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abstract: In this study, we give dual characterizations for Mannheim offsets of
ruled surfaces in terms of their integral invariants and obtain a new characterization
for the Mannheim offsets of a developable surface, i.e., we show that the striction
lines of developable Mannheim offset surfaces are Mannheim partner curves. Fur-
thermore, we obtain the relationships between the area of projections of spherical
images for Mannheim offsets of ruled surfaces and their integral invariants.
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1. Introduction

Ruled surfaces are the surfaces which are generated by moving a straight line
continuously in the space and these surfaces are one of the most important topics
of differential geometry. A ruled surface can always be described (at least locally)
as the set of points swept by a moving straight line and is used in many areas
of sciences such as Computer Aided Geometric Design (CAGD), mathematical
physics, moving geometry, kinematics for modeling the problems and model-based
manufacturing of mechanical products. Especially, the offsets of ruled surfaces have
an important role in (CAGD). Some studies dealing with offsets of the surfaces have
been given in ref. [1,7,9,10,11,12,13]. The well-known offsets of ruled surfaces are
Bertrand offsets which were defined by Ravani and Ku by giving a generalization of
the theory of Bertrand curves for trajectory ruled surfaces on line geometry [13].
Küçük and Gürsoy have studied integral invariants of Bertrand trajectory ruled
surfaces in dual space and given relations between the invariants of offset surfaces
[7].

2000 Mathematics Subject Classification: 14J26, 53A25.

85
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v34i1.24756


86 Mehmet Önder and H. Hüseyin Uǧurlu

Furthermore, similar to the Bertrand curves, in [8] a new definition of special
curve pairs has been given by Liu and Wang: Let C and C∗ be two space curves.
C is said to be a Mannheim partner curve of C∗ if there exists a one to one corre-
spondence between their points such that the binormal vector of C is the principal
normal vector of C∗. Orbay, Kasap and Aydemir have given a generalization of
the theory of Mannheim curves for ruled surfaces and called Mannheim offsets [9].
They have obtained some conditions characterizing developable Mannheim offset
surfaces.

In this paper, we examine the Mannheim offsets of trajectory ruled surfaces in
view of their integral invariants. Using dual representations of ruled surfaces, we
give a result obtained in [9] in a short form and also we obtain some new results.
Moreover, we show that if the Mannheim offsets of trajectory ruled surfaces are
developable, then their striction lines are Mannheim partner curves. Furthermore,
we give some characterizations for Mannheim offsets of trajectory ruled surfaces in
terms of integral invariants of closed trajectory ruled surfaces. Finally, we obtain
relationships between the area of projections of spherical images of Mannheim
offsets of trajectory ruled surfaces and their integral invariants.

2. Differential Geometry of Ruled Surfaces in E3

Let I be an open interval in the real line R, k = k(s) be a regular curve in E3

defined on I and ~q = ~q(s) be a unit direction vector of an oriented line in E3. Then
we have the following parametrization for a ruled surface

ϕq(s, v) =
~k(s) + v ~q(s). (2.1)

The parametric s-curve of this surface is a straight line of surface which is called
ruling. For v = 0, the parametric v-curve of this surface is ~k = ~k(s) which is called
base curve or generating curve of the surface. In particular, if the direction of
ruling ~q is constant, the ruled surface is said to be cylindrical and non-cylindrical
otherwise [6].

The striction point on a ruled surface is the foot of common normal between
two consecutive rulings. The set of the striction points constitute a curve ~c = ~c(s)
lying on the ruled surface and is called striction curve. The parametrization of the
striction curve ~c = ~c(s) on a ruled surface is given by

~c(s) = ~k(s)−

〈

d~q, d~k
〉

〈d~q, d~q〉 ~q(s). (2.2)

So that, the base curve of ruled surface is its striction curve if and only if
〈

d~q, d~k
〉

= 0 [6].

The distribution parameter (or drall) of the ruled surface in (2.1) is given by

δq =

〈

d~k, ~q × d~q
〉

〈d~q, d~q〉 . (2.3)
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If δq = 0, then the normal vectors of ruled surface are collinear at all points of
same ruling and at the nonsingular points belonging to ruling, the tangent planes
are identical. We then say that the tangent plane contacts the surface along a
ruling. Such a ruling is called a torsal ruling. If δq 6= 0, then the tangent planes
are distinct at all points of the same ruling which is called nontorsal.

