

(3s.) **v. 34** 1 (2016): **53–64**. ISSN-00378712 in press doi:10.5269/bspm.v34i1.22460

Some sets of χ^2- summable sequences of Fuzzy Numbers Defined By A Modulus

N. Subramanian

ABSTRACT: In this paper we introduce the χ^2 fuzzy numbers defined by a modulus, study some of their properties and inclusion results.

Key Words: gai sequence, analytic sequence, modulus function, double sequences, completeness, solid space, symmetric space.

Co	nt	en	ts
$\mathbf{v}\mathbf{v}$	110	CII	ບວ

1	Introduction	53
2	Definitions and Preliminaries	55
3	Main Results	57

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinatewise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4]. Later on, they were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir and Solancan [2], Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:

$$\mathcal{M}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : sup_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\},\$$

$$\mathcal{C}_{p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn} - |^{t_{mn}} = 1 \text{ for some } \in \mathbb{C} \right\},\$$

$$\mathcal{C}_{0p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\},\$$

$$\mathcal{L}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \right\},\$$

$$\mathcal{C}_{bp}(t) := \mathcal{C}_{p}(t) \cap \mathcal{M}_{u}(t) \text{ and } \mathcal{C}_{0bp}(t) = \mathcal{C}_{0p}(t) \cap \mathcal{M}_{u}(t);\$$

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 40A05,40C05,40D05

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p - \lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn} = 1$ for all $m, n \in \mathbb{N}; \mathcal{M}_{u}(t), \mathcal{C}_{p}(t), \mathcal{C}_{0p}(t), \mathcal{L}_{u}(t), \mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [21,22] have proved that $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{p}(t)$, $\mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the $\alpha -, \beta -, \gamma -$ duals of the spaces $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zelter [23] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [24] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [25] and Mursaleen and Edely [26] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{ik})$ into one whose core is a subset of the M-core of x. More recently, Altay and Feyzi Başar [27] have defined the spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$ and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_{u}, \mathcal{M}_{u}(t), \mathcal{C}_{p}, \mathcal{C}_{bp}, \mathcal{C}_{r}$ and \mathcal{L}_{u} , respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces $\mathfrak{BS}, \mathfrak{BV}, \mathfrak{CS}_{bp}$ and the $\beta(\vartheta)$ - duals of the spaces \mathfrak{CS}_{bp} and \mathfrak{CS}_r of double series. Quite recently Feyzi Başar and Sever [28] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Quite recently Subramanian and Misra [29] have studied the space $\chi^2_M(p,q,u)$ of double sequences and gave some inclusion relations.

Spaces of strongly summable sequences were discussed by Kuttner [31], Maddox [32], and others. The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox [8] as an extension of the definition of strongly Cesàro summable sequences. Connor [33] further extended this definition to a definition of strong A- summability with respect to a modulus where $A = (a_{n,k})$ is a nonnegative regular matrix and established some connections between strong A- summability, strong A- summability with respect to a modulus, and A- statistical convergence. In [34] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in [35]-[38], and [39] the four dimensional matrix transformation $(Ax)_{k,\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{mn} x_{mn}$ was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For $a, b, \ge 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p \tag{1.1}$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} (m, n \in \mathbb{N})$ (see [1]).

A sequence $x = (x_{mn})$ is said to be double analytic if $sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)! |x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by χ^2 . Let $\phi = \{all finite sequences\}$.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$; where \Im_{ij} denotes the double sequence whose only non zero term is a $\frac{1}{(i+j)!}$ in the $(i, j)^{th}$ place for each $i, j \in \mathbb{N}$.

An FK-space(or a metric space) X is said to have AK property if (\mathfrak{S}_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \rightarrow (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [30] as follows

$$Z\left(\Delta\right) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for $Z = c, c_0$ and ℓ_{∞} , where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$. Here c, c_0 and ℓ_{∞} denote the classes of convergent, null and bounded sclar valued single sequences respectively. The difference space bv_p of the classical space ℓ_p is introduced and studied in the case $1 \leq p \leq \infty$ by Feyzi Başar and Altay in [42] and in the case 0 by Altay and Feyzi Başar in [43]. The spaces $<math>c(\Delta), c_0(\Delta), \ell_{\infty}(\Delta)$ and bv_p are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k|$$
 and $||x||_{bv_p} = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}, (1 \le p < \infty).$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z\left(\Delta\right) = \left\{x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z\right\}$$

where $Z = \Lambda^2, \chi^2$ and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$

2. Definitions and Preliminaries

Throughout a double sequence is denoted by $\langle X_{mn} \rangle$, a double infinite array of fuzzy real numbers.

