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Solving Nonlinear Two Point Boundary Value Problems Using

Exponential Finite Difference Method

P.K.Pandey

abstract: In this article, we presented an exponential finite difference scheme
for solving nonlinear two point boundary value problems with Dirichlet’s boundary
conditions. Under appropriate condition, we have discussed the local truncation
error and the convergence of the proposed method. Numerical experiments demon-
strate the use and computational efficiency of the method. Numerical results show
that this method is at least fourth order accurate, which is good agreement with
the theoretically established order of the method.
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1. Introduction

Two point boundary value problems for ordinary differential equations arise in
many branches of sciences and engineering. The existence of the solutions of the
two point boundary value problems, either associated with system of linear or non-
linear ordinary differential equations and boundary conditions are specified at two
points of the domain, depends on the domain considered for the solution of the
problems. In most case it is impossible to obtain solutions of these problems using
analytical methods which satisfy the given specified boundary conditions. In these
cases we resort to approximate solutions and the last few decades have seen sub-
stantial progress in the development of approximate solutions of these problems.
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In the literature, there are many different methods and approaches such as method
of integration and discretization which be used to derive the approximate solutions
in the domain of these problems [1,2,3,4].

In this article we proposed a method for the numerical solution of the boundary
value problems of the form

y′′(x) = f(x, y, y′), a < x < b, (1)

subject to the boundary conditions

y(a) = α and y(b) = β,

where α and β are real constants and f is continuous on (x, y, y′) for all x ∈ [a, b]
y, y′ ∈ ℜ.

The existence and uniqueness of the solution to problem (1) is assumed. Fur-
ther we assumed that problem (1) is well posed with continuous derivatives and
that the solution depends differentially on the boundary conditions. The specific
assumption on f(x, y, y′) to ensure existence and uniqueness will not be considered
[3,4,5].

Over the last few decades, high order finite difference method [6,7,8] have gen-
erated renewed interest and in recent years, variety of specialized techniques [9,10]
for the numerical solution of boundary value problems in ODEs have been reported
in the literature. Recently, an exponential finite difference method was proposed
in [11] for the numerical solution of linear two point boundary value problem. This
method generated impressive numerical results for the linear problem in (1). Hence,
the purpose of this article is to propose an exponential finite difference method to
nonlinear problems (1), in the hope that others may find the proposed method an
improvement to those existing finite difference method.

A new method of at least order four is an extension of the method which was
developed for the numerical solution of linear problems based on local assumption.
Our idea is to apply the exponential finite difference method to discretize equation
(1) in order to get a nonlinear system of algebraic equations. To the best of our
knowledge, no similar method for the numerical solution of problem (1) has been
discussed in literature so far.

In the next section we discussed our exponential finite difference method. In
section 3, we derived our method ; local truncation error and convergence of the
method are discussed in Section 4 & 5 respectively. The application of the devel-
oped method to the problems (1) has been presented and illustrative numerical
results have been produced to show the efficiency of the new method in Section
6. Discussion and conclusion on the performance of the method are presented in
Section 7.
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2. The Exponential Difference Method

We defined N+1 finite numbers of nodal points of the domain [a,b], in which
the solution of the problem (1) is desired, as xi = a + ih, i = 0, 1, 2, ........, N
using uniform step length where h = b−a

N
, x0 = a and xN = b. Suppose we wish to

determine numerical approximation of the theoretical solution y(x) of the problem
(1) at the nodal point xi, i = 1, 2, ....., N − 1 and denote as yi. Let fi denotes
the approximation of the theoretical value of the source function f(x, y(x), y′(x))
at node x = xi, i = 0, 1, 2, ....., N . We can define other notations fi±1, yi±1, in
the similar way used in this article. To develop the exponential difference method
for the numerical solution of the problem (1), we need the following definitions:

y′i =
yi+1 − yi−1

2h
, (2)

y′i+1 =
3yi+1 − 4yi + yi−1

2h
, (3)

y′i−1 =
−yi+1 + 4yi − 3yi−1

2h
, (4)