A ruled surface whose all rulings are torsal is called a developable ruled surface.
The remaining ruled surfaces are called skew ruled surfaces. Thus, from (2.3) a
ruled surface is developable if and only if at all its points the distribution parameter
is zero, i.e., δq = 0 [6,13].

Let
{

~q,~h = d~q/ds
‖d~q/ds‖ ,~a = ~q × ~h

}

be a moving othonormal trihedron making a

spatial motion along a closed space curve ~k(s), s ∈ R, in E3. In this motion, an
oriented line fixed in the moving system generates a closed ruled surface if the
whole moving frame comes to its initial position and this surface is called closed
trajectory ruled surface (CTRS) in E3 [7]. A parametric equation of a closed
trajectory ruled surface generated by ~q-axis is

ϕq(s, v) =
~k(s) + v ~q(s), ϕ(s+ 2π, v) = ϕ(s, v), s, v ∈ R. (2.4)

Consider the moving orthonormal system
{

~q,~h,~a
}

. Then, the axes of the

trihedron intersect at the striction point of ~q-generator of ϕq-CTRS. The structural
equations of this motion are











d~q = k1~h

d~h = −k1~q + k2~a

d~a = −k2~h
(2.5)

and

d~c

ds
= cosσ~q + sinσ~a, (2.6)

where ~c = ~c(s) is the striction line of ϕq-CTRS and the differential forms k1, k2
and σ are the natural curvature, the natural torsion and the striction of ϕq-CTRS,
respectively [6,7]. Here, the striction is restricted as −π/2 < σ < π/2 for the
orientation on ϕq-CTRS and s is arc-length of striction line.

The pole vector and the Steiner vector of the motion are given by

~p =
~ψ

∥

∥

∥

~ψ
∥

∥

∥

, ~d =

∮

~ψ, (2.7)

respectively, where ~ψ = k2~q+k1~a is the instantaneous Pfaffian vector of the motion.
The pitch of ϕq-CTRS is defined by

ℓq =

∮

dv = −
∮

〈

d~k, ~q
〉

, (2.8)
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and the angle of pitch of ϕq-CTRS is given as follows

λq = −
∮

〈

d~h,~a
〉

= −
〈

~q, ~d
〉

= 2π − aq =

∮

gq, (2.9)

where aq is the measure of spherical surface area bounded by spherical image of
ϕq-CTRS and gq is the geodesic curvature of this image. The pitch and the angle
of pitch are well-known real integral invariants of closed trajectory ruled surface
[2,3,4,5].

The area vector of a closed space curve x in E3 is given by

~vx =

∮

~x× d~x (2.10)

and the area of projection of a closed space curve x in direction of the generator of
a CTRS -y(s, v) is

2fx,y = 〈~vx, ~y〉 . (2.11)

(See [4]).

3. Dual Numbers and Dual Vectors

In this section, we give a brief summary of theory of dual numbers and dual
vectors. For more details, one can see references [2,5,14].

Dual numbers had been introduced by W.K. Clifford (1845-1879). A dual num-
ber has the form ā = (a, a∗) = a + εa∗ where a and a∗ are real numbers and
ε = (0, 1) is dual unit. The product of dual numbers ā = (a, a∗) = a + εa∗ and
b̄ = (b, b∗) = b+ εb∗ is defined by

āb̄ = (a, a∗)(b, b∗) = (ab, ab∗ + a∗b) = ab+ ε(ab∗ + a∗b). (3.1)

Then it is seen that ε2 = 0 while ε 6= 0. We denote the set of dual numbers by D
and write

D =
{

ā = a+ εa∗ : a, a∗ ∈ R, ε2 = 0
}

. (3.2)

Clifford showed that dual numbers form a ring, but not a field. The pure dual
numbers εa∗ are zero divisors, i.e., (εa∗)(εb∗) = 0 while (εa∗) 6= 0, (εb∗) 6= 0.
However, the other laws of algebra of dual numbers are same as the laws of algebra
of complex numbers.

