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Variable Mesh Size Exponential Finite Difference Method for the

Numerical Solutions of Two Point Boundary Value Problems

P. K. Pandey and B. D. Pandey

abstract: In this article, we presented a variable mesh size exponential finite
difference scheme for the numerical solutions of two point boundary value prob-
lems with Dirichlet’s boundary conditions. Under appropriate condition, we have
discussed the local truncation error and the convergence of the proposed method.
Numerical experiments demonstrated the use and computational efficiency of the
method in several model problems. Numerical results showed that the proposed
method is convergent and has at least second order of accuracy which is in good
agreement with the theoretically established order of the method.
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1. Introduction

In this article we considered a method for the numerical solution of the two-
point boundary value problems of the form

y′′(x) = f(x, y), a < x < b, (1)

subject to the boundary conditions

y(a) = α and y(b) = β,

where α and β are real constants and f is continuous on (x, y) for all x ∈ [a, b]
y ∈ ℜ.
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Two point boundary value problems are of common occurrence in many areas
of sciences and engineerings. This class of problems has gained importance in the
literature for the variety of their applications. In most cases it is impossible to ob-
tain solutions of these problems using analytical methods which satisfy the given
boundary conditions. In these cases we resort to approximate solution of the prob-
lems and the last few decades have seen substantial progress in the development of
approximate solutions of these problems. In the literature, there are many different
methods and approaches such as method of integration and discretization that are
used to derive the approximate solutions of these problems [1,2,3,4].

The existence and uniqueness of the solution to problem (1) is assumed. We
further assumed that problem (1) is well posed with continuous derivatives and
that the solution depends differentially on the boundary conditions. The specific
assumption on f(x, y) to ensure existence and uniqueness will not be considered
[3,4,5].

Over the last few decades, finite difference methods [6,7,8] have generated re-
newed interest and in recent years, variety of specialized techniques [10,11] for the
numerical solution of boundary value problems in ODEs have been reported in the
literature. Recently, an exponential finite difference method with uniform step size
was proposed in [12] for the numerical solution of linear two point boundary value
problem. This method generated impressive numerical results for the problem (1).
Hence, the purpose of this article is to propose an exponential finite difference
method with variable step size for problem (1).

The development of this numerical method for two-point boundary-value prob-
lems plays a paramount role in the approximate solution of boundary value prob-
lems with a small parameter affecting the highest derivative of the differential
equation. Boundary value problems with such property are known as singularly
perturbed two-point boundary-value problems. It is a well known fact that sin-
gularly perturbed boundary value problem possess a small interval in which the
solution varies rapidly and this small interval is known as the boundary layer in the
literature. The occurrence of boundarylayers creates difficulty for most standard
numerical schemes with uniform mesh size in solving these problems. A variable
mesh method can overcome this difficulty and is well suit for solving boundary
layer problem [8,9]. Our proposed variable step size exponential method for the
solution of two point boundary value problems is efficient in solving such boundary
layer problems without any difficulty.

We hope that others may find the proposed method an improvement and ap-
pealing to those existing finite difference methods for two-point boundary value
problems.

A new method of at least quadratic order is proposed for the numerical solution
of linear boundary value in [12] problems (1). Our idea is to apply the exponen-
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tial finite difference method to discretize equation (1) in order to get a system of
algebraic equations. In addition, if we apply a linearization technique, the method
results in a tridiagonal matrix for the nodal values. The elements of this ma-
trix depend on the source function i.e. right-hand side of the ordinary differential
equation as well as on its partial derivatives with respect to the dependent vari-
able and its first-order derivative. To the best of our knowledge, no similar method
for the numerical solution of problem (1) has been discussed in the literature so far.

We have presented our work in this article as follows. In the next section we
derived a new variable mesh size exponential finite difference method. In Section 3,
local truncation error and convergence of the new method are discussed in Section 4.
The application of the proposed method to the problems in (1) has been presented
and illustrative numerical results have been produced to show the efficiency of the
new method in Section 5. Discussion and conclusion on the performance of the
new method are presented in Section 6.

