a positive number K such that $\lambda_r^{\alpha} \leq K \mu_r^{\beta}$ and so that $\frac{1}{\mu_r^{\beta}} \leq \frac{K}{\lambda_r^{\alpha}}$ for all r. Therefore, we have

$$\frac{1}{\mu_r^{\beta}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p \le \frac{K}{\lambda_r^{\alpha}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p.$$

Now taking supremum over r, we get

$$\sup_{r} \frac{1}{\mu_{r}^{\beta}} \sum_{k \in I_{r}} |\left(Z^{i}x\right)_{k}|^{p} \leq \sup_{r} \frac{K}{\lambda_{r}^{\alpha}} \sum_{k \in I_{r}} |\left(Z^{i}x\right)_{k}|^{p}$$

and hence $x \in [\mathcal{Z}^{\beta}_{\mu}]_{\infty}(p)$.

Next suppose that $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p) \subset [\mathcal{Z}_{\mu}^{\beta}]_{\infty}(p)$ and $\sup_{r} \left(\frac{\lambda_{r}^{\alpha}}{\mu_{r}^{\beta}}\right) = \infty$. Then there exists an increasing sequence (r_{i}) of natural numbers such that $\lim_{i} \left(\frac{\lambda_{r_{i}}^{\alpha}}{\mu_{r_{i}}^{\beta}}\right) = \infty$. Let L be a positive real number, then there exists $i_{0} \in \mathbb{N}$ such that $\frac{\lambda_{r_{i}}^{\alpha}}{\mu_{r_{i}}^{\beta}} > L$ for all $r_{i} \geq i_{0}$. Then $\lambda_{r_{i}}^{\alpha} > L\mu_{r_{i}}^{\beta}$ and so $\frac{1}{\mu_{r_{i}}^{\beta}} > \frac{L}{\lambda_{r_{i}}^{\alpha}}$. Therefore we can write

$$\frac{1}{\mu_{r_i}^{\beta}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p > \frac{L}{\lambda_{r_i}^{\alpha}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p \text{ for all } r_i \ge i_0.$$

Now taking supremum over $r_i \ge i_0$ then we get

$$\sup_{r_i \ge i_0} \frac{1}{\mu_{r_i}^{\beta}} \sum_{k \in I_{r_i}} |\left(Z^i x\right)_k|^p > \sup_{r_i \ge i_0} \frac{L}{\lambda_{r_i}^{\alpha}} \sum_{k \in I_{r_i}} |\left(Z^i x\right)_k|^p.$$
(2.1)

Since the relation (2.1) holds for all $L \in \mathbb{R}^+$ (we may take the number L sufficiently large), we have

$$\sup_{r_i \ge i_0} \frac{1}{\mu_{r_i}^{\beta}} \sum_{k \in I_{r_i}} |\left(Z^i x\right)_k|^p = \infty$$

but $x = (x_k) \in [\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p)$ with

$$\sup_{r} \left(\frac{\lambda_r^{\alpha}}{\mu_r^{\beta}}\right) < \infty$$

Therefore $x \notin [\mathcal{Z}_{\mu}^{\beta}]_{\infty}(p)$ which contradicts that $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p) \subset [\mathcal{Z}_{\mu}^{\beta}]_{\infty}(p)$. Hence $\sup_{r \geq 1} \left(\frac{\lambda_{r}^{\alpha}}{\mu_{r}^{\beta}}\right) < \infty$.

192

Corollary 2.5. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. For any two sequences $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ in Λ for all $r \geq 1$, then

(a) $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p) = [\mathcal{Z}^{\beta}_{\mu}]_{\infty}(p)$ if and only if $0 < \inf_{r} \left(\frac{\lambda^{\alpha}_{r}}{\mu^{\beta}_{r}}\right) < \sup_{r} \left(\frac{\lambda^{\alpha}_{r}}{\mu^{\beta}_{r}}\right) < \infty$. (b) $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p) = [\mathcal{Z}^{\alpha}_{\mu}]_{\infty}(p)$ if and only if $0 < \inf_{r} \left(\frac{\lambda^{\alpha}_{r}}{\mu^{\alpha}_{r}}\right) < \sup_{r} \left(\frac{\lambda^{\alpha}_{r}}{\mu^{\alpha}_{r}}\right) < \infty$.

$$(c) \ [\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p) = [\mathcal{Z}^{\beta}_{\lambda}]_{\infty}(p) \ if \ and \ only \ if \ 0 < \inf_{r} \left(\frac{\lambda^{\alpha}_{r}}{\lambda^{\beta}_{r}}\right) < \sup_{r} \left(\frac{\lambda^{\alpha}_{r}}{\lambda^{\beta}_{r}}\right) < \infty.$$

Theorem 2.6. $\ell_p \subset [\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p) \subset \ell_{\infty}$.