Let D denote the set of all closed and bounded intervals $X = [a_1, a_2]$ on the real line \mathbb{R} . For $X = [a_1, a_2] \in D$ and $Y = [b_1, b_2] \in D$, define

$$d(X,Y) = max(|a_1 - b_1|, |a_2 - b_2|)$$

It is known that (D, d) is a complete metric space.

A fuzzy real number X is a fuzzy set on \mathbb{R} , that is, a mapping $X : \mathbb{R} \to \mathbb{R}$ I (= [0, 1]) associating each real number t with its grade of membership X (t).

The α -level set $[X]^{\alpha}$, of the fuzzy real number X, for $0 < \alpha \leq 1$; is defined by

$$[X]^{\alpha} = \{t \in \mathbb{R} : X(t) \ge \alpha\}.$$

The 0- level set is the closure of the strong 0- cut that is, $cl \{t \in \mathbb{R} : X(t) > 0\}$.

A fuzzy real number X is called convex if $X(t) \ge X(s) \land X(r) = \min \{X(s), \}$ X(r), where s < t < r. If there exists $t_0 \in \mathbb{R}$ such that $X(t_0) = 1$ then, the fuzzy real number X is called normal.

A fuzzy real number X is said to be upper-semi continuous if, for each $\epsilon > \epsilon$ $0, X^{-1}([0, a + \epsilon))$ is open in the usual topology of \mathbb{R} for all $a \in I$.

The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted by $L(\mathbb{R})$.

The absolute value, |X| of $X \in L(\mathbb{R})$ is defined by

$$|X|(t) = \begin{cases} \max\{X(t), X(-t)\}, & \text{if } t \ge 0; \\ 0, & \text{if } t < 0 \end{cases}$$

Let $d: L(\mathbb{R}) \times L(\mathbb{R}) \to \mathbb{R}$ be defined by

$$\bar{d}(X,Y) = \sup_{0 \le \alpha \le 1} d\left(\left[X \right]^{\alpha}, \left[Y \right]^{\alpha} \right).$$

Then, \overline{d} defines a metric on $L(\mathbb{R})$ and it is well-known that $(L(\mathbb{R}), \overline{d})$ is a complete metric space.

A sequence $\langle X_{mn} \rangle \subset L(\mathbb{R})$ is said to be null if $\overline{d}(X_{mn}, \overline{0}) = 0$.

A double sequence $\langle X_{mn} \rangle$ of fuzzy real numbers is said to be chi in Pringsheim's sense to a fuzzy number 0 if $\lim_{m,n\to\infty} ((m+n)!X_{mn})^{1/m+n} = 0.$

A double sequence $\langle X_{mn} \rangle$ is said to chi regularly if it converges in the Prinsheim's sense and the following limts zero:

$$\lim_{m \to \infty} \left((m+n)! X_{mn} \right)^{1/m+n} = 0 \text{ for each } n \in \mathbb{N},$$

and

$$\lim_{n\to\infty} \left((m+n)! X_{mn} \right)^{1/m+n} = 0$$
 for each $m \in \mathbb{N}$.

A fuzzy real-valued double sequence space E^F is said to be solid if $\langle Y_{mn} \rangle \in E^F$ whenever $\langle X_{mn} \rangle \in E^F$ and $|Y_{mn}| \leq |X_{mn}|$ for all $m, n \in \mathbb{N}$.

Let $K = \{(m_i, n_i) : i \in \mathbb{N}; m_1 < m_2 < m_3 \cdots and n_1 < n_2 < n_3 < \cdots \} \subseteq \mathbb{N} \times \mathbb{N}$ and E^F be a double sequence space. A K-step space of E^F is a sequence space $\lambda_K^E = \{\langle X_{mini} \rangle \in w^{2F} : \langle X_{mn} \rangle \in E^F\}$. A canonical pre-image of a sequence $\langle X_{mini} \rangle \in E^F$ is a sequence $\langle Y_{mn} \rangle$ defined

as follows:

$$Y_{mn} = \begin{cases} X_{mn}, & \text{if } (m,n) \in K, \\ \bar{0}, & \text{otherwise}. \end{cases}$$

A canonical pre-image of a step space λ_K^E is a set of canonical pre-images of all elements in λ_K^E .