2. The Variable Mesh Size Exponential Difference Method

We define N finite numbers of nodal points of the domain [a,b], in which the
solution of the problem (1) is desired, as a ≤ x0 < x1 < x2 < ...... < xN < xN+1 =
b, using nonuniform step length h such that xi+1 = xi + hi+1, i = 0, 1, 2, ....., N

and ri =
hi+1

hi
. Suppose that we wish to determine the numerical approximation

of the theoretical solution y(x) of the problem (1) at the nodal point xi, i =
1, 2, ....., N . We denote the numerical approximation of y(x) at node x = xi as
yi . Let us denote fi as the approximation of the theoretical value of the source
function f(x, y(x)) at node x = xi, i = 0, 1, 2, ....., N + 1. We can define other
notations used in this article i.e. fi±1, and yi±1, in the similar way. Following
the ideas in [11,12], we propose an approximation to the theoretical solution y(xi)
of the problem (1) by the exponential finite difference scheme as,

a2yi+1 + a1yi + a0yi−1 = b0h
2
i fi exp(φ(xi)), i = 1, 2, ......., N. (2)

where a0, a1, a2 and b0 are unknown functions of the argument ri and φ(xi) is an
unknown sufficiently differentiable function of x. Let us define a function Fi(h, y)
and associate it with (2) as,

Fi(h, y) ≡ a2yi+1 + a1yi + a0yi−1 − b0h
2
i fi exp(φ(xi)) = 0. (3)

Assume that φ(xi) can be expanded in Taylor series about the point x = xi−1.
Hence we write φ(xi) in Taylor series ,

φ(xi) = φ(xi−1) + hiφ
′(xi−1) +O(h2

i ). (4)

The application of (4) in the expansion of exp(φ(xi)) will provide an O(h2
i ) ap-

proximation of the form as,

exp(φ(xi)) = exp(φ(xi−1))(1 + hiφ
′(xi−1)) +O(h2

i ) (5)
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Expand Fi(h, y) in Taylor series about mesh point x = xi and using (5) in it, we
have

Fi(h, y) ≡ {(a0+a1+a2)yi+hi(ria2−a0)y
′
i+

h2
i

2
(r2i a2+a0)y

′′
i +

h3
i

6
(r3i a2−a0)y

(3)
i }

− b0h
2
i fi exp(φ(xi−1))(1 + hiφ

′(xi−1)) = 0. (6)

On comparing the coefficients of h
p
i , p = 0, 1, 2, 3 both sides in (6), we get the

following system of nonlinear equations

a0 + a1 + a2 = 0,

ria2 − a0 = 0,

(r2i a2 + a0)y
′′
i − 2b0fi exp(φ(xi−1)) = 0,

(r3i a2 − a0)y
(3)
i − 6b0fi exp(φ(xi−1))φ

′(xi−1) = 0. (7)

To determine the unknown functions a0, a1, b0 , φ(xi−1) and φ′(xi−1) in (7), we
have to assign arbitrary value to some unknown functions. To simplify the system
of equations in (7), we have considered the following assumption:

φ(xi−1) = 0. (8)

Using (8) in (7) and solved the reduced system of equations, we obtained

a0 = ria2,

a1 = −(ri + 1)a2,

b0 =
ri(ri + 1)a2

2
,

φ′(xi−1) =
(ri − 1)y

(3)
i

3fi
. (9)

Write f ′
i for y

(3)
i in (9) and substituting the values of φ(xi−1) and φ′(xi−1) from

(8) and (9) in (4), we have

φ(xi) =
hi(ri − 1)f ′

i

3fi
. (10)

Finally substitute the values of a0, a1, b0 and φ(xi) from (9) and (10) in (2),
we obtain our proposed exponential finite difference method as

yi+1 − (1 + ri)yi + riyi−1 =
h2
i ri(ri + 1)

2
fi exp(

hi(ri − 1)f ′
i

3fi
). (11)

For each nodal point, we will obtain the nonlinear system of equations given by
(11) or a linear system of equations if the source function is f(x). In the derived
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numerical method (11), the exponential function exp(
hi(ri−1)f ′

i

3fi
) has the argument

hi(ri−1)f ′
i

3fi
. If fi in the denominator of the argumnt becomes zero in the domain

of the solution, we take the series expansion of the function exp(
hi(ri−1)f ′

i

3fi
) and

neglecting the second and higher order terms. Therefore method (11) becomes

yi+1 − (1 + ri)yi + riyi−1 = h2
i ri(r1 + 1)(fi +

hi(ri − 1)

3
f ′
i). (12)

For the computational purpose in Section 4, we have used the following second
order finite difference approximation in place of hif

′
i in (11) and in (12):

hif
′
i =

fi+1 + (r2i − 1)fi − r2i fi−1

ri(ri + 1)
. (13)

3. Local Truncation Error

We can write the following expression for the term in (11) with the help of (13):

exp(
hi(ri − 1)f ′

i

3fi
) = exp(

(ri − 1)(fi+1 + (r2i − 1)fi − r2i fi−1)

3ri(ri + 1)fi
). (14)

Write the expansion for the exponential function in the (14) by neglecting the third
and higher order terms, so we will obtain,

exp(
hi(ri − 1)f ′

i

3fi
) ≡ 1 +

(ri − 1)(fi+1 + (r2i − 1)fi − r2i fi−1)

3ri(ri + 1)fi
+

1

2
(
hi(ri − 1)f ′

i

3fi
)2.

