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The PCD Method on Composite Grid

Ahmed Tahiri

abstract: We introduce a discretization method of boundary value problems
(BVP) in the case of the two dimensional diffusion equation on a rectangular mesh
with refined zones. The method consists in representing the unknown distribution
and its derivatives by piecewise constant distributions (PCD) on distinct meshes to-
gether with an appropriate approximate variational formulation of the exact BVP on
this piecewise constant distributions space. This method, named the PCD method,
has the advantage of producing the most compact possible discrete stencil. Here,
we analyze and prove the convergence of the PCD method and determine upper
bounds on its convergence rate.
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1. Introduction

We propose a discretization technique of boundary value problems (BVP) in
which the unknown distribution and its derivatives are all represented by piece-
wise constant distributions (PCD) but on distinct meshes. The only difficulty of
the method lies in the appropriate choice of these meshes. Once done, it becomes

2000 Mathematics Subject Classification: 65N12, 65N15, 65N50

121
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v34i2.26120


122 A. Tahiri

rather straightforward to introduce an appropriate approximate variational formu-
lation of the exact BVP on this piecewise constant distribution space. We apply
and analyze the method, named the PCD method, in the case of the diffusion
equation on a rectangular mesh with refined zones. It has the advantage, com-
pared with other discretization methods, of producing the most compact discrete
stencil. Essentially, the PCD method does not make use of the so-called slave nodes
that appear in some finite element discretizations with local mesh refinement. Par-
ticularly, the graph of the discrete matrix turns out to be the grid itself of the mesh
used for the unknown distribution.

The interest for piecewise constant approximations has been stressed since the
early days of discretization techniques for partial differential equations. This mo-
tivated the earlier analysis by Aubin [2,3,4], Cea [10], Temam [18], Girault [14],
Bank and Rose [5] and Weiser and Wheeler [21]. Numerous contributions by Cai,
Mandel and McCormick [8], Cai and McCormick [9], Ewing, Lazarov and Vas-
silevski [12] and Vassilevski, Petrova and Lazarov [19], to quote a few of them,
clearly demonstrate a persistent interest for these approximations.

Our approach cannot however rely on the results obtained so far because we use
piecewise constant approximations not only for the unknown distribution itself but
also for its derivatives. This feature makes its mathematical analysis more difficult
and requires further developments. To keep them as simple as possible, we restrict
the present contribution to the analysis of the two dimensional diffusion equation
on rectangular mesh with local mesh refinement.

More specifically, we consider solving the following partial differential equation
on a rectangular domain Ω :

− div ( p(x)∇u(x)) + q(x)u(x) = s(x) x ∈ Ω (1.1)

u(x) = 0 x ∈ Γ0 (1.2)

n · ∇u(x) + ω(x)u(x) = 0 x ∈ Γ1 (1.3)

where n denotes the unit normal to Γ = ∂Ω and Γ = Γ0 ∪ Γ1.
By a rectangular domain we understand any connected subset of the plane with
orthogonal sides. It may be L-shaped and need only to be simply connected. We
assume that p(x) is bounded and strictly positive on Ω and that q(x) and ω(x) are
bounded and nonnegative on Ω and Γ1 respectively, and we assume that s(x) is
in L2(Ω). In the case where q(x) and ω(x) would be identically zero, we require
that Γ0 has positive measure. Otherwise, one would extend the results developed
below by requiring that s(x) and u(x) be orthogonal to unity in the L2(Ω) scalar
product, as usually done in such analysis. We use homogeneous boundary condi-
tions for simplicity. The extension of the theory to general boundary conditions
does not raise new difficulties.
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The discrete version of this problem will be based on its variational formulation:

find u ∈ H such that ∀ v ∈ H a(u, v ) = (s, v)Ω (1.4)

where H = H1
Γ0
(Ω) = {v ∈ H1(Ω), v = 0 on Γ0},

a(u, v) =

∫

Ω

p(x)∇u(x) · ∇v(x) dx +

∫

Ω

q(x)u(x) v(x) dx

+

∫

Γ1

p(x)ω(x)u(x) v(x) ds , (1.5)

and (s, v)Ω denotes the L2(Ω) scalar product. We use here the standard notation
for Sobolev spaces as defined in Adams [1]:

Hm = Hm(Ω) = { u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α| ≤ m}, m ≥ 0.

The norm in Hm(Ω) is denoted ‖ . ‖m,Ω or simply ‖ . ‖m and the semi-norm is de-
noted | . |m,Ω or simply | . |m . The norm in L2(Ω) is denoted ‖ . ‖Ω or simply ‖ . ‖ .

The precise meaning of Equation (1.1) with boundary conditions (1.2)-(1.3) and
s(x) ∈ L2(Ω) is to define an equation

Au = s (1.6)

where A is a linear operator with domain D(A) ⊂ L2(Ω) and range R(A) = L2(Ω)
(distributions belonging to L2(Ω) space acting on L2(Ω) distributions). So that
Equation (1.6) is actually equivalent to stating that:

∀ v ∈ L2(Ω) : < Au, v >=< s, v > (1.7)

where we have used the bilinear notation < , > rather than the usual scalar prod-
uct notation in order to stress that Au, s and v are distributions. This holds
in particular when v ∈ H and integration by parts is then generally used to get
Equation (1.4) which is at the root of the study of the properties of the operator A.

Integration by parts can however be done more generally, for example when v
has only piecewise square summable derivatives, with possible jumps at the inner
boundaries of the subdomains of Ω on which it has square summable first deriva-
tives (and provided that p(x) is not discontinuous across these boundaries). See
for example [7, pp. 94-95]. It turns out that the issue may again be written:

a(u, v) = (s, v)Ω , (1.8)

although the roles of u and v are no more symmetrical in that case, since ∇v may
present Dirac behaviors across some inner boundaries on which p∇u is required to
be continuous.
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Figure 1: Regular (rectangular) element

2. The PCD discretization

2.1. Space discretization :

The discretization technique proposed here splits the open domain Ω under inves-
tigation into elements Ωℓ (ℓ ∈ J) open subsets of Ω such that

Ω =
⋃

ℓ∈J

Ωℓ Ωk ∩ Ωℓ = ∅ if k 6= ℓ .

We denote by h the mesh size defined by: h = max(hℓ ) (ℓ ∈ J) where hℓ =
diam(Ωℓ ) (ℓ ∈ J) and we denote by hℓ1 and hℓ2, the width and the height of
the element Ωℓ. We define several submeshes on each element Ωℓ for the repre-
sentation of v ∈ H1(Ω) and its derivatives ∂iv (i = 1, 2). These representations,
denoted vh and ∂hi vh (i = 1, 2) respectively, are piecewise constant on each of
these submeshes (a specific one for each) with the additional requirement for vh
that it must be continuous across the element boundaries (i.e. along the normal
to the element boundary). In the case of the rectangular meshes considered in the
present work, the operators ∂hi (i = 1, 2) will be finite difference quotients taken
along the element edges. They would need to be appropriately adapted for other
elements.