A sequence set E^F is said to be monotone if E^F contains the canonical preimages of all its step spaces.

A sequence set E^F is said to be symmetric if $\langle X_{\pi_{(m)},\pi_{(n)}} \rangle \in E^F$ whenever $\langle X_{mn} \rangle \in E^F$, where π is a permutation of \mathbb{N} .

A fuzzy real-valued sequence set E^F is said to be convergent free if $\langle Y_{mn} \rangle \in E^F$ whenever $\langle X_{mn} \rangle \in E^F$ and $X_{mn} = \bar{0}$ implies $Y_{mn} = \bar{0}$. We define the following classes of sequences:

$$\Lambda_f^{2F} = \left\{ \langle X_{mn} \rangle : sup_{mn} f\left(\bar{d}\left(X_{mn}^{1/m+n}, \bar{0}\right)\right) < \infty, X_{mn} \in L\left(\mathbb{R}\right) \right\}.$$

$$\chi_f^{2F} = \left\{ \langle X_{mn} \rangle : lim_{mn \to \infty} f\left(\bar{d}\left(((m+n)!X_{mn})^{1/m+n}, \bar{0}\right)\right) = 0 \right\}.$$

Also, we define the classes of sequences $\chi_f^{2F^n}$ as follows :

A sequence $\langle X_{mn} \rangle \in \chi_f^{2F^R}$ if $\langle x_{mn} \rangle \in \chi_f^{2F}$ and the following limits hold

$$\lim_{m \to \infty} f\left(\bar{d}\left(\left((m+n)!X_{mn}\right)^{1/m+n},\bar{0}\right)\right) = 0 \text{ for each } n \in \mathbb{N}.$$
$$\lim_{n \to \infty} f\left(\bar{d}\left(\left((m+n)!X_{mn}\right)^{1/m+n},\bar{0}\right)\right) = 0 \text{ for each } m \in \mathbb{N}.$$

Definition 2.1. A modulus function was introduced by Nakano [12]. We recall that a modulus f is a function from $[0, \infty) \rightarrow [0, \infty)$, such that

(1) f(x) = 0 if and only if x = 0

(2) $f(x+y) \le f(x) + f(y)$, for all $x \ge 0, y \ge 0$,

(3) f is increasing,

(4) f is continuous from the right at 0. Since $|f(x) - f(y)| \le f(|x - y|)$, it follows from here that f is continuous on $[0, \infty)$.

3. Main Results

Theorem 3.1. Let

 $N_{1} = \min\left\{n_{0} : \sup_{mn \geq n_{0}} f\left(\bar{d}\left(\left((m+n)!\left(X_{mn} - Y_{mn}\right)\right)^{1/m+n}, \bar{0}\right)\right)^{P_{mn}} < \infty\right\}$ $N_{2} = \min\left\{n_{0} : \sup_{mn \geq n_{0}} P_{mn} < \infty\right\} \text{ and } N = \max\left(N_{1}, N_{2}\right).$ $(i) \chi_{f_{p}}^{2F^{R}} \text{ is not a paranormed space with}$

$$g(X) = \lim_{N \to \infty} \sup_{mn \ge N} f\left(\bar{d}\left(\left((m+n)! \left(X_{mn} - Y_{mn}\right)\right)^{1/m+n}, \bar{0}\right)\right)^{P_{mn}/M}$$
(3.1)

if and only if $\mu > 0$, where $\mu = \lim_{N \to \infty} \inf_{mn \ge N} P_{mn}$ and $M = \max(1, \sup_{mn \ge N} P_{mn})$ (ii) $\chi_{f_p}^{2F^R}$ is complete with the paranorm (3.1).