Now let f be a differentiable function with dual variable x̄ = x+ εx∗. Then the
Maclaurine series generated by f is given by

f(x̄) = f(x+ εx∗) = f(x) + εx∗f ′(x), (3.3)

where f ′(x) is derivative of f(x).
Let D3 be the set of all triples of dual numbers, i.e. ,

D3 = {ã = (ā1, ā2, ā3) : āi ∈ D, i = 1, 2, 3} . (3.4)
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Then the set D3 is called dual space. The elements of D3 are called dual vectors.
A dual vector ã may be expressed in the form ã = ~a+ ε~a∗ = (~a,~a∗), where ~a and

~a∗ are vectors of R3. Then for any vectors ã = ~a+ ε~a∗ and b̃ = ~b+ ε~b∗ in D3, the
scalar product and the vector product are defined by

〈

ã, b̃
〉

=
〈

~a,~b
〉

+ ε
(〈

~a,~b∗
〉

+
〈

~a∗,~b
〉)

, (3.5)

and

ã× b̃ = ~a×~b+ ε
(

~a×~b∗ + ~a∗ ×~b
)

, (3.6)

respectively, where
〈

~a,~b
〉

and ~a×~b are the inner product and the vector product

in R3.
The norm of a dual vector ã is defined by

‖ã‖ =
√

〈ã, ã〉 = ‖~a‖+ ε
〈~a,~a∗〉
‖~a‖ . (3.7)

A dual vector ã with norm 1 is called dual unit vector. The set of dual unit
vectors is

S̃2 =
{

ã = (ā1, ā2, ā3) ∈ D3 : 〈ã, ã〉 = 1 + ε0
}

, (3.8)

which is called dual unit sphere.
E. Study used dual numbers and dual vectors in his research on the geometry

of lines and kinematics. He devoted a special attention to the representation of
directed lines by dual unit vectors and defined the mapping that is known by his
name: There exists a one-to-one correspondence between vectors (points) of dual
unit sphere S̃2 and directed lines of space R3. By the aid of this correspondence,
the properties of the spatial motion of a line can be derived. Hence, the geometry
of ruled surfaces is represented by the geometry of dual curves on the dual unit
sphere in D3. If the ruled surface is closed then the corresponding dual curve can
be closed.

The angle θ̄ = θ + εθ∗ between two dual unit vectors ã, b̃ is called dual angle
and defined by

〈

ã, b̃
〉

= cos θ̄ = cos θ − εθ∗ sin θ. (3.9)

By considering The E. Study Mapping, the geometric interpretation of dual
angle is that θ is real angle between lines L1, L2 corresponding to dual unit vectors
ã, b̃, respectively, and θ∗ is the shortest distance between those lines.

Let now K be a moving dual unit sphere generated by a dual orthonormal
system

{

q̃, h̃ =
dq̃

‖dq̃‖ , ã = q̃ × h̃

}

, q̃ = ~q + ε~q∗, h̃ = ~h+ ε~h∗, ã = ~a+ ε~a∗, (3.10)



90 Mehmet Önder and H. Hüseyin Uǧurlu

and K ′ be a fixed dual unit sphere with the same center. Then, the derivative
equations of dual spherical closed motion of K with respect to K ′ are







dq̃ = k̄1h̃

dh̃ = −k̄1q̃ + k̄2ã

dã = −k̄2h̃
(3.11)

where k̄1(s) = k1(s) + εk∗1(s), k̄2(s) = k2(s) + εk∗2(s), (s ∈ R) are dual curvature
and dual torsion, respectively. From the E. Study mapping, during the spherical
motion of K with respect to K ′, the dual unit vector q̃ draws a dual curve on dual
unit sphere K ′ and this curve represents a ruled surface with ruling ~q in line space
R3.

Dual vector ψ̃ = ~ψ+ε~ψ
∗
= k̄2q̃+ k̄1ã is called the instantaneous Pfaffian vector

of motion and the vector P̃ given by ψ̃ =
∥

∥

∥ψ̃
∥

∥

∥ P̃ is called dual pole vector of motion.