Define
f i+1 = f(xi+1, yi+1, y′i+1), (5)

f i−1 = f(xi−1, yi−1, y′i−1), (6)

y′i = y′i + ch(f i+1 − f i−1), (7)

ŷ′i = y′i + dh(f i+1 − f i−1), (8)

f i = f(xi, yi, y′i), (9)

and
f̂ i = f(xi, yi, ŷ′i). (10)

We note that c and d from equations (7) and (8) respectively, are finite parameters
to be determined. We proposed the exponential difference method for solving
problem (1) numerically as,

yi+1 − 2yi + yi−1 = h2f i exp(
h2f̂ ′′

i

12f i

) , f i 6= 0, i = 1, 2, ...., N. (11)

3. Derivation of the Method

By the Taylor series expansion about node x = xi, from (3) we have

y′i+1 = y′i+1 −
h2

3
y
(3)
i − h3

12
y
(4)
i +O(h4). (12)

Let us define G1
i±1 = ( ∂f

∂y′
)i±1, so from (5)we have

f i+1 = fi+1 −
h2

3
(y

(3)
i +

h

4
y
(4)
i )G1

i+1 +O(h4). (13)
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Similarly from (4) and (6), we have

f i−1 = fi−1 −
h2

3
(y

(3)
i − h

4
y
(4)
i )G1

i−1 +O(h4). (14)

By the Taylor series expansion of G1
i±1 about node x = xi and from (13) and (14),

we have
f i+1 − f i−1 = fi+1 − fi−1 +O(h4) (15)

On expanding (1) in Taylor series about x = xi, then substitute in (7) together
with (15), we have

y′i = y′i + h2(2c+
1

6
)y

(3)
i +O(h4). (16)

y′i will provide fourth order approximation for y′ if we choose parameter c in (16)
such that

2c+
1

6
= 0

c = − 1

12
. (17)

Thus from (16) and (17) we have find y′i, a fourth order approximation for y′i i.e

y′i = y′i +O(h4). (18)

So from (9) and (18), we have

f i = fi +O(h4). (19)

Let us define

f̂ ′′
i =

f i+1 + f i−1 − 2f̂ i

h2
. (20)

Using the approximations defined above, we can prove that f i+1 + f i−1 − 2f̂ i will
provide a fourth order approximation for fi+1 + fi−1 − 2fi if we choose parameter
d = −1

4 in (8) i.e.

ŷ′i = y′i −
1

4
h(f i+1 − f i−1). (21)

Thus

f i+1 + f i−1 − 2f̂ i

h2
=

fi+1 + fi−1 − 2fi
h2

+O(h2). (22)

Finally, following the idea in [11] for the source function f(x, y), from (11), we
proposed our fourth order exponential difference method for solving problem (1)
numerically as,

yi+1 − 2yi + yi−1 = h2f i exp(
f i+1 + f i−1 − 2f̂ i

12f i

),

f i 6= 0, i = 1, 2, ......., N − 1 (23)

For each nodal point x = xi, i = 1, 2, ...., N − 1, we will obtain a system of
nonlinear equations given by (23).
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4. Local Truncation Error

from equations (19),(20) and (22), by Taylor series expansion of f on each node
x = xi ,we have

h2f̂ ′′
i

12f i

=
f i+1 + f i−1 − 2f̂ i

12f i

.

=
fi+1 + fi−1 − 2fi

12fi

=
h2y

(4)
i + h4

12y
(6)
i

12y′′i
. (24)

From (23) and (24), the truncation error Ti at the nodal point x = xi may be
written as [8,12,13],

Ti = yi+1 − 2yi + yi−1 − h2fj exp(
h2y

(4)
i + h4

12 y
(6)
i

12y′′i
).