Figure 1 gives an example of submeshes used to define vh|Ωℓ
, ∂h1 vh|Ωℓ

and ∂h2 vh|Ωℓ

on a regular rectangular element Ωℓ, i.e. an element from a regular rectangular
mesh.
vh|Ωℓ

is the piecewise constant distribution with 4 values vhi on the regions denoted
i with i = 1, ..., 4 on Fig. 1 (a) .
∂h1 vh|Ωℓ

is the piecewise constant distribution with constant values:

( ∂h1 vh )1 =
vh2 − vh1

h1
, ( ∂h1 vh )2 =

vh4 − vh3
h1
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on the regions denoted 1, 2 on Fig. 1 (b) and ∂h2 vh|Ωℓ
is similarly the piecewise

constant distribution with constant values:

( ∂h2 vh )1 =
vh3 − vh1

h2
, ( ∂h2 vh )2 =

vh4 − vh2
h2

on the regions denoted 1, 2 on Fig. 1 (c). In addition, vh must be continuous
across element boundaries. Thus for example if the bottom boundary of Ωℓ is
common with the top boundary of Ωk, one must have that vh1(Ωℓ) = vh3(Ωk) and
vh2(Ωℓ) = vh4(Ωk).

5
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3 4
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Submeshes used to represent vh (a), ∂h1 vh (b) and ∂h2 vh (c) on Ωℓ
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Figure 2: Irregular (rectangular) element

Figure 2 provides another example of submeshes used to define vh|Ωℓ
, ∂h1 vh|Ωℓ

and ∂h2 vh|Ωℓ
now in the case of an irregular element, i.e. an element located

along the bottom boundary of a refined zone. In this case vh|Ωℓ
assumes 5 values

vhi , i = 1, ..., 5 , ∂h1 vh|Ωℓ
3 values:

( ∂h1 vh )1 =
vh2 − vh1

h1
, ( ∂h1 vh )2 =

vh4 − vh3
h11

, ( ∂h1 vh )3 =
vh5 − vh4

h12

where h1 = h11 + h12, and ∂h2 vh|Ωℓ
2 values:

( ∂h2 vh )1 =
vh3 − vh1

h2
, ( ∂h2 vh )2 =

vh5 − vh2
h2

Remember that vh must be continuous across element boundaries. Thus if the top
boundary of Ωℓ is common with the bottom boundaries of the 2 cells Ωk1 and Ωk2

of widths h11 and h12 we have that:
vh3(Ωℓ) = vh1(Ωk1), vh4(Ωℓ) = vh2(Ωk1) = vh1(Ωk2) and vh5(Ωℓ) = vh2(Ωk2).

For simplicity, we consider a mesh refinement by a factor 2. Higher order ratio
can of course be handled in a similar way, see Tahiri [15].
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Figure 3 provides a particular case of submeshes used to define vh|Ωℓ
, ∂h1 vh|Ωℓ

and ∂h2 vh|Ωℓ
, when the boundary of a refined zone covers two different sides of

Ωℓ. In this case vh|Ωℓ
assumes 6 values vhi , i = 1, ..., 6 , ∂h1 vh|Ωℓ

3 values, where
h1 = h11 + h12

( ∂h1 vh )1 =
vh2 − vh1

h1
, ( ∂h1 vh )2 =

vh5 − vh4
h11

, ( ∂h1 vh )3 =
vh6 − vh5

h12

and ∂h2 vh|Ωℓ
3 values, where h2 = h21 + h22

( ∂h2 vh )1 =
vh3 − vh1

h21
, ( ∂h2 vh )2 =

vh4 − vh3
h22

, ( ∂h2 vh )3 =
vh6 − vh2

h2
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Submeshes used to represent vh (a), ∂h1 vh (b) and ∂h2 vh (c) on Ωℓ
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Figure 3: Particular case

The further handling and analysis of our discretization method require appropriate
notation for the various spaces involved, which we introduce now.

By X we denote (L2(Ω))3 with norm ‖ (u, v, w ) ‖2
X

= ‖ u ‖2 + ‖ v ‖2 + ‖w ‖2.
By Y we denote the subspace of X of the elements of the form ( v, ∂1v, ∂2v ).
By Hh0 and Hhi (i = 1, 2) we denote the spaces of piecewise constant distributions
used to define vh and ∂hi vh (i = 1, 2), equipped with the L2(Ω) scalar product.
Xh = Hh0 ×Hh1 ×Hh2 with norm ‖ (uh, vh, wh ) ‖2X = ‖ uh ‖2 + ‖ vh ‖2 + ‖wh ‖2

and Yh is the subspace of Xh of the elements of the form ( vh, ∂h1 vh, ∂h2 vh ).

We further denote by Hh the space Hh0 equipped with the inner product:

( vh , wh )h = ( vh , wh )Ω + ( ∂h1 vh , ∂h1 wh )Ω + ( ∂h2 vh , ∂h2 wh )Ω , (2.1)

and its associate norm is denoted ‖ . ‖h .
Clearly H and Hh are isomorphic to Y and Yh respectively and we let f and fh
denote the bijections of H and Hh into X and Xh (Y = f(H) and Yh = fh(Hh)).
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By rhi we denote the L2-orthogonal projection from L2(Ω) onto Hhi (i = 0, 1, 2)
and we let rhv, for any v ∈ H , denotes the element of Hh determined by rh0v ∈ Hh0.
We precise, rh0v ∈ Hh0 and fh(rhv) = (rh0v, ∂h1 (rh0v), ∂h2 (rh0v)) ∈ Yh. We call
rh the L2-orthogonal projection on Hh. Finally, by ph we denote the canonical
injection of Xh into X.

H X

Hh Xh

✲

✲
❄

✻rh ph

f

fh

Figure 4: Structure of the discretization analysis

On Figure 4 we represent the structure of this discretization and the used opera-
tors. The motivation for using this space structure is that, while we cannot directly
compare the elements of H and Hh, we can use the norm of X to measure the dis-
tance between elements f(v) = (v, ∂1v, ∂2v) of Y and fh(vh) = (vh, ∂h1 vh, ∂h2 vh)
of Yh.
Figure 5 (top–left) provides an example of a rectangular element mesh with a re-
fined zone in the right upper corner. On the same figure we also represent the
meshes Hh0 and Hhi (i = 1, 2) used to define the piecewise constant distribu-
tions vh and ∂hi vh , i = 1, 2. Each of these meshes defines cells which are useful
for distinct purposes. The elements are denoted by Ωℓ , ℓ ∈ J with boundaries
∂Ωℓ and closures Vℓ = Ωℓ. We similarly denote the cells of the other meshes by
Ωℓi , ℓ ∈ Ji , i = 0, 1, 2 respectively, with boundaries ∂Ωℓi and closures Vℓi = Ωℓi.
The measures of these cells will be denoted by |Ωℓ | and |Ωℓi | , i = 0, 1, 2. It is of
interest to note that each node of the mesh may be uniquely associated with a cell
of Hh0 ; we shall therefore denote them by Nℓ , ℓ ∈ J0.
Also we note that ∂hi vh has the following property:

∫ Q

P

∂hi vh dxi = vh(Q) − vh(P ) (i = 1, 2) (2.2)

for any pair of nodes {P, Q} of the mesh.

At this stage, we do not introduce restrictions on the choice of the discrete mesh. It
will be seen however in the convergence analysis that the grid lines of the element
mesh should include all material discontinuities, i.e all lines of discontinuity of p(x).