Proof:

(i) Necesity: Let $\chi_{f_p}^{2F^R}$ be a paranormed space with (3.1) and suppose that $\mu = 0$. Then $\alpha = inf_{mn\geq N}P_{mn} = 0$ for all $N \in \mathbb{N}$ and N. SUBRAMANIAN

 $g \langle \lambda X \rangle = \lim_{N \to \infty} \sup_{mn \geq N} |\lambda|^{P_{mn/M}} = 1$ for all $\lambda \in (0, 1]$, where $X = \langle \alpha \rangle \in \chi_{f_p}^{2F^R}$ whence $\lambda \to 0$ does not imply $\lambda X \to \theta$, when X is fixed. But this contradicts to (3.1) to be a paranorm.

Sufficiency: Let $\mu \ge 0$. It is trivial that $g(\theta) = 0, g(-X) = g(X)$ and

 $g\langle X+Y,\bar{0}\rangle \leq g\langle X,\bar{0}\rangle + g\langle Y,\bar{0}\rangle$. Since $\mu > 0$ there exists a positive number β such that $P_{mn} > \beta$ for sufficiently large positive integer m, n. Hence for any $\lambda \in \mathbb{C}$, we may write $|\lambda|^{P_{mn}} \leq max \left(|\lambda|^M, |\lambda|^{\beta}\right)$ for sufficiently large positive integers $m, n \geq N$. Therefore, we obtain $g\langle \lambda X, \bar{0}\rangle \leq max \left(|\lambda|, |\lambda|^{\beta/M}\right)g\langle X\rangle$. Using this, one can prove that $\lambda X \to \theta$, whenever X is fixed and $\lambda \to 0$ or $\lambda \to 0$ and $X \to \theta$, or λ is fixed and $X \to \theta$.

or λ is fixed and $\Lambda \to \theta$. Because a paranormed space is a vector space. $\chi_{f_p}^{2F^R}$ is a set of sequences of fuzzy numbers. But the set $w^F = \{\langle X_{mn} \rangle : X_{mn} \in L(R)\}$ of all sequences of fuzzy numbers is not a vector space. That is why, in order to say that $\chi_{f_p}^{2F^R}$ is a vector subspace (that is a sequence space) it is not sufficient to show that $\chi_{f_p}^{2F^R}$ is closed under addition and scalar multiplication. Consequently since w^F is not a vector space, then $\chi_{f_p}^{2F^R}$ is not a vector subspace so that not a sequence space. Therefore it can not be a paranormed space.

Proof: (ii) Let $\langle X^{k\ell} \rangle$ be a Cauchy sequence in $\chi_{f_p}^{2F^R}$, where $X^{k\ell} = \langle X_{mn}^{k\ell} \rangle_{m,n \in \mathbb{N}}$. Then for every $\epsilon > 0$ ($0 < \epsilon < 1$) there exists a positive integer s_0 such that

$$g\left\langle X^{k\ell} - X^{rt} \right\rangle = \lim_{N \to \infty} \sup_{mn \ge N} f\left(\bar{d}\left(\left((m+n)!\left(X^{k\ell}_{mn} - X^{rt}_{mn}\right)\right)^{1/m+n}, \bar{0}\right)\right)^{P_{mn}/M} < \frac{\epsilon}{2}$$

$$(3.2)$$

for all $k, \ell, r, t > s_0$.

By (3.2) there exists a positive integer n_0 such that

$$\sup_{mn\geq N} f\left(\bar{d}\left(\left((m+n)!\left(X_{mn}^{k\ell}-X_{mn}^{rt}\right)\right)^{1/m+n},\bar{0}\right)\right)^{P_{mn}/M} < \frac{\epsilon}{2}$$
(3.3)

for all $k, \ell, r, t > s_0$ and for $N > n_0$. Hence we obtain

$$f\left(\bar{d}\left(\left((m+n)!\left(X_{mn}^{k\ell}-X_{mn}^{rt}\right)\right)^{1/m+n},\bar{0}\right)\right)^{P_{mn}/M} < \frac{\epsilon}{2} < 1$$
(3.4)

so that

$$f\left(\bar{d}\left(\left((m+n)!\left(X_{mn}^{k\ell}-X_{mn}^{rt}\right)\right)^{1/m+n},\bar{0}\right)\right) < f\left(\bar{d}\left(\left((m+n)!\left(X_{mn}^{k\ell}-X_{mn}^{rt}\right)\right)^{1/m+n},\bar{0}\right)\right)^{P_{mn}/M} < \frac{\epsilon}{2}$$
(3.5)

for all $k, \ell, r, t > s_0$. This implies that $\langle X_{mn}^{k\ell} \rangle_{k\ell \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{C} for each fixed $m, n \geq n_0$. Hence the sequence $\langle X_{mn}^{k\ell} \rangle_{k\ell \in \mathbb{N}}$ is convergent to X_{mn} say,

$$\lim_{k\ell \to \infty} X_{mn}^{k\ell} = X_{mn} \text{ for each fixed } m, n > n_0.$$
(3.6)