Then the vector

d̃ =

∮

ψ̃ (3.12)

is called dual Steiner vector of closed motion [5].
By considering the E. Study mapping, the dual equations (3.11) correspond to

real equations (2.5) and (2.6) of a closed spatial motion in R3. So, the differentiable
dual closed curve q̃ = q̃(s) corresponds to a closed trajectory ruled surface in line
space and denoted by ϕq-CTRS.

A dual integral invariant of a ϕq-CTRS can be given in terms of real integral
invariants as follows and is called dual angle of pitch of a ϕq-CTRS

∧̄q = −
∮

〈

dh̃, ã
〉

= −
〈

q̃, d̃
〉

= 2π − āq =

∮

ḡq =λq − εℓq (3.13)

where d̃ = ~d+ ε~d∗, āq = aq + εa∗q and ḡq = gq + εg∗q are the dual Steiner vector of
motion, the measure of dual spherical surface area and the dual geodesic curvature
of spherical image of ϕq-CTRS, respectively.

4. Mannheim Offsets of Trajectory Ruled Surfaces

In this section, by considering dual representations of ruled surfaces we give
definition and characterizations of Mannheim offsets of trajectory ruled surfaces.
First, we give the following definition.

Definition 4.1. Let ϕq and ϕq1 be two trajectory ruled surfaces generated by

dual vectors q̃ and q̃1 of the dual orthonormal frames
{

q̃(s), h̃(s), ã(s)
}

and
{

q̃1(s1), h̃1(s1), ã1(s1)
}

, respectively. Then ϕq and ϕq1 are called Mannheim off-

sets of trajectory ruled surfaces, if

ã = h̃1 (4.1)
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holds at the corresponding points of the striction curves of surfaces, where s and
s1 are arc-lengths of the striction lines of ϕq and ϕq1 , respectively.

By this definition, the relation between the trihedrons

{

q̃, h̃ =
dq̃

‖dq̃‖ , ã = q̃ × h̃

}

(4.2)

and

{

q̃1, h̃1 =
dq̃1
‖dq̃1‖

, ã1 = q̃1 × h̃1

}

(4.3)

of trajectory ruled surfaces ϕq and ϕq1 can be given as follows





q̃1
h̃1
ã1



 =





cos θ̄ sin θ̄ 0
0 0 1
sin θ̄ − cos θ̄ 0









q̃

h̃
ã



 (4.4)

where θ̄ = θ + εθ∗, (0 ≤ θ ≤ π, θ∗ ∈ R) is dual angle between dual generators q̃
and q̃1 of Mannheim trajectory ruled surfaces ϕq and ϕq1 . The angle θ is called

offset angle and the real number θ∗ is called offset distance. Then, θ̄ = θ + εθ∗ is
called dual offset angle of the Mannheim trajectory ruled surfaces ϕq and ϕq1 . If
θ = 0 and θ = π/2, then the Mannheim offsets are said to be oriented offsets and
right offsets, respectively. Thus, we can give the followings.

Theorem 4.2. Let ϕq and ϕq1 be the Mannheim trajectory ruled surfaces. The
offset angle and offset distance are given by

θ = −
∫

k1ds+ c, θ∗ = −
∫

k∗1ds+ c∗, (4.5)

respectively where k1 and k∗1 are real and dual parts of dual curvature k̄1 of ϕq and
c, c∗ are real constants.

Proof: From (4.4) we have

q̃1 = cos θ̄q̃ + sin θ̄h̃. (4.6)

Differentiating (4.6) and by using (3.11) and (4.4) we may write

dq̃1
ds

= −
(

dθ̄

ds
+ k̄1

)

ã1 + k̄2 sin θ̄h̃1. (4.7)

Since dq̃1
ds is linearly dependent with h̃1, from (4.7) we get

θ̄ = −
∫

k̄1ds+ c̄, (4.8)

where c̄ = c+ εc∗ is a dual constant. Separating (4.8) into real and dual parts we
have equalities in (4.5). ✷
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Theorem 4.3. The closed trajectory ruled surfaces ϕq and ϕq1 form a Mannheim

offset with constant dual offset angle θ̄ if and only if the following relationship holds