Proof: The proof of the result is straightforward, so omit it.

Theorem 2.7. If $0 , then <math>[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p) \subset [\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(q)$.

Proof: The proof of the result is straightforward, so omit it.

3. Some geometric properties of the new space

In this section we study some of the geometric properties like order continuous, the Fatou property and the Banach-Saks property in this new sequence space.

Theorem 3.1. The space $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p)$ is order continuous.

Proof: We have to show that the space $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p)$ is an AK-space. It is easy to see that $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p)$ contains c_{00} which is the space of real sequences which have only a finite number of non-zero coordinates. By using the definition of AK-properties, we have that $x = (x(i)) \in [\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p)$ has a unique representation $x = \sum_{i=1}^{\infty} x(i)e(i)$ i.e. $||x - x^{[j]}||_{\alpha} = ||(0, 0, ..., x(j), x(j+1), ...)||_{\alpha} \to 0$ as $j \to \infty$, which means that $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p)$ has AK. Therefore BK-space $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p)$ containing c_{00} has AK-property, hence the space $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p)$ is order continuous.

Theorem 3.2. The space $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p)$ has the Fatou property.

Proof: Let x be a real sequence and (x_j) be any nondecreasing sequence of nonnegative elements form $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p)$ such that $x_j(i) \to x(i)$ as $j \to \infty$ coordinatewisely and $\sup_j ||x_j||_{\alpha} < \infty$.

Let us denote $T = \sup_j ||x_j||_{\alpha}$. Since the supremum is homogeneous, then we have

$$\frac{1}{T} \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} | \left(Z^{i} x_{j}(i) \right)_{k} |^{p} \right)^{\frac{1}{p}}$$

1

$$\leq \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} \left| \frac{\left(Z^{i} x_{j}(i) \right)_{k}}{||x_{n}||_{\alpha}} \right|^{p} \right)^{\frac{1}{p}}$$
$$= \frac{1}{||x_{n}||_{\alpha}} ||x_{n}||_{\alpha} = 1.$$

Also by the assumptions that (x_j) is non-dreceasing and convergent to x coordinatewisely and by the Beppo-Levi theorem, we have

$$\frac{1}{T} \lim_{j \to \infty} \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} \left| \left(Z^{i} x_{j}(i) \right)_{k} \right|^{p} \right)^{\frac{1}{p}}$$
$$= \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} \left| \frac{\left(Z^{i} x(i) \right)_{k}}{T} \right|^{p} \right)^{\frac{1}{p}} \le 1,$$

whence

$$||x||_{\alpha} \le T = \sup_{j} ||x_{j}||_{\alpha} = \lim_{j \to \infty} ||x_{j}||_{\alpha} < \infty.$$

Therefore $x \in [\mathbb{Z}_{\lambda}^{\alpha}]_{\infty}(p)$. On the other hand, since $0 \leq x$ for any natural number j and the sequence (x_j) is non-decreasing, we obtain that the sequence $(||x_j||_{\alpha})$ is bounded form above by $||x||_{\alpha}$. Therefore $\lim_{j\to\infty} ||x_j||_{\alpha} \leq ||x||_{\alpha}$ which contadicts the above inequality proved already, yields that $||x||_{\alpha} = \lim_{j\to\infty} ||x_j||_{\alpha}$. \Box

Theorem 3.3. The space $[\mathcal{Z}^{\alpha}_{\lambda}]_{\infty}(p)$ has the Banach-Saks property.

Proof: The proof of the result follows from the standard technique.

Acknowledgments

The authors thank Prof. Marcelo Moreira Cavalcanti and the referee for his/her comments and suggestions which have enormously enhanced the quality and presentation of the paper.