Getting X_{mn} , we define $X = \langle X_{mn} \rangle$. From (3.2) we obtain

$$g\left\langle X^{k\ell} - X\right\rangle = \lim_{N \to \infty} \sup_{mn \ge N} f\left(\bar{d}\left(\left((m+n)!\left(X_{mn}^{k\ell} - X_{mn}\right)\right)^{1/m+n}, \bar{0}\right)\right)^{P_{mn}/M} < \frac{\epsilon}{2}$$

$$(3.7)$$

as $r, t \to \infty$, for all $k, \ell, r, t > s_0$. by (3.6). This implies that $\lim_{k \to \infty} X^{k\ell} = X$. Now we show that $X = \langle X_{mn} \rangle \in \chi_{f_p}^{2F^R}$. Since $X^{k\ell} \in \chi_{f_p}^{2F^R}$ for each $(k, 1) \in N \times N$ for every $\epsilon > 0$ ($0 < \epsilon < 1$) there exists a positive integer $n_1 \in N$ such that

$$f\left(\bar{d}\left(\left((m+n)!X_{mn}\right)^{1/m+n},\bar{0}\right)\right)^{P_{mn}/M} < \frac{\epsilon}{2} for \, every \, m, n > n_1.$$

$$(3.8)$$

By (3.6),(3.7) and (1.1) we obtain $f\left(\bar{d}\left(((m+n)!(X_{mn}))^{1/m+n},\bar{0}\right)\right)^{P_{mn}/M} \leq f\left(\bar{d}\left(((m+n)!(X_{mn}^{k\ell}))^{1/m+n},\bar{0}\right)\right)^{P_{mn}/M} + f\left(\bar{d}\left(\left((m+n)!(X_{mn}^{k\ell}-X_{mn})\right)^{1/m+n},\bar{0}\right)\right)^{P_{mn}/M} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \text{ for } k, \ell > \max(s_0,s_1)$ and $m, n > \max(n_0, n_1)$. This implies that $X \in \chi_{f_p}^{2F^R}$.

Proposition 3.2. The class of sequences Λ_f^{2F} is symmetric but the classes of sequences χ_f^{2F} and $\chi_f^{2F^R}$ are not symmetric.

Proof: Obviously the class of sequences Λ_f^{2F} is symmetric. For the other classes of sequences consider the following example \Box

Example: Consider the class of sequences χ_f^{2F} . Let f(X) = X and consider the sequence $\langle X_{mn} \rangle$ be defined by

$$X_{1n}(t) = \begin{cases} \frac{(-t+1)^{1+n}}{(1+n)!}, & \text{for } t = -1, \\ \frac{(t-1)^{1+n}}{(1+n)!}, & \text{for } t = 1, \\ 0, & \text{otherwise}. \end{cases}$$

and for m > 1,

$$X_{mn}(t) = \begin{cases} \frac{(t+2)^{m+n}}{(m+n)!}, & \text{for } t = -2, \\ \frac{(-t-1)^{m+n}}{(m+n)!}, & \text{for } t = -1, \\ 0, & \text{otherwise }. \end{cases}$$

Let $\langle Y_{mn} \rangle$ be a rearrangement of $\langle X_{mn} \rangle$ defined by

$$Y_{nn}(t) = \begin{cases} \frac{(-t+1)^{2n}}{(2n)!}, & \text{for } t = -1, \\ \frac{(t-1)^{2n}}{(2n)!}, & \text{for } t = 1, \\ 0, & \text{otherwise}. \end{cases}$$

and for $m \neq n$,

$$Y_{mn}(t) = \begin{cases} \frac{(t+2)^{m+n}}{(m+n)!}, & \text{for } t = -2, \\ \frac{(-t-1)^{m+n}}{(m+n)!}, & \text{for } t = -1, \\ 0, & \text{otherwise }. \end{cases}$$

Then, $\langle X_{mn} \rangle \in \chi_f^{2F}$ but $\langle Y_{mn} \rangle \notin \chi_f^{2F}$. Hence, χ_p^{2F} is not symmetric. Similarly other sequence also not symmetric.