∧̄q1 = ∧̄q cos θ̄ + ∧̄h sin θ̄. (4.9)

Proof: Let the closed trajectory ruled surfaces ϕq and ϕq1 form a Mannheim offset

with constant dual offset angle θ̄. Then from (3.13) and (4.4), we have

∧̄q1 = −
∮

〈

dh̃1, ã1

〉

= −
∮

〈

dã, (sin θ̄)q̃ − (cos θ̄)h̃
〉

= −
∮

〈dã, q̃〉 sin θ̄ +
∮

〈

dã, h̃
〉

cos θ̄

Since ∧̄q =
∮

〈

dã, h̃
〉

, ∧̄h = −
∮

〈dã, q̃〉, from last equality the dual angle of pitch

of ϕq1 -CTRS is obtained as follows

∧̄q1 = ∧̄q cos θ̄ + ∧̄h sin θ̄.

Conversely, if (4.9) holds, it is easily seen that ϕq and ϕq1 -CTRS form a
Mannheim offset with constant dual offset angle.

Equality (4.9) is a dual characterization for Mannheim offsets of CTRS with
constant dual offset angle in terms of their dual integral invariants. Separating
(4.9) into the real and dual parts, we obtain

{

λq1 = λq cos θ + λh sin θ,
ℓq1 = (ℓq − θ∗λh) cos θ + (ℓh + θ∗λq) sin θ,

(4.10)

respectively. Then, we may give the following corollaries.
✷

Corollary 4.4. If ϕq and ϕq1 are oriented closed Mannheim trajectory ruled sur-
faces, i.e., θ = 0, then the relationships between real integral invariants of ϕq and
ϕq1-CTRS are given by,

λq1 = λq, ℓq1 = ℓq − θ∗λh. (4.11)

Furthermore, from (3.13) the measure of spherical surface areas bounded by spher-
ical images of ϕq and ϕq1-CTRS Mannheim offsets are the same, i.e.,

aq1 = aq and a∗q1 = −a∗q + θ∗(2π − ah). (4.12)

Corollary 4.5. If ϕq and ϕq1 are right closed Mannheim trajectory ruled surfaces,
i.e., θ = π/2, then the relationships between real integral invariants of ϕq and
ϕq1-CTRS are given as follows

λq1 = λh, ℓq1 = ℓh + θ∗λq. (4.13)
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Then, the measure of spherical surface areas bounded by spherical images of ϕq1
and ϕh-CTRS are the same, i.e.,

aq1 = ah and a∗q1 = −(a∗h + θ∗(2π − aq)). (4.14)

Corollary 4.6. If θ∗ = 0, i.e., the generators ~q and ~q1 of the Mannheim offset
surfaces intersect, then we have

{

λq1 = λq cos θ + λh sin θ
ℓq1 = ℓq cos θ + ℓh sin θ

(4.15)

In this case, ϕq and ϕq1-CTRS intersect along their striction lines. It means that
their striction lines are the same.

Let now consider that what the condition for developable Mannheim offset of a
CTRS is. Let ϕq and ϕq1 -CTRS be the Mannheim offset surfaces and let ~α(s) and
~β(s1) be striction lines of ϕq and ϕq1 -CTRS, respectively. Then, we can write

~β(s) = ~α(s) + θ∗~a(s), (4.16)

where s is the arc-length of ~α(s). Assume that ϕq-CTRS is developable. Then
from (2.3) and (2.6) we have

δq =

〈

cosσ~q + sinσ~a, ~q × k1~h
〉

〈

k1~h, k1~h
〉 =

sinσ

k1
= 0, (4.17)

which gives that σ = 0. Thus, from (2.6) we have

d~α

ds
= ~q. (4.18)

Hence, along the striction line ~α(s), the real orthogonal frame
{

~q,~h,~a
}

coincides

with the Frenet frame
{

~T , ~N, ~B
}

of α(s) and the differential forms k1 and k2 turn

into the curvature κα and torsion τα of the striction line α(s), respectively. Then
from (2.5), (4.16) and (4.18) we have

d~β

ds
= ~q − θ∗τα~h. (4.19)