Before closing this section we note that triangular elements may also be intro-
duced. In this way, the PCD method can accommodate any shape of the domain
through the combined use of local mesh refinement and triangular elements, see
Tahiri [15]. We note that the use of rectangular and triangular elements is not a
restriction of the PCD discretization. Other elements and other forms of submeshes
on such elements can be used, see Beauwens [6].
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Element mesh Hh0 mesh

Hh1 mesh Hh2 mesh

Figure 5: Discrete meshes with local mesh refinement
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2.2. Discrete equations :

We now define the discrete problem to be solved in Hh by:

find uh ∈ Hh such that ∀ vh ∈ Hh ah(uh, vh ) = (s, vh)Ω (2.3)

where

ah(uh , vh ) = ( p(x) ∂h1 uh , ∂h1 vh )Ω + ( p(x) ∂h2 uh , ∂h2 vh )Ω

+ ( q(x)uh , vh )Ω + ( p(x)ω(x)uh , vh )Γ1
. (2.4)

The discrete matrix is obtained as usual by introducing a basis (φi) i∈J0
of the

space Hh. Expanding the unknown uh in this basis

uh =
∑

j∈J0

ξj φj

and expressing the variational condition (2.3) by:

ah(uh , φi ) =
∑

j∈J0

ah(φj , φi ) ξj = ( s , φi )Ω for all i ∈ J0

whence the linear system A ξ = b with stiffness matrix:
A = ( ai j ) = ( ah(φj , φi ) ) , right-hand side b with components
bi = ( s , φi )Ω , i ∈ J0 , and unknown vector ξ with components ξj , j ∈ J0 .
The basis (φi) i∈J0

of Hh is defined as usual through the conditions:

φi ∈ Hh and φi(Nj) = δi j .

ΩΩ ∼∼Ω∼

( c )( b )( a )
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-0.5

-0.5

-0.5-0.5

-0.5

-0.5

-0.5

0

1

0

11

0

10100 1

Figure 6: Element matrix graphs

The stiffness matrix is also built as usual by assembling element stiffness matrices.
To this end a few reference elements Ω̃ may be used.
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On Figure 6 we represent a reference elements Ω̃ for which it is readily seen
that the element matrix graph is the element grid itself. On the same figure, we

have indicated the offdiagonal element matrix entries a
(ℓ)
ij along the edges in the

case where p(x) = 1. The diagonal entries follow from the formula:

a
(ℓ)
ii = −

∑

j 6=i

a
(ℓ)
ij +

∫

Ω

q(x̃)φi(x̃) dx̃ .

The values represented on Figure 6 are obtained by using equation (2.3) and by
introducing the local basis of each reference element. We recall that this local basis
is reduced to the characteristic function of each volume defined on the Figure 1
(a) , Figure 2 (a) and Figure 3 (a) respectively (in the case where p(x) = 1 and
q(x) = 0).

3. Properties of the discrete space

3.1. Notation :

We investigate in this section general properties of the discrete space Hh and
of the possible discrete representations of v ∈ H in Hh. We sometimes need to
assume that the discretization is regular. We hereby mean that there exist positive
constants C1 and C2 independent of h such that:

C1 h ≤ hℓ1 , hℓ2 ≤ C2 h ∀ ℓ ∈ J (3.1)

C1 h
2 ≤ |Ωℓ 0 |, |Ωℓ1 |, |Ωℓ2 | ≤ C2 h

2 ℓ ∈ Ji , i = 0, 1, 2 (3.2)

By xℓ = (xℓ1, xℓ2), ℓ ∈ J0, we denote the grid points of the element mesh, by xℓE

we denote the right neighbor of xℓ if it exists. By xℓ+ (respectively xℓ−) we denote
the nearest neighbor of xℓE and both are located on the same vertical grid line (xℓ+

the top neighbor of xℓE and xℓ− the bottom neighbor of xℓE ).

We denote by JR the subset of J containing the fine element subscripts (elements
located in the refined zone). J i

Ir , (i = 1, 2) (Ir for irregular) denotes the subset of
J containing the subscripts of the irregular element in xi-direction (i = 1, 2). We
denote by (rhv)ℓ the value of rhv on Ωℓ 0.
We split the domain Ω into two subdomains ΩC (the coarse zone) and ΩR (the
refined zone) with Ω = ΩC ∪ ΩR.
Finally we denote by ΩIr the union of all irregular elements, ΩIr = ∪ℓ Ωℓ such
that Ωℓ ∩ ΩR = ∅ and Ωℓ ∩ ∂ΩR 6= ∅ , ℓ ∈ (J\JR); ΩIr is a strip in Ω with a
width O(h) and has the interface boundary as part of its boundary.
The notation C is used throughout the paper to denote a generic positive constant
independent of the mesh size.

3.2. Discrete Friedrichs inequalities :

The PCD discretization has the following properties which represent a discrete
version of the first and the second Friedrichs inequalities and the trace inequality,
for the proof we refer to Tahiri [15].
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Lemma 3.1. Let Ω be a bounded polygonal domain. We assume that Γ0 = ∂Ω .
Then, there exists a constant C > 0, independent of h such that:

‖ vh ‖
2 ≤ C

(
‖ ∂h1 vh ‖

2 + ‖ ∂h2 vh ‖
2
)

∀ vh ∈ Hh . (3.3)

When Γ0 has a positive measure and Γ0 6= ∂Ω, one may prove the following lemmas.

Lemma 3.2. Let Ω be a bounded polygonal domain. Then, there exists a constant
C > 0, independent of h such that:

‖ vh ‖h ≤ C
(
‖ ∂h1 vh ‖

2 + ‖ ∂h2 vh ‖
2 + ‖ vh ‖

2
Γ

)1/2
∀ vh ∈ Hh . (3.4)

Lemma 3.3. Let Ω be a bounded polygonal domain. Then, there exists a constant
C > 0, independent of h such that:

∫

Γ

vh(x)
2 ds = ‖ vh ‖

2
Γ ≤ C ‖ vh ‖

2
h ∀ vh ∈ Hh . (3.5)

The results given in the previous lemmas are independent of the presence or not of
the local mesh refinement. We note that, with the PCD discretization, for any pair
of nodes of the mesh we can find a path connecting these nodes (succession of mesh
grid segments). The proofs of the previous lemmas are based on this property and
the property (2.2).

3.3. Discrete representation of v ∈ H1(Ω) :

Considering now discrete representation of elements of H , we first investigate
L2-orthogonal projections rhv ∈ Hh of v ∈ H .