(15)
From (11) and (15), the truncation error Ti at the nodal point x = xi may be
written as [8,13,14],

Ti = yi+1 − (1 + ri)yi + riyi−1 −
h2
i

2
(r2i + ri)fi(1 +

(ri − 1)(fi+1 + (r2i − 1)fi − r2i fi−1)

3ri(ri + 1)fi
+

1

2
(
hi(ri − 1)f ′

i

3fi
)2).

By the Taylor series expansion of y at nodal point x = xi and using y′′i = fi ,

y
(3)
i = f ′

i and etc., we have

Ti = (
h4
i+1

24
+

rih
4
i

24
)y

(4)
i − ri(ri + 1)

36

(h2
i (ri − 1)y

(3)
i )2

fi
+O(h5

i ). (16)

(16) can be simplified as follows :

Ti =
ri(ri + 1)h4

i

72
{3(r2i − ri + 1)y

(4)
i − 2

fi
((ri − 1)y

(3)
i )2}+O(h5

i ), (17)

Thus we have obtained a truncation error at each node of O(h4
i ).
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4. Convergence of the Method

Let us substitute (15) into (11) and then simplify (11), we have

yi+1 − (1 + ri)yi + riyi−1 =
h2
i

2
(r2i + ri)fi(1 +

(ri − 1)(fi+1 + (r2i − 1)fi − r2i fi−1)

3ri(ri + 1)fi
)

=
h2
i

6
{3ri(ri + 1)fi + (ri − 1)(fi+1 + (r2i − 1)fi − r2i fi−1)}.

Thus

− yi+1 + (1 + ri)yi − riyi−1 +
h2
i

6
(αifi + γifi+1 + βifi−1) = 0, (18)

where αi = (ri + 1)(r2i + ri + 1), βi = −r2i (ri − 1) and γi = ri − 1.

Let us define

φ1 =
h2
1

6
(α1f(x1, y1) + γ1f(x2, y2)) +

h2
1

6
β1f(x0, y0) + r1y0, i = 1

φi =
h2
i

6
(αif(xi, yi) + γif(xi+1, yi+1) + βif(xi−1, yi−1)), 2 ≤ i ≤ N − 1

φN =
h2
N

6
(αNf(xN , yN)+βNf(xN−1, yN−1))+

h2
N

6
γNf(xN+1, yN+1))+yN+1.i = N

Let us define column matrix φN×1 and yN×1as

φ = [φ1, φ2, ............, φN ]′1×N , y = [y1, y2, ............, yN ]′1×N ,

where [.....]′ is the transpose of a column matrix.
The difference method (18) represents a system of nonlinear equations in un-

known yi, i = 1, 2, ..., N . Let us write (18) in matrix form as,

Dy + φ(y) = 0, (19)

where

D =

















1 + r1 −1 0
−r2 1 + r2 −1

−r3 1 + r3 −1
.. .. .. .. ..

.. .. .. .. ..

0 −rN 1 + rN

















N×N

is a tridiagonal matrix. Let Y be the exact solution of (18), so it will satisfy the
matrix equation

DY + φ(Y) + T = 0, (20)

where Y is a column matrix of order N × 1 which can be obtained by replacing y

with Y in matrix y and T is a truncation error matrix in which each element has
O(h4

i ).
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Let us define

Fi+1 = f(xi+1, Yi+1), fi+1 = f(xi+1, yi+1), Fi−1 = f(xi−1, Yi−1),

fi−1 = f(xi−1, yi−1), Fi = f(xi, Yi), and fi = f(xi, yi).