By the Taylor series expansion of y at nodal point x = xi and second order expan-
sion of exponential function, we have

Ti = − h6

240
{y(6)i +

5

6

(y
(4)
i )2

y′′i
}+O(h7). (25)

5. Convergence of the Method

Let us write the second order expansion of the exponential function in (23) and
then simplify, we have

yi+1 − 2yi + yi−1 =
h2

12
(12f i + f i+1 + f i−1 − 2f̂ i). (26)

Let us define

φi =
h2

12
(12f i + f i+1 + f i−1 − 2f̂ i) +Boundary value.

Let us define column matrix SN×1as

S = [S1, S2, ............, SN ]t1×N .

where [.....]t is transpose of column matrix. The difference method (26) represents
a system of nonlinear equations in unknown yi, i = 1, 2, ..., N . Let us replace above
defined S by φ &y, so we can write (26) in matrix form as,

Dy + φ(y) = 0, (27)
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where

D =




2 −1 0
−1 2 −1

−1 2 −1
.. .. .. .. ..

.. .. .. .. ..

0 −1 2




N×N

is tridiagonal matrix. Let Y be the exact solution of (26) and replace above defined
S by Y &T , so we can write (26) in matrix form as

DY + φ(Y) + T = 0, (28)

where T is truncation error matrix in which each element has O(h6). Let us define

F i+1 = f(xi+1, Yi+1, Y ′
i+1), f i+1 = f(xi+1, yi+1, y′i+1),

F i−1 = f(xi−1, Yi−1, Y ′
i−1), f i−1 = f(xi−1, yi−1, y′i−1),

F i = f(xi, Yi, Y ′
i), f i = f(xi, yi, y′i),

F̂ i = f(xi, Yi, Ŷ ′
i), f̂ i = f(xi, yi, ŷ′i).

After linearization of f i+1, we have

f i+1 = F i+1 + (yi+1 − Yi+1)Gi+1 + (y′i+1 − Y ′
i+1)Hi+1,

where Gi+1 = ( ∂f
∂Y

)i+1 and Hi+1 = ( ∂f
∂Y ′

)i+1. Thus

f i+1 − F i+1 = (yi+1 − Yi+1)Gi+1 + (y′i+1 − Y ′
i+1)Hi+1. (29)

Similarly, we can linearize f i−1, f i , f̂ i and obtained the following results :

f i−1 − F i−1 = (yi−1 − Yi−1)Gi−1 + (y′i−1 − Y ′
i−1)Hi−1, (30)

f i − F i = (yi − Yi)Gi + (y′i − Y ′
i)H

1
i , (31)

f̂ i − F̂ i = (yi − Yi)Gi + (ŷ′i − Ŷ ′
i)H

2
i . (32)

where H1
i = ( ∂f

∂Y ′

)i and H2
i = ( ∂f

∂
̂
Y ′

)i. By Taylor series expansion of Gi±1 & Hi±1

about x = xi, and from (29)-(32), we can write

φ(y)− φ(Y) = PE, (33)

where P = (Plm)N×N is a tridiagonal matrix defined as

Plm =
h2

12
(10Gi + 2(4H1

i −H2
i )Hi − 4(

∂H

∂x
)i), l = m, l = 1, 2, ..., N,
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Plm =
h2

12
(Gi + 2(

∂H

∂x
)i − (4H1

i −H2
i )Hi) +

h

12
(Hi + 6H1

i −H2
i ),

m = l + 1, l = 1, 2, ...., N − 1,

Plm =
h2

12
(Gi + 2(

∂H

∂x
)i − (4H1

i −H2
i )Hi)−

h

12
(Hi + 6H1

i −H2
i ),

l = m+ 1, m = 1, 2, ...., N − 2,

and E = [E1, E2, ........, EN ]t1×N , where Ei = (yi − Yi), i = 1, 2, ...., N .
Let assume that the solution of difference equation (26) has no roundoff error.

So from (27),(28) and (33) we have

(D + P)E = JE = T. (34)

Let us define G0 = {Gi : i = 1, 2, ..., N}

G∗ = min
x∈[a,b]

∂f

∂Y
, G∗ = max

x∈[a,b]

∂f

∂Y
,

then
0 ≤ G∗ ≤ t ≤ G∗, ∀t ∈ G0.