On the other hand from (2.5) and (4.4) we obtain

d~q1
ds

= −
(

dθ

ds
+ κα

)

sin θ~q +

(

dθ

ds
+ κα

)

cos θ~h+ τα sin θ~a. (4.20)

By using (4.5) and the fact that k1 = κα, from (4.20) it follows

d~q1
ds

= τα sin θ~a. (4.21)
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Then from (4.19) and (4.21) we have

δq1 =
〈d~β, ~q1×d~q1〉
〈d~q1, d~q1〉

=
〈~q−(θ∗τα)~h, (τα sin θ)~q1×~a〉

〈d~q1, d~q1〉

=
τα sin θ〈~q−(θ∗τα)~h, ~a1〉

(τα sin θ)2

=
〈~q−(θ∗τα)~h, (sin θ)~q−(cos θ)~h〉

τα sin θ

δq1 =
sin θ + θ∗τα cos θ

τα sin θ
. (4.22)

Thus, from (4.18) and (4.22) it can be stated that if the Mannheim offsets of ϕq

and ϕq1 ruled surfaces are developable then the following relationship holds

sin θ + θ∗τα cos θ = 0. (4.23)

Equality (4.23) has been also found in [9] with a different way.
If (4.23) holds, along the striction line β(s1), the real orthogonal frame

{

~q1,~h1,~a1

}

coincides with the Frenet frame
{

~T1, ~N1, ~B1

}

. Thus, the following

theorem may be given.

Theorem 4.7. If ϕq and ϕq1 are developable Mannheim offset surfaces then their
striction lines are Mannheim partner curves.

From (4.23) we can also give the following special cases by assuming τα 6= 0:

Corollary 4.8. θ = 0, i.e., the Mannheim offsets of developable trajectory ruled
surfaces ϕq and ϕq1 are oriented.

⇔Their generators are coincident, i.e., θ∗ = 0.
⇔The Mannheim offsets of developable trajectory ruled surfaces ϕq and ϕq1 are

coincident.

Corollary 4.9. θ = π/4 ⇔ there is a relationship between the torsion of α(s) and
offset distance as follows

ταθ
∗ = −1 (4.24)

If ϕq-CTRS is developable then from the equations (2.8), (4.4) and (4.19) the
pitch ℓq1 of ϕq1 -CTRS is

ℓq1 = −
∮

〈

d~β, ~q1

〉

= −
∮

〈

~q − (θ∗τα)~h, (cos θ)~q + (sin θ)~h
〉

ds

= −
∮

(cos θ − θ∗τα sin θ) ds

Then we can give the following corollary:
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Corollary 4.10. If ϕq-CTRS is developable then the relation between the pitch
ℓq1 of ϕq1-CTRS and the torsion of striction line α(s) of ϕq-CTRS is given by

ℓq1 = −
∮

(cos θ − θ∗τα cos θ)ds. (4.25)

Let now consider the area of projections of Mannheim offsets. The dual area
vectors of the spherical images of ϕq and ϕq1 surfaces are

{

w̃q = d̃+ ∧̄q q̃

w̃q1 = d̃+ ∧̄q1 q̃1
(4.26)

respectively [4]. Then, the dual area of projection of spherical image of ϕq1 -CTRS
in the direction q̃, generators of ϕq-offsets, is

2f̄q̃1,q̃ = 〈w̃q1 , q̃〉 =
〈

d̃+ ∧̄q1 q̃1, q̃
〉

=
〈

d̃, q̃
〉

+ ∧̄q1 cos θ̄

2f̄q̃1,q̃ = −∧̄q + ∧̄q1 cos θ̄. (4.27)

Separating (4.27) into real and dual parts we have the following theorem

Theorem 4.11. The relationships between the area of projections of spherical
images of the Mannheim offsets and their integral invariants are given as follows

{

2fq1,q = −λq + λq1 cos θ,
2f∗

q1,q = ℓq − ℓq1 cos θ − λq1θ
∗ sin θ.