After linearization of fi+1, we have

fi+1 = Fi+1 + (yi+1 − Yi+1)Gi+1,

where Gi+1 = ( ∂f
∂Y

)i+1 . Thus

fi+1 − Fi+1 = (yi+1 − Yi+1)Gi+1. (21)

Similarly, we can linearize fi−1,and fi , to obtain the following results :

fi−1 − Fi−1 = (yi−1 − Yi−1)Gi−1, (22)

fi − Fi = (yi − Yi)Gi. (23)

By taking the Taylor series expansion of Gi±1 about x = xi, and from the difference
of (19) and (20), we can write

φ(y)− φ(Y) = PE, (24)

where P = (Plm)N×N is a tri-diagonal matrix defined as

Plm =
h2
i

6
(αiGi), i = l = m, l = 1, 2, ..., N,

Plm =
h2
i

6
γi(Gi + hi+1(

∂G

∂x
)i), m = l + 1, i = l = 1, 2, ...., N − 1,

Plm =
h2
i

6
βi(Gi − hi(

∂G

∂x
)i), i = l = m+ 1, m = 1, 2, ...., N − 2,

and E = [E1, E2, ........, EN ]′1×N , where Ei = (yi − Yi), i = 1, 2, ...., N .
Let us assume that the solution of difference equation (11) has no roundoff

error. So from (18), (19) and (20) we have

(D + P)E = JE = T. (25)

Let us define G0 = {Gi : i = 1, 2, ..., N},

G∗ = min
x∈[a,b]

∂f

∂Y
, and G∗ = max

x∈[a,b]

∂f

∂Y
,

such that

0 ≤ G∗ ≤ t ≤ G∗, ∀t ∈ G0.
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We further define H0 = {(∂G
∂x

)i, i = 1, 2, ....., N}. Let there exist some positive
constant W such that

∣

∣t0
∣

∣ ≤ W, ∀ t0 ∈ H0. So it is possible for very small
hi, ∀i = 1, 2, ..., N ,

|Plm| ≤ 1 + ri, ∀ i = l = m l = 1, 2, ....., N,

|Plm| ≤ 1, ∀ m = l + 1, i = l = 1, 2, ....., N − 1,

|Plm| ≤ ri, ∀ i = l = m+ 1, m = 1, 2, ....., N − 2.

Let R = [R1, R2, ........, RN ]′1×N , denotes the row sum of the matrix
J = (Jlm)N×N where

R1 = r1 +
h2
1

6
(α1 + γ1)G1 + r1γ1

h3
1

6
(
∂G

∂x
)i, l = i = 1,

Rl =
h2
i

6
(αi+γi+βi)Gi+

h3
i

6
(riγi−βi)(

∂G

∂x
)i, l = i = k, and 2 ≤ k ≤ N−1,

RN = 1 +
h2
N

6
(αN + βN )GN − h3

N

6
βN (

∂G

∂x
)N , l = i = N.

On neglecting the higher order terms i.e. O(h3
i ) in Ri then it is easy to see

that J is irreducible [13]. By the row sum criterion and for sufficiently small
hi, ∀i = 1, 2, ..., N , J is monotone [15]. Thus J−1 exist and J−1 ≥ 0. For the
bound of J, we define [16,17]

dl(J) = |Jll| −
N
∑

l 6=m

|Jlm| , l = 1, 2, ...., N,

where

d1(J) = r1 +
h2
1

6
r1(r

2
1 + 2r1 + 3)G1 −

h3
1

6
r1(r1 − 1)(

∂G

∂x
)1,

dl(J) =
h2
i

6
ri(2r

2
i +ri+3)Gi−

h3
i

6
ri(ri−1)2(

∂G

∂x
)i, l = i = k, and 2 ≤ k ≤ N−1,

dN (J) = 1 +
h2
N

6
(3r2N + 2rN + 1)GN +

h3
N

6
r2N (rN − 1)(

∂G

∂x
)N , l = i = N.

We note that higher order terms i.e. O(h3
i ) in the above expressions are neglected.

Let dl(J) ≥ 0, ∀ l and

d∗(J) = min
1≤l≤N

dl(J).

Then

‖J−1‖ ≤ 1

d∗(J)
. (26)
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Thus from (25) and (26), we have

‖E‖ ≤ 1

d∗(J)
‖T‖. (27)

It follows from (16) and (27) that ‖E‖ → 0 as hi → 0. Thus we conclude that
method (11) converges and the order of the convergence of method (11) is at least
quadratic.

5. Numerical Results

To illustrate our method and demonstrate its computational efficiency, we con-
sidered some model problems. In each model problem, we took non uniform step
size hi. In Table 1 - Table 8, we have shown the maximum absolute error (MAY),
computed for different values of N and is defined as

MAY = max
1≤i≤N

|y(xi)− yi|.

