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The Third-Noncommuting Graph of a Group

Maysam Zallaghi and Ali Iranmanesh

abstract: Let G be a group and let T 3(G) be the proper subgroup {h ∈
G|(gh)3 = (hg)3, for all g ∈ G} of G. The third-noncommuting graph of G is
the graph with vertex set G \ T 3(G), where two vertices x and y are adjacent if
(xy)3 6= (yx)3. In this paper, at first we obtain some results for this graph for any
group G. Then, we investigate the structure of this graph for some groups.
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1. Introduction

The non-commuting graph of a group was introduced by Paul Erdös in 1975
[8] as follows:
Let G be a group and consider a graph Γ whose vertex set is G and join two distinct
elements if they do not commute. In [1] this graph is called the non-commuting
graph and to avoid isolated vertices, the vertex set of this graph is taken as the
elements of the group outside its center. Neumann in [8] solved the problem that
posed by Paul Erdös about this type of graph associated to groups: "The class
of groups whose center has finite index coincides with the class of groups whose
non-commuting graph contains no infinite complete subgraph". After that, some
of the researchers have studied this context and similar problems up to now (see
[2,5,6,7]). In [7] Mashkouri and Taeri have extended the concept of non-commuting
graph of a group as follows:
Consider the word w(x, y) := (xy)n(yx)−n for the positive integer n and G is
a group which is not defined by the law w(x, y) = 1. The nth-noncommuting
graph of G which is denoted by Γn(G) is the graph with the vertex and edge
sets V (Γn(G)) := {x ∈ G|w(x, g) 6= 1, for some g ∈ G} and E(Γn(G)) :=
{xy|x, y ∈ V (Γn(G)) and w(x, y) 6= 1}, respectively. If we denote the subgroup
{h ∈ G|w(h, g) = w(g, h) = 1, for all g ∈ G} of G by T n(G), then G \ T n(G)
is the vertex set of the Γn(G). It is obvious that if n = 1, then Γn(G) coincides
with the non-commuting graph of G. Also if n = 2, then Γn(G) is the second-
noncommuting graph of G, that is studied in [7]. The equality T n(G) = CG(G

n)
has been represented in [7], where Gn = {xn|x ∈ G} as well.
The main goal of this paper is study the structure of Γ3(G). Here, if there is
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no ambiguous, we write Γ3, V (Γ3) and E(Γ3) instead of Γ3(G), V (Γ3(G)) and
E(Γ3(G)), respectively. We use the concepts of graph theory according to [3,4].

2. Main results

If N is a normal subgroup with index t in G, we know that G is the union of
the left (or right) cosets of N in G, G = N ∪ x1N ∪ x2N ∪ ... ∪ xt−1N , where the
cosets xiN are mutually disjoint, xi ∈ G \N , (1 6 i 6 t− 1).
Throughout this paper, G is a group and CG(G

3) is its subgroup with index t.

Lemma 2.1. Let G be a group and t > 1, then the elements of any coset of CG(G
3)

in G, as a part of vertices of Γ3 , are not adjacent together.

Proof: Let x ∈ G \ CG(G
3) and xg ∈ xCG(G

3) where g ∈ CG(G
3). Since every

two elements of xCG(G
3) can be written such as a and ag where g ∈ CG(G

3) and
a ∈ G \ CG(G

3), it’s sufficient to prove the equality (x2g)3 = (xgx)3.
Now note that x and xg are not adjacent if and only if:
(x2g)3 = (xgx)3 ⇐⇒ (x2g)3x2 = (xgx)3x2 ⇐⇒ x2gx2gx2gx2 = x4gx2gx2g ⇐⇒
(gx2)3 = (x2g)3.
Since g ∈ CG(G

3)(= T 3(G)), the last equality is true. Thus any two vertices of Γ3

that include in a coset of CG(G
3) are not adjacent. ✷

Suppose that G is a group and t > 2. If x, y ∈ G \ CG(G
3) are adjacent, then

according to Lemma 2.1, xCG(G
3) and yCG(G

3) are two distinct cosets of CG(G
3)

in G. If xh is any element of xCG(G
3), then (xhh−1y)3 = (h−1yxh)3 = (hh−1yx)3

if and only if (xy)3 = (yx)3. Since x, y are adjacent, xh and h−1y are adjacent.
Thus, every element of xCG(G

3) is adjacent to at least one element of yCG(G
3)[=

CG(G
3)y].

Lemma 2.2. Let G be a group and t > 2. Suppose that xCG(G
3) and yCG(G

3) are
two distinct cosets in G. If CG(G

3) ≤ CG(x)∩CG(y), then any vertex in xCG(G
3)

is adjacent to all vertices in yCG(G
3) if and only if x and y are adjacent.