(4.28)

Corollary 4.12. If ϕq and ϕq1-CTRS are the oriented surfaces, i.e., θ = 0, then
from (4.28) we have

2fq1,q = −λq + λq1 , 2f∗
q1,q = ℓq − ℓq1 . (4.29)

Corollary 4.13. If ϕq and ϕq1-CTRS are the right Mannheim offsets, i.e., θ =
π/2, then from (4.28) we have

2fq1,q = −λq, 2f∗
q1,q = ℓq − λq1θ

∗. (4.30)

Similarly, from (4.26) the dual area of projection of spherical image of ϕq1 -CTRS

in direction h̃ is

2f̄q̃1,h̃ =
〈

w̃q1 , h̃
〉

=
〈

d̃+ ∧̄q1 q̃1, h̃
〉

=
〈

d̃, h̃
〉

+ ∧̄q1 sin θ̄

2f̄q1,h = −∧̄h + ∧̄q1 sin θ̄. (4.31)

Separating (4.31) into real and dual parts we have the followings:
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Corollary 4.14. If ϕq and ϕq1-CTRS are Mannheim offsets then we have

{

2fq1,h = −λh + λq1 sin θ,
2f∗

q1,h
= ℓh − ℓq1 sin θ + λq1θ

∗ cos θ.
(4.32)

Corollary 4.15. If ϕq and ϕq1-CTRS are the oriented Mannheim surfaces, i.e.,
θ = 0, then from (4.32) we have

2fq1,h = −λh, 2f∗
q1,h = ℓh + λq1θ

∗. (4.33)

Corollary 4.16. If ϕq and ϕq1-CTRS are right Mannheim offsets, i.e., θ = π/2,
then from (4.30) we have

2fq1,h = −λh + λq1 , 2f∗
q1,h = ℓh − ℓq1 . (4.34)

Similarly, the dual area of projection of spherical image of ϕq1 -CTRS in direction
ã is

2f̄q̃1,ã = 〈w̃q1 , ã〉 =
〈

d̃+ ∧̄q1 q̃1, ã
〉

=
〈

d̃, h̃1

〉

2f̄q1,a = −∧̄a = −∧̄h1
. (4.35)

Separating (4.35) into real and dual parts we have the following corollary:

Corollary 4.17. If ϕq and ϕq1-CTRS are Mannheim offsets then we have

fq1,a = −λh1
= −λa, f∗

q1,a = ℓh1
= ℓa. (4.36)

Example 4.18. Let consider the hyperboloid of one sheet plotted in Fig. 1, given
by the parametrization

ϕ(s, v) = (cos s, sin s, 0) + v (− sin s, cos s, 1). (4.37)

From E. Study Mapping, this surface corresponds to following dual curve,

q̃(s) =
1√
2
(− sin s, cos s, 1) + ε

1√
2
(sin s, − cos s, 1). (4.38)

From (4.38) dual curvature of the surface is k̄1 =
√
2
2 (1 − ε). Then from Theorem

4.2, offset angle and offset distance are obtained as θ(s) = −
√
2
2 s + c1, θ

∗(s) =√
2
2 s+c2, respectively, where c1, c2 are real constants. Then by taking special values

such as c1 = c2 = 0, a Mannheim offset of the surface is given by

ϕ1(s, v) =
(

cos s+ s
2 sin s, sin s− s

2 cos s,
s
2

)

+v
(

−
√
2
2 cos

(

−
√
2
2 s

)

sin s− sin
(

−
√
2
2 s

)

cos s,
√
2
2 cos

(

−
√
2
2 s

)

cos s− sin
(

−
√
2
2 s

)

sin s,
√
2
2 cos

(

−
√
2
2 s

))

(4.39)
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which is plotted in Fig. 2.

Figure 1: The surface ϕ(s, v)

Figure 2: The Mannheim offset surface ϕ1(s, v)

In Figures 1 and 2, the curves plotted in black are the striction lines of the
surfaces.

5. Conclusion

Ruled surfaces have an important role in differential geometry and science since
these surfaces are used in computer aided geometric design and kinematics. Con-
sidering this importance, in this paper, the characterizations for Mannheim offsets
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of ruled surfaces are given in dual space. New relations between the invariants of
Mannheim offsets of ruled surfaces are obtained. Furthermore, it is shown that the
striction lines of developable Mannheim offsets are Mannheim partner curves.
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