The starting value of the step length h1 is calculated by formula

h1 =

{

(b−a)(r−1)
rN−1 if r > 1

(b−a)(1−r)
1−rN

if r < 1

where r = ri, ∀ i = 1, 2, ...., N in computation. In case of uniform mesh r = 1 ,
the above formula for computation of step length becomes h = b−a

N
. The order of

the convergence (ON ) of the method (11) is estimated by the formula

(ON ) = logm(
MAYN

MAYmN

),

where m can be estimated by considering the ratio of N ′s.

We have used Newton-Raphson iteration method to solve the system of nonlin-
ear equations arised from equation (23). All computations were performed on a MS
Window 2007 professional operating system in the GNU FORTRAN environment
version 99 compiler (2.95 of gcc) on Intel Duo Core 2.20 Ghz PC. The solutions are
computed on N nodes and iteration is continued until either the maximum differ-
ence between two successive iterates is less than 10(−10) or the number of iteration
reached 103.

Problem 1. The first model problem is a linear problem [18] given by

y′′(x) =
−3ǫ

(ǫ+ x)2
y, y(−0.1) =

−0.1
√

(ǫ+ 0.01)
, y(0.1) =

0.1
√

(ǫ+ 0.01)
, x ∈ [−0.1, 0.1].

The analytical solution is y(x) = x√
(ǫ+x2)

. The MAY computed by method (11)

for different values of N and ǫ are presented in Table 1.
Problem 2. The second model problem is a nonlinear problem

ǫy′′(x) =
3

2
y2, y(0) = 4, y(1) = 1, x ∈ [0, 1].
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The analytical solution is y(x) = 4
(1+ x√

(ε)
)2 . The MAY computed by method (11)

for different values of N are presented in Table 2.
Problem 3. The third model problem is a linear problem [19] given by

ǫy′′(x) =
4

(x+ 1)4
(1 +

√
ǫ(x+ 1))y − f(x), y(0) = 2, y(1) = −1, x ∈ [0, 1],

where f(x) is calculated so that y(x) = − cos( 4πx
x+1 ) +

3[exp( −2ǫ√
ǫ(x+1)

)−exp(−1√
ǫ
)]

1−exp(−1√
ǫ
)

is the

analytical solution. The MAY computed by method (11)for different values of N
and ǫ are presented in Table 3 .
Problem 4. The fourth model problem is a linear problem [20] given by

ǫy′′(x) = (1 + x(1− x))y − f(x), y(0) = 0, y(1) = 0, x ∈ [0, 1],

where f(x) is calculated so that y(x) = 1 + (x − 1) exp(−x√
ǫ
) − x exp(−(1−x)√

ǫ
) is

analytical solution. The MAY computed by method (11) for different values of N
and ǫ are presented in Table 4 and Table 5.
Problem 5. The fifth model problem is a linear problem [21] given by

ǫy′′(x) = y − f(x), y(0) = 0, y(1) = 1, x ∈ [0, 1],

where f(x) is calculated so that y(x) = exp(x) + exp(−x√
ǫ
)−x(exp(1)+ exp(−1√

ǫ
))−

2(1−x) is the analytical solution. The MAY computed by method (11) for different
values of N and ǫ are presented in Table 6, Table 7 and Table 8.



Variable Mesh Size Exponential Finite Difference Method 19

Table 1: Maximum absolute errors (Problem 1).

Maximum absolute error

ri N ǫ = 1.0 ǫ = 10−4 ǫ = 10−6 ǫ = 10−8

1

400 .74505806(-8) ***** .17881393(-6) .41930014(0)

800 .22351742(-7) .50783157(-4) .11920929(-6) .76507568(-1)

1600 .74505806(-8) .81956387(-6) .27656555(-4) .21904707(-2)

1.01 400 .56240894(-2) .10669231(-4) .65565109(-6) .32782555(-5)

1.02 400 .60623176(-2) .97751617(-5) .60796738(-5) .16689301(-5)

1.03

400 .58434047(-2) .24437904(-5) .11920929(-5) .59604645(-7)

800 .58430247(-2) .89406967(-7) .11324883(-5) .59604645(-7)

1600 .58429986(-2) .89406967(-6) .19073486(-5) .59604645(-7)

1.04

400 .56456514(-2) .10132790(-5) .13709068(-5) *****

800 .56456402(-2) .10132790(-5) .20265579(-5) *****

1600 .56456588(-2) .10132790(-5) .25629997(-5) *****

1.05

400 .49510561(-2) .20861626(-5) .36358833(-5) *****

800 .49510747(-2) .20861626(-5) .49604645(-5) *****

1600 .49510673(-2) .20861626(-5) .59604645(-7) *****

1.06

400 .52656643(-2) .95367432(-6) .21457672(-5) *****

800 .52656569(-2) .95367432(-6) .59604645(-7) *****

****: Computational results either overflow or not available.
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Table 2: Maximum absolute errors for (Problem 2).