Proof: Let xh and ky be in xCG(G
3) and yCG(G

3), respectively. Define g = hk,
we have (xhky)3 = (kyxh)3 if and only if (xgy)3 = (yxg)3. Since g ∈ CG(x)∩CG(y),
the last equivalent is true if and only if g3(xy)3 = g3(yx)3 if and only if (xy)3 =
(yx)3. So x and y are adjacent if and only if ky and xh are adjacent. ✷

For an integer k > 2 and positive integers n1, n2, . . . , nk, a complete k−partite
graph Kn1,n2,...,nk

is that graph G whose vertex set can be partitioned into k sub-
sets V1, V2, . . . , Vk with |V i| = ni for 1 6 i 6 k such that uv ∈ E(G) if u ∈ Vi and
v ∈ Vj , where 1 6 i, j 6 k and i 6= j.

Remark 2.3. According to Lemma 2.2, we can conclude that if CG(G
3) = Z(G),

then two arbitrary elements of two distinct cosets of CG(G
3) in G are adjacent if

and only if two elements of these cosets are adjacent.
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Theorem 2.4. Let G be a group, t > 1 and CG(G
3) = Z(G), then the third-

noncommuting graph of G is a complete s−partite graph, where s ≤ t − 1. In
particular if s = t− 1, then Γ3 is Ts,|G\CG(G3)| = K|CG(G3)|,...,|CG(G3)|.

Proof: Since CG(G
3) = Z(G), the first condition of Remark 2.3 is held and ac-

cording to adjacency or non adjacency of elements x and y, we have the following
two cases, respectively:
a. Any element of a coset xCG(G

3) is adjacent to all elements of another coset, as
vertices of Γ3.
b. None of the elements of a coset is adjacent to an element of another coset, as
vertices of Γ3.
Therefore, since vertices of Γ3 are union of cosets of CG(G

3) in G, the third-
noncommuting graph of G is a complete multipartite graph.
Now, if the elements of distinct cosets of CG(G

3) lie in distinct parts of complete
multipartite graph Γ3, then Γ3 is complete (t− 1)−partite graph, where every part
of this graph have | CG(G

3) | vertices, because the cardinality of V (Γ3) is equal to
(t− 1) | CG(G

3) |. ✷

Corollary 2.5. Let G be a group. If Γ3 is a complete (t− 1)−partite graph, then
x2 ∈ CG(G

3), for all x ∈ G \ CG(G
3), and also | CG(G

3) |6= 1.

Proof: According to the hypothesis, all elements of a coset of CG(G
3) in G are

adjacent to all elements of other cosets, as vertices of Γ3. Since x and x−1 are
not adjacent, x−1 ∈ xCG(G

3), for all x ∈ G \ CG(G
3). Therefore, there exists an

element of CG(G
3), such as h, that x−1 = xh, thus x2 ∈ CG(G

3).
Now, we show that | CG(G

3) |6= 1. Suppose that | CG(G
3) |= 1, by the first

part, any non-trivial element of G has order 2. Hence G is an abelian group,
contradicting the hypothesis | CG(G

3) |= 1. ✷

Remark 2.6. If the conditions of the above theorem is satisfied, then the comple-
ment of the third-noncommuting graph of G is a disconnected graph and any of its
connected component is complete. It’s shown simply that | CG(G

3) | divides the
order of these components.
If [G : CG(G

3)] = 2, then there is only one the non-trivial coset of CG(G
3) in G.

By Lemma 2.1, since any vertex of Γ3 is an element of the coset of CG(G
3) in

G, the third-noncommuting graph of G is empty, in contradiction the hypothesis
CG(G

3) 6= G. Therefore CG(G
3) cannot has index 2 in G.

If CG(G
3) has index 3, then the group G/CG(G

3) has two non-trivial elements.
It’s clear that the union of these elements(sets) is the vertex set of Γ3.

Theorem 2.7. Let G be a group and t = 3, then there exist some h ∈ CG(G
3)

such that h3 ∈ CG(x), where x ∈ G \ CG(G
3).

Proof: Let xCG(G
3) and yCG(G

3) be two non-trivial cosets of CG(G
3) in G. It’s

clear that yx ∈ CG(G
3). Suppose that for any h ∈ CG(G

3) we have h3 ∈ CG(x),
then Γ3 has no edges, contradicting the hypothesis CG(G

3) 6= G. ✷
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In the following we prove some results:

Corollary 2.8. Let G be a group and t > 2. If Z(G) is maximal in G, then Γ3(G)
is a complete s−partite graph, where s ≤ t− 1.