Lemma 3.4. Let Ω be a rectangular bounded open set in R2; ∀v ∈ H1(Ω),

‖ v − rh0v ‖ ≤ C h | v |1 and lim
h→0

‖ f(v) − fh(rhv) ‖X = 0 (3.6)

Proof: For all v ∈ H1(Ω), it known that ‖ v − rh0 v ‖ ≤ C h | v |1 and ‖ ∂iv −
rhi(∂iv) ‖ , (i = 1, 2) converges to zero, see for example Brezzi and Fortin [7] and
Douglas et al. [11].
We shall prove that ‖ ∂h1(rhv) − rh1(∂1v) ‖ converges to zero. Since the space
C1(Ω) is dense in H1(Ω) it is sufficient to prove this in C1(Ω). Then we can write
for all v ∈ C1(Ω):
for all ε > 0 there exists a hc such that for all h ≤ hc :
v(x) = vℓ + C h ε, ∀x ∈ Ωℓ0 , ∀ℓ ∈ J0 , where vℓ = v(xℓ). Then,

( rhv ) ℓ = ( rhv )(xℓ) =
1

|Ωℓ0 |

∫

Ωℓ0

v(x) dx = vℓ + C h ε (3.7)

Then,

∫

Ωℓ1

∂1 v(x) dx =

∫

∂Ωℓ1

v(x)n e1 ds =
|Ωℓ1 |

hℓ1
( vℓE − vℓ ) + C h2 ε (3.8)
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where n is the unit outward normal vector on ∂Ωℓ1 and e1 is the unit vector in x1

direction. Then, using (3.1), (3.2), (3.7) and (3.8) we get:

∫

Ωℓ1

∂1v(x) dx = |Ωℓ1 |
(rhv)ℓE − (rhv)ℓ

hℓ1
+ |Ωℓ1 | C ε

Then,

( rh1(∂1v) )ℓ1 =
1

|Ωℓ1 |

∫

Ωℓ1

∂1v(x) dx = ( ∂h1(rhv) )ℓ1 + C ε

Hence,

‖ ∂h1(rhv) − rh1(∂1v) ‖
2 =

∑

J1

|Ωℓ1|
(
(rh1(∂1v) )ℓ1 − (∂h1(rhv) )ℓ1

)2

=
∑

J1

C ε |Ωℓ1| = |Ω | C ε

Thus, ‖ ∂h1(rhv) − rh1(∂1v) ‖ converges to zero for h → 0.
By the same argument ‖ ∂h2(rhv) − rh2(∂2v) ‖ converges to zero too. Triangle
inequality completes the proof. ✷

3.4. Discrete representation of v ∈ H1(Ω) ∩ C0(Ω) :

We next consider the interpolant vI ∈ Hh0 of v ∈ H1(Ω) ∩ C0(Ω), defined by:

vI(xℓ ) = v(xℓ) for all nodes xℓ , ℓ ∈ J0 (3.9)

We try to obtain similar results for vI as those obtained for rh0v with v ∈ H1(Ω).

Lemma 3.5. Let Ω be a rectangular bounded open set in R2;
∀v ∈ H1(Ω) ∩ C0(Ω),

‖ v − vI ‖ ≤ C h | v |1 (3.10)

lim
h→0

‖ f(v) − fh(vI) ‖X = 0 (3.11)

Proof: By a density argument it is sufficient to prove this in C1(Ω).
For all ℓ ∈ J0 and for all x ∈ Ωℓ0, we have:

v(x) − vI = v(x) − v(xℓ) =

∫

S1

∂1 v dx1 +

∫

S2

∂2 v dx1

where S1 is an horizontal segment, S2 is a vertical segment and S1 ∪ S2 is a path
connecting x and xℓ. Then,

|v(x) − vI | ≤

(∫

S1

1dx1

) 1
2
(∫

S1

|∂1v|
2dx1

) 1
2

+

(∫

S2

1dx2

) 1
2
(∫

S2

|∂2v|
2dx2

) 1
2
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≤ (hℓ1 )
1/2

(∫

S1

| ∂1 v |
2 dx1

)1/2

+ (hℓ2 )
1/2

(∫

S2

| ∂2 v |
2 dx2

)1/2

Then,

|v(x) − vI |
2 ≤ C h

(∫

S1

| ∂1 v |
2 dx1

)
+ C h

(∫

S2

| ∂2 v |
2 dx2

)

Integrating this inequality on the cell Ωℓ0

‖ v − vI ‖
2
Ωℓ0

≤ C h2
(
‖ ∂1 v ‖

2
Ωℓ0

+ ‖ ∂2 v ‖
2
Ωℓ0

)
= C h2 | v |21,Ωℓ0

Then, (3.10) follows immediately.

For the partial derivatives, we note that the closure Ωℓi = Vℓi (i = 1, 2) are
compact sets and that if v ∈ C1(Vℓi), then ( ∂hi vI )ℓi converges uniformly to ∂iv
in Vℓi. Since uniform convergence implies L2-convergence, this immediately shows
that:

lim
h→0

‖ ∂i v − ∂hi vI ‖ = 0 (i = 1, 2)

Hence, (3.11) follows for all v ∈ H1(Ω) ∩ C0(Ω) . ✷

3.5. Case of higher regularity :

We now assume that:
v ∈ H2

L(Ω) = H1(Ω) ∩ C0(Ω) ∩ (∪ j H
2(Ωj) ), where Ωj is a subdomain of Ω (for

example subdomains where p(x) is continuous).
For all v ∈ H2

L(Ω), the interpolant vI ∈ Hh0 is defined by (3.9). For all v ∈ H2
L(Ω),

we have (see Brezzi and Fortin [7] and Douglas et al. [11].)

‖ v − rh0
v ‖ ≤ C h | v |1 ≤ C h


∑

j

‖ v ‖22,Ωj




1/2

(3.12)

‖ ∂iv − rhi(∂iv) ‖
2 ≤ Ch

∑

j

| ∂iv |
2
1,Ωj

≤ Ch
∑

j

‖ v ‖22,Ωj
(i = 1, 2) (3.13)

rh v and rhi(∂i v) are defined by:

( rhv ) ℓ =
1

|Ωℓ0 |

∫

Ωℓ0

v(x ) dx , ∀ℓ ∈ J0 (3.14)

( rhi(∂i v) ) ℓi =
1

|Ωℓi |

∫

Ωℓi

∂i v(x ) dx , ∀ℓ ∈ Ji (i = 1, 2) (3.15)

Lemma 3.6. Let Ω be a rectangular bounded open set of R2, there exists a constant
C > 0 (independent of h) such that: for all v in H2

L(Ω)

‖ f(v) − fh(vI) ‖X ≤ C h


∑

j

‖ v ‖22,Ωj




1
2

(3.16)



134 A. Tahiri

Proof: Using (3.10) we have:

‖ v − vI ‖ ≤ C h | v |1 ≤ C h


∑

j

‖ v ‖22,Ωj




1
2

For the partial derivatives, by a density argument, it is sufficient to prove these in
C2(Ωℓi) = C2(Vℓi) , i = 1, 2.
For all ℓ ∈ J1 and for all v ∈ C2(Vℓ1) , there exists θ ∈ ] 0, 1 [ such that:

(∂h1 vI)ℓ1 =
vℓE − vℓ

hℓ1
= ∂1 v(xℓ + θhℓ1)

Furthermore, we have for all x ∈ Vℓ1:

∂1v(x) − ∂1 v(xℓ + θhℓ1) =

∫

S1

∂1∂1v dx1 +

∫

S2

∂2∂1v dx2

where S1 is an horizontal segment, S2 is a vertical segment and S1 ∪ S2 is a path
connecting x and (xℓ + θhℓ1). Then,

| ∂1v(x) − ∂h1 vI |
2 ≤

(∫

S1

| ∂1∂1v | dx1 +

∫

S2

| ∂2∂1v | dx2

)2

≤

(∫

S1

1 dx1

)(∫

S1

| ∂1∂1 v |
2 dx1

)
+

(∫

S2

1 dx2

) (∫

S2

| ∂2∂1 v |
2 dx2

)