Maximum absolute error

ri N ǫ = 1.0 ǫ = 10.0 ǫ = 100.0 ǫ = 1000.0

4 .26745081(-1) .12447834(-2) .23365021(-4) .23365021(-4)

8 .72004795(-2) .31685829(-3) .50067902(-5) .50067902(-5)

16 .18486977(-2) .77486038(-4) .23841858(-6) .23841858(-6)

1 32 .45967102(-3) .64373016(-5) .23841858(-6) .23841858(-6)

64 .93698502(-4) .23842858(-6) .23841858(-6) .23841858(-6)

128 .71525574(-5) .23842858(-6) .23841858(-6) .23841858(-6)

256 .23842858(-6) .23842858(-6) .23841858(-6) .23841858(-6)

4 .24600029(-1) .12617111(-2) .23126602(-4) .23841858(-6)

8 .60970783(-2) .31232834(-3) .52452087(-5) .23841858(-6)

16 .14939308(-2) .87022781(-4) .23841858(-6) .23841858(-6)

1.08 32 .53775311(-3) .31709671(-4) .23841858(-6) .23841858(-6)

64 .36931038(-3) .18835068(-4) .23841858(-6) .23841858(-6)

128 .35333633(-3) .19550323(-4) .23841858(-6) .23841858(-6)

256 .35226345(-3) .18119812(-4) .23841858(-6) .23841858(-6)



Variable Mesh Size Exponential Finite Difference Method 21

Table 3: Maximum absolute errors (Problem 3).

Maximum absolute error

ri ǫ N = 100 N = 500 N = 1000 N = 1500

2−4 .11551380(-2) .17881393(-6) .17881393(-6) .23841858(-6)

2−6 .17983019(-2) .54389238(-4) .17881393(-6) .17881393(-6)

2−8 .56754053(-2) .22752583(-3) .45433640(-4) .88065863(-5)

2−10 .19416593(-1) .83327293(-3) .20629168(-3) .86382031(-4)

2−12 .67419812(-1) .31574517(-2) .79240650(-3) .35080314(-3)

1 2−14 .12699842(0) .12086272(-1) .30760765(-3) .13713986(-2)

2−16 .91219425(-1) .44704132(-1) .11929609(-1) .53715333(-2)

2−18 .29020369(-1) .11131346(0) .44428945(-1) .19678995(-1)

2−20 .73989630(-2) .11091280(0) .11098897(0) .71090311(-1)

2−22 .18575191(-2) .42892277(-1) .11060947(0) .12555838(0)

2−24 .46491623(-3) .11178732(-1) .42740166(-1) .81780136(-1)

1.0 .13501644(-2) .23841858(-6) .23841858(-6) .23841858(-6)

2−4 .19446164(-2) .19327551(-2) .19329339(-2) .19328594(-2)

2−6 .11941493(-2) .11839569(-2) .11841953(-2) .11840165(-2)

2−8 .48494339(-3) .48014522(-3) .48032403(-3) .48032403(-3)

2−10 .43356419(-3) .36138296(-3) .36138296(-3) .36132336(-3)

2−12 .49465895(-3) .34594536(-3) .34594536(-3) .34594536(-3)

1.06 2−14 .67013502(-3) .33903122(-3) .33909082(-3) .33909082(-3)

2−16 .11677146(-2) .33509731(-3) .33515692(-3) .33521652(-3)

2−18 .27157217(-2) .33360720(-3) .33360720(-3) .33372641(-3)

2−20 .79871528(-2) .33271313(-3) .33271313(-3) .33271313(-3)

2−22 .25293380(-1) .33223629(-3) .33217669(-3) .33223629(-3)

2−24 .85839853(-1) .33134222(-3) .33128262(-3) .33128262(-3)

1.0 .38763934(-2) .33957958(-2) .33957660(-2) .33954034(-2)



22 P. K. Pandey and B. D. Pandey

Table 4: Maximum absolute error with ǫ = 1
N

(Problem 4).