We further define H0 = {Hi, H
1
i , H

2
i , (

∂H
∂x

)i}, i = 1, 2, ....., N . Let there exist
some positive constant W such that

∣∣t0
∣∣ ≤ W, ∀ t0 ∈ H0. So it is possible for

very small h,

|Plm| ≤ 2, ∀ l = m & |Plm| ≤ 1, ∀ l 6= m.

Let R = [R1, R2, ........, RN ]t1×N , denotes the row sum of the matrix J = (Jlm)N×N

where

R1 = 1 +
h

12
(Hi + 6H1

i −H2
i ) +

h2

12
(11Gi + (4H1

i −H2
i )Hi − 2(

∂H

∂x
)i),

Rl = h2Gi, 2 ≤ l ≤ N − 1,

RN = 1− h

12
(Hi + 6H1

i −H2
i ) +

h2

12
(11Gi + (4H1

i −H2
i )Hi − 2(

∂H

∂x
)i).

It is easy to see that J is irreducible [12]. By row sum criterion and for sufficiently
small h, J is monotone [14]. Thus J−1 exist and J−1 ≥ 0. For the bound of J, we
define [15,16]

dl(J) = |Jll| −
N∑

l 6=m

|Jlm| , l = 1, 2, ...., N,

where

d1(J) = 1 +
h

12
(Hi + 6H1

i −H2
i ) +

h2

12
(11Gi + (4H1

i −H2
i )Hi − 2(

∂H

∂x
)i),
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dl(J) = h2Gi, 2 ≤ l ≤ N − 1,

dN (J) = 1− h

12
(Hi + 6H1

i −H2
i ) +

h2

12
(11Gi + (4H1

i −H2
i )Hi − 2(

∂H

∂x
)i).

Let dl(J) ≥ 0, ∀ l and
d∗(J) = min

1≤l≤N
dl(J).

Then

‖J−1‖ ≤ 1

d∗(J)
(35)

Thus from (34) and (35), we have

‖E‖ ≤ 1

d∗(J)
‖T‖. (36)

It follows from (25) and (36) that ‖E‖ → 0 as h → 0. Thus we conclude that
method (23) converges and the order of convergence is at least four.

6. Numerical Results

To illustrate our method and demonstrate its computationally efficiency, we
consider some model problems. In each case, we took uniform step size h. In
Table 1 - Table 5, we have shown the maximum absolute error (MAY), computed
for different values of N and is defined as

MAY = max
1≤j≤N−1

|y(xj)− yj |.

We have used Newton-Raphson iteration method to solve the system of nonlin-
ear equations arised from equation (23). All computations were performed on a MS
Window 2007 professional operating system in the GNU FORTRAN environment
version 99 compiler (2.95 of gcc) on Intel Duo Core 2.20 Ghz PC. The solutions
are computed on N -1 nodes and iteration is continued until either the maximum
difference between two successive iterates is less than 10(−10) or the number of
iteration reached 103.
Problem 1. The first model problem is a nonlinear problem given by

y′′(x) =
exp(2y) + (y′)2

2
, y(0) = 0, y(1) = log(

1

2
), x ∈ [0, 1].

The analytical solution is y(x) = log( 1.0
1+x

). For comparison purpose, we computed
the MAY by the method in [17]. The MAY computed by both methods for different
values of N are presented in Table 1.
Problem 2. The second model problem is a nonlinear problem

y′′(x) = y3 − yy′, y(1) =
1

2
, y(2) =

1

3
, x ∈ [1, 2].

The analytical solution is y(x) = 1
1+x

. For comparison purpose, we computed the
MAY by the method in [17]. The MAY computed by both methods for different
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values of N are presented in Table 2.
Problem 3. The third model problem is a nonlinear problem given by

y′′(x) =
3

y
(y′)2, y(0) = 1, y(1) =

1√
2
, x ∈ [0, 1].