Integrating this inequality on the cell Ωℓ1

‖ ∂1v(x) − ∂h1 vI ‖
2
Ωℓ1

≤ C h2 | v |22,Ωℓ1
≤ C h2 | v |22,Ω j

where Ωj is the subdomain of Ω containing the cell Ωℓ1. In the case where Vℓ1 is
a subset of Ω1 ∪ Ω2, where Ω1 and Ω2 are two subdomains of Ω, we consider the
proof in Vℓ1 ∩ Ω1 and in Vℓ1 ∩Ω2. We get:

‖∂1v(x) − ∂h1vI‖
2
Ωℓ1

= ‖∂1v(x) − ∂h1vI‖
2
Ωℓ1∩Ω1

+ ‖∂1v(x) − ∂h1vI‖
2
Ωℓ1∩Ω2

≤ C h2 | v |22,Ωℓ1∩Ω1
+ C h2 | v |22,Ωℓ1∩Ω2

Then,

‖ ∂1v(x)− ∂h1vI ‖
2 =

∑

J1

‖∂1v(x)− ∂h1vI‖
2
Ωℓ1

≤ C h2


∑

j

| v |22,Ω j




The same argument can be used for ‖ ∂2v(x)− ∂h2vI ‖ . Then (3.16) follows easily.
For other proofs see Tahiri [15]. ✷

We note that the results presented in this section are independent of the presence
or not of the local mesh refinement.
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4. Convergence analysis

4.1. Convergence :

In this section we analyze the convergence of the solution uh of the approximate
problem (2.3) to the solution u of the continuous problem (1.1). The approximate
bilinear form (2.4) is symmetric over Hh × Hh. By using the Lemma 3.1 or the
Lemmas 3.2 and 3.3, we prove the uniform coercivity of the approximate bilinear
form. The coercivity of (2.4) implies that the stiffness matrix is positive definite.
Moreover, it is also symmetric since (2.4) is a symmetric form.
The convergence is analyzed in two steps. First we give the error bounds induced
by some specific approximation ud ∈ Hh of u ∈ H (ud = rhu or ud = uI). Such
bounds have already been obtained for rhu (Lemma 3.4) and for uI (Lemma 3.6).
It remains to give an error bound for ‖ ud − uh ‖h between ud and the approximate
solution uh. Since Hh norm and ah-norm are equivalent, we may equivalently try
to bound:

‖ ud − uh ‖ah
: = sup

vh ∈ Hh

vh 6= 0

| ah (ud , vh ) − ah (uh , vh ) |

‖vh‖h
(4.1)

= sup
vh ∈ Hh

vh 6= 0

| ah (ud , vh ) − a (u , vh ) |

‖vh‖h

because, ∀ vh ∈ Hh ah(uh, vh ) = (s, vh)Ω = a (u , vh ) .
Since s(x) is still defined on Hh and s(x) is replaced by its value in (1.1). By
introducing the following restrictions the expression a (u , vh ) is well defined. It
should be noticed that ∂1 vh is reduced to Dirac distributions taken along the edges
of the regions where vh is constant (the vertical median line Eℓ of the cell Ωℓ1 in
this case), weighted by the corresponding discontinuity of vh. We required, in the
definition of our BVP, that p(x) be a bounded distribution, i.e. p ∈ L∞(Ω). The
reason was that with ∂i u ∈ L2(Ω), we then also have p(x) ∂i u ∈ L2(Ω) and all
operators are clearly defined. However, in the expression of the error, we now
see that ∂1 vh appear, with Dirac behaviors across specific lines and this is clearly
incompatible with coefficients p(x) that would be discontinuous across the same
lines. To avoid such situations, we must introduce restrictions on the choice of
the mesh, namely that material discontinuities (i.e. discontinuities of p(x)) should
never match grid lines of the Hh0 mesh. The best practical way to ensure this
restriction is to require that material discontinuities be always grid lines of the
element mesh.

Theorem 4.1. Let Ω be a rectangular bounded open set of R2. Assume that the
unique variational solution u of (1.1) belongs to H1(Ω) ∩H2(ΩIr).
Then we have:

lim
h→0

‖ uh − rhu ‖h = 0 and lim
h→0

‖ f(u) − fh(uh) ‖X = 0
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where uh is the solution of the problem (2.3) with local mesh refinement and ΩIr

is a strip in Ω.

Proof: We assume that u ∈ H1(Ω), by density argument, the proof is only con-
sidered for u ∈ C1(Ω). We have for all vh ∈ Hh and for rhu :

ah ( rhu , vh ) − a (u , vh ) = A0 + A1 + A2

where
A0 = ( q(x) rhu , vh )Ω − ( q(x)u , vh )Ω

+ ( p(x)ω(x) rhu , vh )Γ1
− ( p(x)ω(x)u , vh )Γ1

(4.2)

A1 = ( p(x) ∂h1 rhu , ∂h1 vh )Ω − ( p(x) ∂1 u , ∂1 vh )Ω (4.3)

A2 = ( p(x) ∂h2 rhu , ∂h2 vh )Ω − ( p(x) ∂2 u , ∂2 vh )Ω (4.4)

|A0 | ≤ ‖ q ‖∞ ‖ vh ‖h ‖ u − rhu ‖ + ‖ p ‖∞ ‖ω ‖∞ ‖ vh ‖h ‖ u − rhu ‖Γ1

Using lemma 3.4, one may write:

∀ ε > 0 , ∃ hc such that ∀ h ≤ hc we have : |A0 | ≤ C ε ‖ vh ‖h

( b )( a )

-

+
+

0

-

11

2

2

2

2121

E

E

E

hh

h

E l

Figure 7: (a) Regular cell Ωℓ1 (b) Irregular cell Ωℓ1

The other terms Ai (i = 1, 2) are most easily analyzed on the cells Ωℓi (i = 1, 2)
of the Hhi meshes (i = 1, 2). Being similar in both cases, we consider i = 1.
Suppose first that we have a regular case (Fig. 7 (a)). Then, the contribution of
an arbitrary cell Ωℓ1 is :

Aℓ
1 = ( p(x) ∂h1 rhu , ∂h1 vh )Ωℓ1

− ( p(x) ∂1 u , ∂1 vh )Ωℓ1

Since,

( p(x) ∂1 u , ∂1 vh )Ωℓ1
=

∫

Eℓ

p(x) ∂1 u ( v2 − v1)ds

=
1

h2

∫

Eℓ

p(x) ∂1 u ds(
vh2 − vh1

h1
) h1 h2
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Then,

Aℓ
1 =

(
〈 p(x) 〉Ωℓ1

∂h1 rhu ∂h1 vh − 〈 p(x) ∂1 u 〉E
ℓ
∂h1 vh

)
h1 h2

=
(
〈 p(x) 〉Ωℓ1

∂h1 rhu − 〈 p(x) ∂1 u 〉E
ℓ

) vh2 − vh1
h1

h1 h2

where 〈 〉Q denotes average on Q, here the Hh1 mesh cell Ωℓ1 or its vertical median
line Eℓ, defined by:

〈 f(x) 〉Q =
1

|Q |

∫

Q

f(x) dx

Note that,

∣∣ 〈 p(x) 〉Ωℓ1
∂h1 rhu − 〈 p(x) ∂1 u 〉E

ℓ

∣∣ ≤ C
∣∣ ∂h1 rhu − 〈 ∂1 u 〉Eℓ

∣∣

Taylor expansion and (3.7) give that: ∀ ε > 0 , ∃ hc such that ∀ h ≤ hc

∫

Eℓ

∂1 u ds = |Eℓ |

(
(rhu)2 − (rhu)1

h1

)
+ C h ε

Therefore,

〈 ∂1 u 〉Eℓ
=

(rhu)2 − (rhu)1
h1

+ C ε = ( ∂h1 rhu )ℓ1 + C ε

and then: ∣∣ ∂h1 rhu − 〈 ∂1 u 〉Eℓ

∣∣ ≤ C ε

It follows that:

| Aℓ
1 | ≤ C ε

∣∣∣∣
vh2 − vh1

h1

∣∣∣∣ h1 h2 = C ε
∣∣ ( ∂h1 vh )ℓ1

∣∣ |Ωℓ1 |

Now we consider an irregular case (Fig. 7 (b)), the contribution of this irregular
cell Ωℓ1 is:

Aℓ
1 = ( p(x) ∂h1 rhu , ∂h1 vh )Ωℓ1

− ( p(x) ∂1 u , ∂1 vh )Ωℓ1

=

(
〈 p(x) 〉Ωℓ1

∂h1 rhu ∂h1 vh −
1

4
〈 p(x) ∂1 u 〉E−

(
vh2− − vh1

h1

)

−
1

2
〈 p(x) ∂1 u 〉E0

(
vh2 − vh1

h1

)
−

1

4
〈 p(x) ∂1 u 〉E+

(
vh2+ − vh1

h1

))
h1 h2

=
(
〈 p(x) 〉Ωℓ1

∂h1 rhu − 〈 p(x) ∂1 u 〉Eℓ

) ( vh2 − vh1
h1

)
h1 h2

−

(
〈 p(x) ∂1 u 〉E+

(
vh2+ − vh2

h1

)
+ 〈 p(x) ∂1 u 〉E−

(
vh2− − vh2

h1

) )
h1 h2

4
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Then,

| Aℓ
1 | ≤ C

∣∣ 〈 p(x) 〉Ωℓ1
∂h1 rhu − 〈 p(x) ∂1 u 〉Eℓ

∣∣
∣∣∣∣

vh2 − vh1
h1

∣∣∣∣ h1 h2

+ C
∣∣∣〈 ∂1 u 〉E+

∣∣∣
∣∣∣∣
vh2+ − vh2

h1

∣∣∣∣
h1 h2

4
+ C

∣∣∣〈 ∂1 u 〉E−

∣∣∣
∣∣∣∣
vh2− − vh2

h1

∣∣∣∣
h1 h2

4

≤ C ε
∣∣( ∂h1 vh )ℓ1

∣∣ |Ωℓ1 | + C

∣∣∣∣
∫

E+

∂1 u ds

∣∣∣∣
∣∣ vh2+ − vh2

∣∣

+C

∣∣∣∣
∫

E−

∂1 u ds

∣∣∣∣
∣∣∣ vh2 − vh2−

∣∣∣

By vℓ+ (respectively vℓ−) we denote the value of vh at the grid point xℓ+ (respec-
tively xℓ−) and by Eℓ = E− ∪ E0 ∪ E+ we denote the vertical median of the cell
Ωℓ1. We add together all terms Aℓ

1 , regular and irregular, and using (3.1) and
(3.2) we get:

| A1 | ≤ C ε |Ω |1/2 ‖ vh ‖h +
∑

ℓ∈ J1
Ir

∣∣∣∣
∫

Eℓ

∂1 u ds

∣∣∣∣
∣∣ vℓE − vℓ+

∣∣

≤ Cε‖vh‖h + C


 ∑

ℓ∈ J1
Ir

∣∣∣∣
vℓE − vℓ+

hℓ2

∣∣∣∣
2

|Ωℓ2+ |




1/2

×


 ∑

ℓ∈ J1
Ir

(∫

Eℓ

∂1u ds

)2



1/2

≤ C ε ‖ vh ‖h + C ‖ vh ‖h


 ∑

ℓ∈ J1
Ir

( ∫

Eℓ

∂1 u ds

)2



1/2

Since we assume that u belongs to H2(ΩIr), we use the Cauchy − Schwarz in-
equality and the trace inequality on the strip ΩIr. Then,

|A1 | ≤ C ε ‖ vh ‖h + C ‖ vh ‖h


 ∑

ℓ∈ J1
Ir

|Eℓ| ‖ u ‖
2
1,Eℓ




1/2

≤ C ε ‖ vh ‖h + C ‖ vh ‖h
(
h ‖ u ‖22,ΩIr

)1/2

Similarly, the same results are derived for A2.
Finally we have ∀ ε > 0 , ∃ hc such that ∀ h ≤ hc

‖ rhu − uh ‖h ≤ C ‖ rhu − uh ‖ah
≤ sup

vh ∈ Hh

vh 6= 0

| A0 | + | A1 | + | A2 |

‖vh‖h

Hence,
‖ rhu − uh ‖h ≤ C ‖ rhu − uh ‖ah

≤ C ε
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Triangle inequality completes the proof. ✷

It is of interest to consider here the case where ud = uh, the exact solution of the
approximate problem, in the particular case where q(x) = 0. In this case indeed
the error must be zero showing that uh is such that:

∂h1 uh =
1

〈 p(x) 〉Ωℓ1

〈 p(x) ∂1 u 〉Eℓ

Beyond giving us a relation between the exact and approximate solution, it shows
that in this case, the method reduces to the control volume method under its
corner mesh version. In more general cases, we may still consider our approach as
an interpretation of this box method.
The presented method is not a control volume method and cannot in general be
correctly framed in that way. However, in the case of a rectangular mesh (whether
uniform or not) it can be recovered via the corner mesh version of the control
volume method and it does conserve the mass in that case. This does not seem
feasible in more general cases as for example along a refined zone.

Remark 4.1. For an element with two refined sides, as on Fig. 3, the presented
analysis is still valid. Indeed, the Dirac distribution ∂1vh is also weighted by the
inner product of the unit outward normal vector on the boundary cell with the unit
vector in x1-direction.

4.2. Convergence rate :

Under additional regularity for u the exact solution of (1.1), we derive a bound
on the convergence rate. Now, we assume that u belongs to H2

L(Ω). The nodal
values of u are well defined for each point of Ω. We assign the unknowns of the
approximate solution uh to the nodes xℓ. We denote by uℓ the nodal value of u at
the grid point xℓ.
Also here, the error analysis is done in two steps. The first one is ‖ f(u)− fh(uI) ‖X

that is given in Lemma 3.6 and the second one is the error ‖ uI − uh ‖h. As
previously we try to bound ‖ uI − uh ‖ah

defined in (4.1) with ud = uI .

Theorem 4.2. Let Ω be a rectangular bounded open set of R2. Assume that the
unique variational solution u of (1.1) belongs to H2

L(Ω), there exists a constant
C > 0 ( independent of h), such that:

‖ f(u) − fh(uh) ‖X ≤ C h


∑

j

‖ u ‖22,Ωj




1
2

where uh is the solution of the problem (2.3) without local refinement.