Proposition 3.3. The classes of sequences Λ_f^{2F} , χ_f^{2F} and $\chi_f^{2F^R}$ are solid.

Proof: Consider the class of sequences χ_f^{2F} . Let $\langle X_{mn} \rangle$ and $\langle Y_{mn} \rangle \in \chi_f^{2F}$ be such that $\overline{d}\left(((m+n)!Y_{mn})^{1/m+n}, \overline{0}\right) \leq \overline{d}\left(((m+n)!X_{mn})^{1/m+n}, \overline{0}\right)$. As f is non-decreasing, we have $\lim_{mn\to\infty} f\left(\overline{d}\left(((m+n)!Y_{mn})^{1/m+n}, \overline{0}\right)\right) \leq \lim_{mn\to\infty} f\left(\overline{d}\left(((m+n)!X_{mn})^{1/m+n}, \overline{0}\right)\right)$

Hence, the class of sequence χ_f^{2F} is solid. Similarly it can be shown that the other classes of sequences are also solid.

Proposition 3.4. The classes of sequences χ_f^{2F} and $\chi_f^{2F^R}$ are not monotone and hence not solid.

Proof: The result follows from the following example.

Example: Consider the class of sequences χ_f^{2F} and f(X) = X. Let $J = \{(m, n) : m \ge n\} \subseteq N \times N$. Let $\langle X_{mn} \rangle$ be defined by

$$X_{mn}(t) = \begin{cases} \frac{(t+3)^{m+n}}{(m+n)!}, & \text{for } -3 < t \le -2, \\ \frac{(mt)^{m+n}}{(3m-1)^{m+n}(m+n)!} + \frac{(3m)^{m+n}}{(3m-1)^{m+n}(m+n)!}, & \text{for } -2 \le t \le -1 + \frac{1}{m}, \\ \bar{0}, & \text{otherwise }. \end{cases}$$

for all $m, n \in N$.

Then $\langle X_{mn} \rangle \in \chi_f^{2F}$. Let $\langle Y_{mn} \rangle$ be the canonical pre-image of $\langle X_{mn} \rangle_J$ for the subsequence J of $N \times N$. Then

$$Y_{mn} = \begin{cases} X_{mn}, & \text{for } (m,n) \in J, \\ \overline{0}, & \text{otherwise }. \end{cases}$$

Then, $\langle Y_{mn} \rangle \notin \chi_f^{2F}$. Hence χ_f^{2F} is not monotone. Similarly, it can be shown that the other classes of sequences are also not monotone. Hence, the classes of sequences χ_f^{2F} and $\chi_f^{2F^R}$ are not solid.

Proposition 3.5. (i) $\chi_{f_1}^{2F} \cap \chi_{f_2}^{2F} \subseteq \chi_{f_1+f_2}^{2F}$, (ii) $\chi_{f_1}^{2F^R} \cap \chi_{f_2}^{2F^R} \subseteq \chi_{f_1+f_2}^{2F^R}$

Proof: It is easy, so omitted.

60

Proposition 3.6. Let f and f_1 be two modulus functions, then, (i) $\chi_{f_1}^{2F} \subseteq \chi_{f \circ f_1}^{2F}$ (ii) $\chi_{f_1}^{2F^R} \subseteq \chi_{f \circ f_1}^{2F^R}$ (iii) $\Lambda_{f_1}^{2F} \subseteq \Lambda_{f \circ f_1}^{2F}$

Proof: We prove the result for the case $\chi_{f_1}^{2F} \subseteq \chi_{f \circ f_1}^{2F}$, the other cases similar. Let $\epsilon > 0$ be given. As f is continuous and non-decreasing, so there exists $\eta > 0$, such that $f(\eta) = \epsilon$. Let $\langle X_{mn} \rangle \in \chi_{f_1}^{2F}$. Then, there exist $m_0, n_0 \in \mathbb{N}$, such that

$$f_1\left(\bar{d}\left(\left((m+n)!X_{mn}\right)^{1/m+n},\bar{0}\right)\right) < \eta, \text{ for all } m \ge m_0, n \ge n_0,$$

$$\Rightarrow f \circ f_1\left(\bar{d}\left(\left((m+n)!X_{mn}\right)^{1/m+n},\bar{0}\right)\right) < \epsilon, \text{ for all } m \ge m_0, n \ge n_0.$$

Hence, $\langle X_{mn} \rangle \in \chi_{f \circ f_1}^{2F}$. Thus, $\chi_{f_1}^{2F} \subseteq \chi_{f \circ f_1}^{2F}$.