References

- 1. R. Çolak, On $\lambda\text{-statistical convergence. In: Conference on Summability and Applications, Istanbul, Turkey, 12-13 May 2011 (2011)$
- 2. R. Çolak, C. A. Bektaş $\lambda\text{-statistical convergence of order }\alpha,$ Acta Math. Sci. 31(3), 953-959 (2011)
- 3. R. Çolak, Statistical Convergence of Order $\alpha,$ Modern Methods in Analysis and Its Applications, pp. 121-129. Anamaya Pub., New Delhi (2010)
- 4. Y. A. Cui, H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Bannach sequence spaces, Acta Sci. Math.(Szeged), 65(1999), 179-187.
- 5. J. Diestel, Sequence and Series in Banach spaces, in Graduate Texts in Math., Vol. 92, Springer-Verlag, 1984.

- 6. A. Esi and A. Saps Äśzoğlu, On some lacunary
 $\sigma\text{-strong}$ Zweier convergent sequence spaces, Roma
i J.8(2)(2012), 61-70.
- 7. M. Et, Muhammed Çinar, Murat Karakaş, On λ -statistical convergence of order α of sequences of function, Jour. Ineq. Appl., 2013, 2013:204.
- 8. M. Et, S.A. Mohiuddine, A. Alotaibi, On λ -statistical convergence and strongly λ -summable functions of order α , Jour. Ineq. Appl., 2013, 2013:469.
- 9. M. Et, V. Karakaya, A new difference sequence set of order α and its geometrical properties, Abst. Appl. Anal., 2014(2014), 4pp
- M. Et, Murat Karakaş, Muhammed Çinar, Some geometric properties of a new modular space defined by Zweier operator, Fixed point Theory Appl., 2013(2013):165, 10pp
- 11. M. Güngör, M. Et and Y. Altin, Strongly (V_{σ}, λ, q) -summable sequences defined by Orlicz functions, App. Math. Comput., 157(2004), 561-571.
- B. Hazarika, K. Tamang and B. K. Singh, Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Function, The Jour. Math. Comp. Sci., 8(3)(2014), 307-318.
- B. Hazarika, Karan Tamang and B. K. Singh, On Paranormed Zweier Ideal Convergent Sequence Spaces Defined By Orlicz Function, Journal of the Egyptian Mathematical Society, 22(3)(2014), 413-419, doi: 10.1016/j.joems.2013.08.005.
- 14. B. Hazarika, E. Savas, λ -statistical convergence in *n*-normed spaces, Analele Stiintifice ale Univ. Ovidius Constanta, Ser. Matematica, 21(2)(2013), 141-153.
- Y. Fadile Karababa and A. Esi, On some strong Zweier convergent sequence spaces, Acta Universitatis Apulensis,29(2012), 9-15.
- Murat Karakaş, M. Et, V. Karakaya, Some geometric properties of a new difference sequence space involving lacunary sequences, Acta Math. Ser. B. Engl. Ed., 33(6)(2013), 1711-1720.
- 17. V. A. Khan, K. Ebadullah, A. Esi, N. Khan, M. Shafiq, On Paranorm Zweier J-convergent sequences spaces, Inter. Jour. Analysis, Vol. 2013 (2013), Article ID 613501, 6 pages.
- V.A.Khan, K. Ebadullah, A. Esi and M. Shafiq, On some Zweier *I*-convergent sequence spaces defined by a modulus function, Afr. Mat. DOI 10.1007/s13370-013-0186-y (2013).
- L. Leindler, Über die la Vallée-Pousinsche Summierbarkeit Allgemeiner Orthogonalreihen. Acta Math. Acad. Sci. Hung. 16, 375-387 (1965)
- M. Mursaleen, R. Çolak, M. Et, Some geometric inequalities in a new Banach sequence space, Jour. Ineq. Appl., 2007, ID-86757, 6 pp.
- 21. M. Mursaleen, λ -statistical convergence. Math. Slovaca 50(1), 111-115 (2000)
- 22. M. Şengönül, On The Zweier Sequence Space. Demonstratio Math. Vol.XL No. (1)(2007), 181-196

Bipan Hazarika (Corresponding author) Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India E-mail address: bh_rgu@yahoo.co.in

and

Karan Tamang Department of Mathematics, North Eastern Regional Institute of Science and Technology, Nirjuli-791109, Arunachal Pradesh, India E-mail address: karanthingh@gmail.com