Theorem 4.3. Let Ω be a rectangular bounded open set of R2. Assume that the
unique variational solution u of (1.1) belongs to H2

L(Ω), there exists a constant
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C > 0 ( independent of h), such that:

‖f(u)− fh(uh)‖X ≤ Ch


∑

j

‖u‖22,Ωj




1
2

+ Ch1/2


∑

j

‖u‖22,Ωj∩ΩIr




1
2

(4.5)

where uh is the solution of the problem (2.3) with local mesh refinement and ΩIr

is a strip in Ω.

Proof: The proofs of Theorems 4.2 and 4.3 are similar, we give only the proof of
Theorem 4.3. We have for all vh ∈ Hh and for ud = uI :

ah (uI , vh ) − a (u , vh ) = A0 + A1 + A2

where Ai (i = 0, 1, 2) are defined in (4.2), (4.3) and (4.4) with uI instead of rhu.
By Lemma 3.6 one may write:

|A0 | ≤ C ‖ vh ‖h ‖ u − uI ‖ ≤ C h ‖ vh ‖h


∑

j

‖ u ‖22,Ωj




1/2

(4.6)

As previously, we consider the contribution of an arbitrary regular cell Ωℓ1:

Aℓ
1 =

(
〈 p(x) 〉Ωℓ1

∂h1 uI − 〈 p(x) ∂1 u 〉E
ℓ

) vh2 − vh1
h1

h1 h2

Then,

| Aℓ
1 | ≤ C

∣∣ ∂h1 uI − 〈 ∂1 u 〉Eℓ

∣∣
∣∣∣∣

vh2 − vh1
h1

∣∣∣∣ h1 h2

Note that xℓ and xℓE are in Vℓ1, and Eℓ is a subset of Vℓ1.
Taylor expansion gives on a closed domain K , for all x , x0 ∈ K:

v(x) = v(x0) +∇v(x0) · (x− x0)

+

∫ 1

0

H(v)(tx+ (1 − t)x0)(x− x0) · (x− x0) ( 1 − t ) dt (4.7)

where H(v)(x) denotes the Hessian matrix of v at point x.
Using (4.7) for (x = xℓ , x0 = x) and for (x = xℓE , x0 = x), ∀x ∈ Eℓ, subtracting
one from the other:

(u(xℓE ) − u(xℓ)) = ∇u(x) · (xℓE − xℓ) + φℓE − φℓ

where:

φℓ =

∫ 1

0

H(v)(txℓ + (1− t)x)(xℓ − x) · (xℓ − x) ( 1 − t ) dt ;
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φℓE =

∫ 1

0

H(v)(txℓE + (1− t)x)(xℓE − x) · (xℓE − x) ( 1 − t ) dt

Integrating over Eℓ and since ∇u(x) · (xℓE − xℓ) = (hℓ1 ∂1 u(x) , 0), we get:

h1 | Eℓ |

(
(uI)2 − (uI)1

h1

)
= h1

∫

Eℓ

∂1u ds +

∫

Eℓ

φℓE ds−

∫

Eℓ

φℓ ds

Then,

∂h1 uI =
(uI)2 − (uI)1

h1
= 〈 ∂1 u 〉Eℓ

+
1

h1 h2

∫

Eℓ

φℓE ds −
1

h1 h2

∫

Eℓ

φℓ ds

Hence,

| Aℓ
1 | ≤ C

( ∫

Eℓ

∣∣ φℓE

∣∣ ds +

∫

Eℓ

| φℓ | ds

) ∣∣∣∣
vh2 − vh1

h1

∣∣∣∣

Now, we give a bound for
∫
Eℓ

|φℓ| ds and
∫
Eℓ

|φℓE | ds.

∫

Eℓ

|φℓ| ds ≤

∫

Eℓ

∫ 1

0

|H(u)(txℓ + (1− t)x)(xℓ − x) · (xℓ − x) (1 − t) | ds dt

≤ C h2

∫

Eℓ

∫ 1

0

|H(u)(txℓ + (1 − t)x) (1 − t) | ds dt

Using a change of variable z = (z1, z2) = txℓ + (1− t)x for all x ∈ Eℓ,
whence dz2 = (1− t) ds.
For all x ∈ Eℓ, z1 = xℓ1 + (1− t)h1/2 , using an other change of variable (1− t) =
2(z1 − xℓ1)/h1 , therefore dz1 = −h1 dt/2 . Then,

∫

Eℓ

|φℓ| ds ≤ C h2

∫

E t
ℓ

∫ 1

0

|H(u)(z)| dz2 dt

where E t
ℓ is the transformation of Eℓ by the first change of variable. Since E t

ℓ ⊂ Eℓ

and using the second change of variable, we obtain:

∫

Eℓ

|φℓ| ds ≤ C h2

∫

Eℓ

∫ xℓ1+
h1
2

xℓ1

|H(u)(z)|
2

h1
dz1 dz2

We denote by Ω 1
ℓ1 the left half part of Ωℓ1, and using Cauchy–Schwarz inequality:

∫

Eℓ

|φℓ | ds ≤ C h ‖ u ‖2,Ω 1
ℓ1

(∫

Eℓ

∫ xℓ1+
h1
2

xℓ1

dz

)1/2

≤ C h ‖ u ‖2,Ω 1
ℓ1

|Ω 1
ℓ1 |

1/2 ≤ C h ‖ u ‖2,Ωℓ1
|Ωℓ1|

1/2
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In similar way, we can get the same error bound for
∫
Eℓ

|φℓE | ds.
Therefore,

| Aℓ
1 | ≤ C h ‖ u ‖2,Ωℓ1

|Ωℓ1|
1/2

∣∣∣∣
vh2 − vh1

h1

∣∣∣∣ = C h ‖ u ‖2,Ωℓ1
‖ ∂h1vh ‖Ωℓ1

Now we consider an irregular case (Fig. 7 (b)), the contribution of this irregular
cell Ωℓ1 is:

Aℓ
1 = ( p(x) ∂h1 uI , ∂h1 vh )Ωℓ1

− ( p(x) ∂1 u , ∂1 vh )Ωℓ1

=

(
〈 p(x) 〉Ωℓ1

∂h1 uI ∂h1 vh −
1

4
〈 p(x) ∂1 u 〉E−

(
vh2− − vh1

h1

)