Proposition 3.7. (i) $\chi_f^{2F} \subseteq \Lambda_f^{2F}$ (ii) $\chi_f^{2F^R} \subseteq \Lambda_f^{2F}$. The inclusion are strict.

Proof: The inclusion (i) $\chi_f^{2F} \subseteq \Lambda_f^{2F}$ (ii) $\chi_f^{2F^R} \subseteq \Lambda_f^{2F}$ is obvious. For establishing that the inclusions are proper, consider the following example. **Example:** We prove the result for the case $\chi_f^{2F} \subseteq \Lambda_f^{2F}$, the other case similar. Let f(X) = X. Let the sequence $\langle X_{mn} \rangle$ be defined by for m > n,

$$X_{mn}(t) = \begin{cases} \frac{(mt - m - 1)^{m+n} (m-1)^{-(m+n)}}{(m+n)!}, & \text{for } 1 + \frac{1}{m} \le t \le 2, \\ \frac{(3-t)^{m+n}}{(m+n)!}, & \text{for } 2 < t \le 3, \\ 0, & \text{otherwise }. \end{cases}$$

and for m < n

$$X_{mn}(t) = \begin{cases} \frac{(mt-1)^{m+n}(m-1)^{-(m+n)}}{(m+n)!}, & \text{for } \frac{1}{m} \le t \le 1, \\ \frac{(-t+2)^{m+n}}{(m+n)!}, & \text{for } 1 \le t \le 2, \\ 0, & \text{otherwise }. \end{cases}$$

Then, $\langle X_{mn} \rangle \in \Lambda_f^{2F}$ but $\langle X_{mn} \rangle \notin \chi_f^{2F}$.

Proposition 3.8. The classes of sequences Λ_f^{2F} , χ_f^{2F} and $\chi_f^{2F^R}$ are not convergent free.

Proof: The result follows from the following example.

Example: Consider the classes of sequences χ_f^{2F} . Let f(X) = X and consider the sequence $\langle X_{mn} \rangle$ defined by $((1+n)!X_{1n})^{1/1+n} = \bar{0}$, and for other values,

$$X_{mn}(t) = \begin{cases} \frac{1^{m+n}}{(m+n)!}, & \text{for } 0 \le t \le 1, \\ \frac{(-mt)^{m+n}(m+1)^{-(m+n)} + (2m+1)^{m+n}(1+m)^{-(m+n)}}{(m+n)!}, & \text{for } 1 < t \le 2 + \frac{1}{m}, \\ 0, & \text{otherwise}. \end{cases}$$

Let the sequence $\langle Y_{mn} \rangle$ be defined by $((1+n)!Y_{1n})^{1/1+n} = \bar{0}$, and for other values,

$$Y_{mn}(t) = \begin{cases} \frac{1^{m+n}}{(m+n)!}, & \text{for } 0 \le t \le 1, \\ \frac{(m-t)^{m+n}(m-1)^{-(m+n)}}{(m+n)!}, & \text{for } 1 < t \le m, \\ 0, & \text{otherwise }. \end{cases}$$

Then, $\langle X_{mn} \rangle \in \chi_f^{2F}$ but $\langle Y_{mn} \rangle \notin \chi_f^{2F}$. Hence, the clases of sequences χ_f^{2F} is not convergent free. \Box

Acknowledgments

This paper is dedicated to my beloved teacher Dr. Professor Umakanta Misra, Department of Mathematics, Berhampur University, Berhampur-760 007, Odissa, India, for his sixtith birth anniversary.