N

Maximum absolute error

ǫ = 1
N

ri = 1.004 ri = 1.005 ri = 1.006 ri = 1.0 ri = 1.0
in [22]

23 .53747296(-2) .53789616(-2) .53768158(-2) .53790808(-3) .227(-4)

24 .14889636(-2) .15099049(-2) .15262365(-2) .14234185(-2) .306(-4)

25 .48094988(-3) .50014257(-3) .51808357(-3) .41759014(-3) .454(-4)

26 .17639995(-3) .19460917(-3) .20992756(-3) .12686849(-3) .784(-4)

27 .77009201(-4) .93370676(-4) .11044741(-3) .36060810(-4) .145(-3)

28 .46968460(-4) .67383051(-4) .91701746(-4) .99837780(-5) .274(-3)

Table 5: Maximum absolute error with ǫ = 1.0 (Problem) 4.

N

Maximum absolute error

ǫ = 1.0

ri = 1.004 ri = 1.005 ri = 1.006 ri = 1.00

23 .65556169(-3) .65928698(-3) .65761805(-3) .65845251(-3)

24 .66667795(-4) .68634748(-4) .68187714(-4) .66161156(-4)

25 .50961971(-5) .58412552(-5) .58412552(-5) .45001507(-5)

26 .68545341(-6) .17154962(-5) .64447522(-6) .31293439(-6)

27 .34272671(-6) .96298754(-6) .26449561(-6) .29802322(-7)

28 .30547380(-6)) .73015690(-6) .30174851(-6) .29802322(-7)
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Table 6: Maximum absolute errors with comparison to [22] (Problem 5).

Maximum absolute error

N = 100 N = 500 N = 1000

ri ǫ method(11) [22] method(11) [22] method(11) [22]

2−4 .16388312(-4) .120(-2) .18160790(-6) .466(-4) .17881393(-6) .117(-4)

2−6 .95605850(-4) .180(-2) .18440187(-6) .722(-4) .20861626(-6) .181(-4)

2−8 .39041042(-3) .570(-2) .61392784(-5) .230(-3) .17881393(-6) .574(-4)

2−10 .15535355(-2) .194(-1) .58293343(-4) .834(-3) .55730343(-5) .209(-3)

2−12 .58709979(-2) .674(-1) .24968386(-3) .320(-2) .59068203(-4) .793(-3)

1 2−14 .21462500(-1) .127(0) .99802017(-3) .121(-1) .24956465(-3) .310(-2)

2−16 .41248202(-1) .912(-1) .39242506(-2) .447(-1) .99802017(-3) .119(-1)

2−18 .29511571(-1) .290(-1) .14717877(-1) .111(0) .39243102(-2) .444(-1)

2−20 .93233585(-2) .740(-2) .36888242(-1) .111(0) .14717937(-1) .111(0)

2−22 .23728609(-2) .190(-2) .36768854(-1) .429(-1) .36888242(-1) .111(0)

2−24 .59533119(-3) .465(-3) .14196098(-1) .112(-1) .36768854(-1) .427(-1)

Table 7: Maximum absolute errors with ǫ = 1.0 (Problem 5).

Maximum absolute error

ǫ = 1.0

ri N = 100 N = 500 N = 1000 N = 1500

1.0 .16111881(-6) .18021092(-6) .16484410(-6) .18277206(-6)

1.01.40233135(-6) .21234155(-6) .15273690(-6) .25331974(-6)

1.04.87618828(-5) .83446503(-5) .82850456(-5) .84042549(-5)

1.06.23737550(-4) .23275614(-4) .23633242(-4) .23275614(-4)
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Table 8: Maximum absolute errors (Problem 5).

Maximum absolute error

ri ǫ N = 100 N = 500 N = 1000 N = 1500

2−4 .87618828(-5) .24400651(-6) .28312206(-6) .44703484(-6)

2−6 .46312809(-4) .25890768(-6) .25331974(-6) .37252903(-6)

2−8 .16373396(-3) .25704503(-6) .26822090(-6) .37252903(-6)

2−10 .59050322(-3) .24028122(-6) .23841858(-6) .34272671(-6)

2−12 .22224784(-2) .18998981(-6) .22351742(-6) .29802322(-6)

1.01 2−14 .80568790(-2) .11920929(-6) .16391277(-6) .19371510(-6)

2−16 .27396858(-1) .29802322(-6) .11920929(-6) .11920929(-6)

2−18 .42936087(-1) .25033951(-4) .11920929(-6) .11920929(-6)