−
1

2
〈 p(x) ∂1 u 〉E0

(
vh2 − vh1

h1

)
−

1

4
〈 p(x) ∂1 u 〉E+

(
vh2+ − vh1

h1

))
h1 h2

=
(
〈 p(x) 〉Ωℓ1

∂h1 uI − 〈 p(x) ∂1 u 〉Eℓ

) ( vh2 − vh1
h1

)
h1 h2

−

(
〈 p(x) ∂1 u 〉E+

(
vh2+ − vh2

h1

)
+ 〈 p(x) ∂1 u 〉E−

(
vh2− − vh2

h1

) )
h1 h2

4

Then,

| Aℓ
1 | ≤ C

∣∣ ∂h1 uI − 〈 ∂1 u 〉Eℓ

∣∣
∣∣∣∣

vh2 − vh1
h1

∣∣∣∣ h1 h2

+ C
∣∣∣〈 ∂1 u 〉E+

∣∣∣
∣∣∣∣
vh2+ − vh2

h1

∣∣∣∣
h1 h2

4
+ C

∣∣∣〈 ∂1 u 〉E−

∣∣∣
∣∣∣∣
vh2− − vh2

h1

∣∣∣∣
h1 h2

4

≤ C h ‖ u ‖2,Ωℓ1
‖ ∂h1vh ‖0,Ωℓ1

+ C

∣∣∣∣
∫

E+

∂1 u ds

∣∣∣∣
∣∣ vh2+ − vh2

∣∣

+ C

∣∣∣∣
∫

E−

∂1 u ds

∣∣∣∣
∣∣∣ vh2 − vh2−

∣∣∣

In the case where Eℓ is a subset of Ω1 ∪ Ω2, where Ω1 and Ω2 are two subdomains
of Ω, we consider the proof in Eℓ ∩ Ω1 and in Eℓ ∩ Ω2.
We add together all terms Aℓ

1, regular and irregular, and using (3.1) and (3.2) we
get:

|A1| ≤ Ch


∑

j

∑

J1

‖u‖2,Ωℓ1∩Ωj
‖∂h1vh‖Ωℓ1


+

∑

ℓ∈J1
Ir

∣∣∣∣
∫

Eℓ

∂1 u ds

∣∣∣∣ |vℓE − vℓ+ |

≤ C h ‖ vh ‖h


∑

j

‖ u ‖22,Ωj




1/2
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+ C


 ∑

ℓ∈ J1
Ir

∣∣∣∣
vℓE − vℓ+

hℓ2

∣∣∣∣
2

|Ωℓ2+ |




1/2
 ∑

ℓ∈ J1
Ir

( ∫

Eℓ

∂1 u ds

)2



1/2

≤ Ch‖ vh ‖h


∑

j

‖ u ‖22,Ωj




1/2

+ C ‖ vh ‖h


 ∑

ℓ∈ J1
Ir

(∫

Eℓ

∂1 u ds

)2



1/2

Using the Cauchy − Schwarz inequality and the trace inequality, we get:

|A1 | ≤ C h ‖ vh ‖h


∑

j

‖ u ‖22,Ωj




1/2

+ C ‖ vh ‖h


 ∑

ℓ∈ J1
Ir

|Eℓ|‖ u ‖
2
1,Eℓ




1/2

≤ C h ‖ vh ‖h


∑

j

‖ u ‖22,Ωj




1/2

+ C ‖ vh ‖h


 h

∑

j

‖ u ‖22,Ωj ∩ΩIr




1/2

≤ C h ‖ vh ‖h


∑

j

‖ u ‖22,Ωj




1/2

+ C h1/2 ‖ vh ‖h


∑

j

‖ u ‖22,Ωj ∩ΩIr




1/2

Similarly, one may write for A2:

|A2 | ≤ Ch‖ vh ‖h


∑

j

‖ u ‖22,Ωj




1/2

+ C h1/2 ‖ vh ‖h


∑

j

‖ u ‖22,Ωj ∩ΩIr




1/2

Therefore,

‖ uI − uh ‖h ≤ C ‖ uI − uh ‖ah
≤ sup

vh ∈ Hh

vh 6= 0

| A0 | + | A1 | + | A2 |

‖vh‖h

Finally,

‖ uI − uh ‖h ≤ C ‖ uI − uh ‖ah

≤ C h


∑

j

‖ u ‖22,Ωj




1/2

+ C h1/2


∑

j

‖ u ‖22,Ωj ∩ΩIr




1/2

Triangle inequality and Lemma 3.6 complete the proof. ✷

Remark 4.2. The presented method is well adapted for multilevel local refine-
ment. Successive local mesh refinement can be handled in similar way. The results
established here are still valid.
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5. Concluding remarks

The first and main issue of the present work is the introduction of the PCD dis-
cretization method that relies on the systematic use of piecewise constant distribu-
tions to represent the unknown distribution as well as its derivatives, each one on a
specific mesh. This method was only formulated for rectangular grids because the
choice of the appropriate meshes is rather simple in that case and this choice led us
to a new Ritz-Galerkin formulation of the corner mesh box scheme. Its extension
to more general (irregular) meshes clearly raises geometrical difficulties but a priori
no basic principle objection.

Staying still with rectangular meshes we have investigated the question of feasi-
bility of introducing local mesh refinement without slave nodes, with the issue of
getting the most compact possible discrete stencil. The main question to solve here
was to prove the convergence of the resulting scheme.

Our conclusion is that, provided that the solution belongs to H1(Ω) ∩ H2(ΩIr),
there is always convergence in energy norm. Further, if the solution is locally H2-
regular, we then showed an O(h1/2) convergence rate.

One can also use slave node techniques to improve the convergence at the ex-
pense of increased complexity, see Tahiri [15].
In our study of this method, we have used both theoretical and numerical investi-
gations. The present work summarizes our theoretical findings. For the numerical
results, we refer to Tahiri [15,17]. Our numerical results are in agreement with the
theoretical results presented here. Furthermore, the numerical results show that
the L2-error ‖ u − uh ‖ has an O(h)-convergence rate independently of the presence
or not of the local mesh refinement.
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13. T. Gallouët, R. Herbin and M. H. Vignal, Error estimates on the approximate finite volume
solution of convection diffusion equations with general boundary conditions, SIAM J. Num.
Anal. 37 (2000), 1935-1972.

14. V. Girault, Theory of a finite difference method on irregular networks, SIAM J. Num. Anal.
11 (1974), 260-282.

15. A. Tahiri, A compact discretization method for diffusion problems with local mesh refinement,
PhD thesis, Service de Métrologie Nucléaire, ULB, Brussels, Belgium, September (2002).

16. A. Tahiri, The PCD method, Lecture Notes in Computer Science, 2542 (2003), 563-571.

17. A. Tahiri, Local mesh refinement with the PCD method, Adv. Dyn. Syst. Appl. 8(1) (2013),
124-136.

18. R. Temam, Analyse Numérique, Presses Univ. de France, Paris, (1970).

19. P. S. Vassilevski, S. I. Petrova and R. D. Lazarov, Finite difference schemes on triangular
cell-centred grids with local refinement, SIAM J. Sci. Stat. Comput. 13 (1992), 1287-1313.

20. M. H. Vignal, Schémas volumes finis pour des équations elliptiques ou hyperboliques avec
conditions aux limites, convergence et estimations d’erreur, Thèse de Doctorat, ENS de Lyon,
France, (1997).

21. A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic
problems, SIAM J. Num. Anal. 25 (1988), 351-375.

Ahmed Tahiri

Department of Mathematics and Informatics,

Faculty of Sciences, University Mohammed I,

BP 717 , 60000 Oujda, Morocco.

E-mail address: tahiriahmed02@yahoo.fr


	Introduction
	The PCD discretization
	Space discretization : 
	Discrete equations :

	Properties of the discrete space
	Notation : 
	Discrete Friedrichs inequalities :
	Discrete representation of v H1() :
	Discrete representation of v H1()C0() :
	Case of higher regularity :

	Convergence analysis
	Convergence : 
	Convergence rate :

	Concluding remarks