References

- 1. T.Apostol, Mathematical Analysis, Addison-wesley, London, 1978.
- M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
- 3. C.Bektas and Y.Altin, The sequence space $\ell_M(p,q,s)$ on seminormed spaces, *Indian J. Pure Appl. Math.*, **34(4)** (2003), 529-534.
- T.J.I'A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd. ,New York, (1965).
- G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
- M.A.Krasnoselskii and Y.B.Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
- J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
- F.Moricz, Extentions of the spaces c and c₀ from single to double sequences, Acta. Math. Hung., 57(1-2), (1991), 129-136.
- F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, 104, (1988), 283-294.
- M.Mursaleen, M.A.Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, *Demonstratio Math.*, Vol. XXXII (1999), 145-150.
- 12. H.Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- 13. W.Orlicz, Über Raume (L^M) Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
- 14. S.D.Parashar and B.Choudhary, Sequence spaces defined by Orlicz functions, *Indian J. Pure Appl. Math.* , **25(4)**(1994), 419-428.
- K.Chandrasekhara Rao and N.Subramanian, The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
- W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.

62

- B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
- B.C.Tripathy, M.Et and Y.Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Anal. Appl., 1(3)(2003), 175-192.
- A.Turkmenoglu, Matrix transformation between some classes of double sequences, J. Inst. Math. Comp. Sci. Math. Ser., 12(1), (1999), 23-31.
- P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
- 21. A.Gökhan and R.olak, The double sequence spaces $c_2^P(p)$ and $c_2^{PB}(p)$, Appl. Math. Comput., **157(2)**, (2004), 491-501.
- 22. A.Gökhan and R.
olak, Double sequence spaces ℓ_2^{∞} , *ibid.*, **160(1)**, (2005), 147-153.
- M.Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
- M.Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
- M.Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523-531.
- M.Mursaleen and O.H.H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 532-540.
- B.Altay and Feyzi Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70-90.
- 28. Feyzi Başar and Y.Sever, The space \mathcal{L}_p of double sequences, Math. J. Okayama Univ, 51, (2009), 149-157.
- N.Subramanian and U.K.Misra, The semi normed space defined by a double gai sequence of modulus function, *Fasciculi Math.*, 46, (2010).
- 30. H.Kizmaz, On certain sequence spaces, Cand. Math. Bull., 24(2), (1981), 169-176.
- 31. B.Kuttner, Note on strong summability, J. London Math. Soc., 21(1946), 118-122.
- I.J.Maddox, On strong almost convergence, Math. Proc. Cambridge Philos. Soc., 85(2), (1979), 345-350.
- J.Cannor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2), (1989), 194-198.
- A.Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, Math. Ann., 53, (1900), 289-321.
- 35. H.J.Hamilton, Transformations of multiple sequences, Duke Math. J., 2, (1936), 29-60.
- 36. _____, A Generalization of multiple sequences transformation, *Duke Math. J.*, 4, (1938), 343-358.
- 37. ——, Change of Dimension in sequence transformation, Duke Math. J., 4, (1938), 341-342.
- Preservation of partial Limits in Multiple sequence transformations, Duke Math. J., 4, (1939), 293-297.
- G.M.Robison, Divergent double sequences and series, Amer. Math. Soc. Trans., 28, (1926), 50-73.
- 40. L.L.Silverman, On the definition of the sum of a divergent series, *un published thesis*, **University of Missouri studies**, **Mathematics series**.

- O.Toeplitz, Über allgenmeine linear mittel bridungen, Prace Matemalyczno Fizyczne (warsaw), 22, (1911).
- Feyzi Başar and B.Atlay, On the space of sequences of p- bounded variation and related matrix mappings, Ukrainian Math. J., 55(1), (2003), 136-147.
- 43. B.Altay and Feyzi Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_p , (0 , Commun. Math. Anal.,**2(2)**, (2007), 1-11.
- R.olak,M.Et and E.Malkowsky, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, *Firat Univ. Elazig, Turkey*, 2004, pp. 1-63, Firat Univ. Press, (2004), ISBN: 975-394-0386-6.
- 45. B.C.Tripathy and B.Sarma, Some double sequence spaces of fuzzy numbes defined by Orlicz function, *Acta Mthematica Scientia*, (31 B(1)), (2011), 1-7.
- 46. L.A.Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.
- 47. S.Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123-126.
- F.Nuray and E.Savas, Statistical convergence of fuzzy numbers, Math Slovaca 45(3), (1995), 269-273.
- F.Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets and Systems, 99 (1998), 353-356.

N. Subramanian Department of Mathematics, SASTRA University, Thanjavur-613 401, India E-mail address: nsmaths@yahoo.com