2−20 .25240302(-1) .99539757(-4) .11920929(-6) .11920929(-6)

2−22 .82918406(-2) .35309792(-3) .11920929(-6) .17881393(-6)

2−24 .29965043(-2) .74562430(-3) .11920929(-6) .11920929(-6)

2−4 .28371811(-4) .21338463(-4) .20861626(-4) .20891428(-4)

2−6 .39041042(-4) .22470951(-4) .22292137(-4) .22292137(-4)

2−8 .59068203(-4) .22292137(-4) .22411346(-4) .22411346(-4)

2−10 .11426210(-3) .21278858(-4) .21219254(-4) .21159649(-4)

2−12 .28502941(-3) .22351742(-4) .22470951(-4) .22470951(-4)

1.03 2−14 .87553263(-3) .22530556(-4) .21100044(-4) .21040440(-4)

2−16 .29702187(-2) .22292137(-4) .21477672(-4) .21457672(-4)

2−18 .10661066(-1) .21815300(-4) .22351744(-4) .22292137(-4)

2−20 .32626033(-1) .21457672(-4) .23305416(-4) .23245811(-4)

2−22 .44265985(-1) .21874905(-4) .22232533(-4) .22292137(-4)

2−24 .24005055(-1) .95367432(-6) .60026650(-10) .63664629(-10)

2−4 .10502338(-3) .10329485(-3) .10329485(-3) .10323524(-3)

2−6 .11307001(-3) .11038780(-3) .11050701(-3) .11056662(-3)

2−8 .11521578(-3) .10931492(-3) .10931492(-3) .10943413(-3)

2−10 .12063980(-3) .10955334(-3) .10949373(-3) .10955334(-3)

2−12 .13208389(-3) .10925531(-3) .10925531(-3) .10925531(-3)

1.06 2−14 .15705824(-3) .10961294(-3) .10961294(-3) .10961294(-3)

2−16 .21761656(-3) .10973215(-3) .10973215(-3) .10973215(-3)

2−18 .38433075(-3) .10949373(-3) .10949373(-3) .10949373(-3)

2−20 .89949369(-3) .10961294(-3) .10961294(-3) .10961294(-3)

2−22 .26537776(-2) .10961294(-3) .10961294(-3) .10961294(-3)

2−24 .84178448(-2) .15916157(-11) .13642421(-11) .15916157(-11)
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We have described a new method for numerically solving two-point boundary
value problems and several model problems considered to demonstrate the perfor-
mance of the proposed method. Numerical result for examples 1 which is presented
in table 1, for different values of ri show as ǫ decreases and N increases, with uni-
form step size maximum absolute errors in our method increases. On the other
hand for the variable mesh, maximum absolute error decreases with increase in N.
The numerical results for examples 2 and 4 are accurate in both for uniform and
non-uniform mesh sizes. The results for examples 3 and 5 are same as for example
1 with uniform mesh size. The maximum absolute error decreases with increase
in N and decrease in ǫ except for N = 100 in tables 3 & 6 with non-uniform mesh
size. For the comparison purpose, A numerical results by existing finite difference
method in [22] is considered for uniform mesh in examples 4 and 5. This com-
parison show that our method has less discretization error and perform better for
considered model problems. Note that for small N, method [22] yield good results
in model problems 4 and 5. However, as the N becomes larger, the exponential
finite difference method shows less error than the method [22]. Over all method
(11) is convergent and convergence of the method depends on choice of mesh ratio
ri .

6. Conclusion

A new method to find the numerical solution of two point boundary value prob-
lems has been developed. The new method has advantages and disadvantages when
considered individually. For example, at each nodal point x = xi, i = 1, 2, ....., N,

we will obtain a system of algebraic equations given by (11). If the source function
is f(x) then the system of equations from (11) is linear otherwise we will obtain
nonlinear system of equations, which is always difficult to be solved, disadvantage
of the new method. The decision to use a certain difference scheme depends on its
computational efficiency for accurate solution. It is obvious that special method re-
quired for some special problem where the solution is not regular and varies rapidly.
But on the other hand, the new method produces good numerical approximate so-
lutions for variety of model problems without any modification either in method
or in problem and its rate of convergence is quadratic. It may be an advantage
of the new method. The numerical results of the model problems showed that
the new method is computationally efficient and plays an important role to obtain
accurate numerical solutions. The idea presented in this article leads to the possi-
bility to develop difference methods to solve third order and fourth order boundary
value problems in ordinary differential equations. Works in these direction are in
progress.
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