The analytical solution is y(x) = 1√
1+x

. For comparison purpose, we computed the

MAY by the method in [17]. The MAY computed by both methods for different
values of N are presented in Table 3.
Problem 4. The fourth model problem is a nonlinear problem given by

y′′(x) = − x√
1− y

y′ + f(x), y(0) = 0, y(1) = −3, x ∈ [0, 1].

where f(x) is calculated so that y(x) = 1 − (x2 + 1)2 is analytical solution. For
comparison purpose, we also computed the MAY by the method in [17]. The MAY
computed by both methods for different values of N are presented in Table 4.
Problem 5. The fifth model problem is a general two points linear problem given
by

y′′(x) =
y + xy′

1 + x
, y(0) = 1, y(1) = exp(1), x ∈ [0, 1].

The analytical solution is y(x) = exp(x). Solving this model problem by method
in [17], for each nodal point we obtained a system of linear equations. We applied
Gauss-Seidel iterative for the solution of resulting system of linear equations. For
comparison purpose, we computed the MAY by the method in [17]. The MAY
computed by both methods for different values of N are presented in Table 5.

Table 1: Maximum absolute error in y(x) = log( 1.0
1+x

) for Problem 1.

Method

MAY

N

4 8 16

(23) .14916062(-4) .86426735(-6) .14901161(-7)

[17] .94473362(-5) .59604645(-6) .59604645(-7)
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Table 2: Maximum absolute errors in y(x) = 1
1+x

for Problem 2.

Method

MAY

N

4 8 16 32

(23) .19040373(-5) .28049245(-7) .19022758(-7) .19022758(-7)

[17] .26351214(-4) .56655786(-5) .62916013(-6) .32939408(-7)

Table 3: Maximum absolute errors in y(x) = 1√
1+x

for Problem 3.

Method

MAY

N

4 8 16 32

(23) .36334609(-5) .15810301(-6) .39880490(-7) .80773226(-7)

[17] .21770765(-6) .74650984(-7) .14037788(-6) .21254630(-6)

Table 4: Maximum absolute errors in y(x) = 1− (x2 + 1)2 for Problem 4.

Method

MAY

N

4 8 16 32

(23) .96634030(-4) .57965517(-5) .25331974(-6) .93132257(-9)

[17] .74594378(0) .14065456(0) .14402390(-1) .10793209(-2)

Table 5: Maximum absolute error in y(x) = exp(x) for Problem 5.

Method

MAY

N

4 8 16

(23) .14901161(-4) .59604645(-6) .11920929(-6)

[17] .12397766(-4) .83446503(-6) .23841858(-6)

A numerical comparison with existing finite difference method of same order
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[17] is made and this comparison indicates the efficiency of the exponential finite
difference method for model problems. Comparison of maximum absolute errors
in solution in Table 1-4, show that the exponential finite difference method has
less discretization error and is definitely better than the finite difference method
[17]. Table 5 shows the accuracy and efficiency of the exponential finite difference
method for solving linear problem numerically. Note that for small N, method [17]
yield good results except in model problems 2 and 4. However, as the N becomes
larger, the exponential finite difference method shows less error than the method
[17]. It is an advantage of the exponential finite difference method over existing
method [17].

7. Conclusion

A new approach to obtain the numerical solution of general two point bound-
ary value problems has been developed. The new scheme has advantages and
disadvantages when considered individually. For example, at each nodal point
x = xi, i = 1, 2, ....., N, we will obtain a system of nonlinear equation given by
(23), which is always difficult to be solved. On the other hand, the new method
has a high order of convergence which yield smaller discretization error. The de-
cision to use a certain difference scheme does not only depend on the given order
of the method but also on its computational efficiency. The numerical results of
model problems showed that the new method is computationally efficient. It is also
observed from the results that method has high accuracy i.e. small discretization
error. In the present article high order finite difference method has been derived
based on exponential function. This new method leads to the possibility to de-
velop new difference methods to solve third order and fourth order boundary value
problems in ordinary differential equations. Works in this direction is in progress.
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