Proof: Since CG(G
3) contains Z(G), Z(G) is a maximal subgroup of G, and

CG(G
3) 6= G, we conclude that CG(G

3) = Z(G). Thus, by Theorem 2.7 the
proof is complete. ✷

Corollary 2.9. Let G be a group that [G : CG(G
3)] = 6. If there exist some

x ∈ G \ CG(G
3) such that x2 ∈ G \ CG(G

3), then Γ3 is an s−partite graph where
s ≤ 4, and h3 ∈ CG(x), for all x ∈ CG(G

3).

Proof: Since [G : CG(G
3)] = 6, the group G/CG(G

3) has a normal subgroup
with index 2. Suppose that non-trivial elements of this subgroup are xCG(G

3) and
yCG(G

3), where x, y ∈ G \ CG(G
3). Since the product of these two elements of

G/CG(G
3) is the identity of G/CG(G

3), ab ∈ CG(G
3), where a ∈ xCG(G

3) and
b ∈ yCG(G

3).
Since | CG(G

3) |=| xCG(G
3) |=| yCG(G

3) |, for any element z of CG(G
3), there

exists an element xh of xCG(G
3) and an element yk of yCG(G

3) corresponding to
z. Therefore, for 1 ∈ CG(G

3), there exists z and its inverse z−1 in G \ CG(G
3)

such that zCG(G
3) = xCG(G

3) and z−1CG(G
3) = yCG(G

3). Now let z−1h1

and h2z be elements of z−1CG(G
3) and zCG(G

3), respectively. Set h = h1h2,
so ((h2z)(z

−1h1))
3 = ((z−1h1)(h2z))

3 if and only if h3 = z−1h3z if and only if
h3 ∈ CG(z). Thus none of the elements of zCG(G

3) is adjacent to an element of
z−1CG(G

3). Hence Γ3(G) is at most a 4−partite graph. ✷

Now, we classify some graphs Γ3(G) which are planar:

Theorem 2.10. Let G be a group such that CG(G
3) = Z(G) is non-trivial, then

Γ3(G) is planar if and only if G ∼= S6, G ∼= D8, or G ∼= Q8.

Proof: By Kuratowski’s Theorem it’s sufficient to obtain some subgraphs of sub-
divisions of K5 and K3,3 that are also the third-noncommuting graph of a group.
By Theorem 2.4, since CG(G

3) = Z(G), Γ3 is a complete s−partite graph, where
s ≤ 4. Maximum size of the number of vertices in any part of complete bipartite,
3−partite and 4−partite graphs are 4, 3 and 1, respectively.
By [3, Corollary 3.2.8], we have the inequality | E(Γ) |≤| V (Γ) | −6, for any planar
graph Γ. So we have to consider three cases:
Case 1. The bipartite graph Ka,b: By the above observations, whole possible
choices are K1,b, K2,2 and K2,3. According to [Remark 2.6], | CG(G

3) | divides
both a and b, thus we have | CG(G

3) |= 1 and | CG(G
3) |= 2.

Since CG(G
3) is non-trivial, Ka,b = K2,2. So | G |= 6. Since G is not an abelian

group, G ∼= S6.
Case 2. The 3−partite graph Ka,b,c: By observations in the first case, the only
possible choice is K2,2,2. So | G |= 8. Since G is not an abelian group, G ∼= D8 or
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G ∼= Q8.
Case 3. The 4−partite graph Ka,b,c,d: Since K2,2,2,2 is not planar and | CG(G

3) |
divides a, b, c, and d, there is no graph in this case. ✷

Now, we study the third-noncommuting graph of G = U6n, where:

U6n = 〈a, b|a2n = b3 = 1, ba = ab−1〉 = {1, a, ..., a2n−1, b, b2, ab, ..., a2n−1b2}

So CG(G
3) = {1, a2, a4, ..., a2n−2}. By Theorem 2.4, Γ3 is a complete s−partite

graph, where s ≤ 5. For any two integers 1 ≤ i, j ≤ n and two distinct numbers
k, l ∈ {0, 1, 2} we have the following inequality:

((a2i−2bk)(a2j−1bl))3 6= ((a2j−1bl)(a2i−2bk))3

Since the union of cosets of {1, a2, a4, ..., a2n−2} in G is the vertex set of Γ3, the
vertex set of Γ3 is union of two following parts:
a. {a, a2, ..., a2n−1, ab, a3b, ..., a2n−1b2}
b. {b, a2b, ..., a2n−2b, ..., a2n−2b2}
Therefore, the third-noncommuting graph of U6n is isomorph to the complete bi-
partite graph K2n,3n.

Theorem 2.11. Suppose that G is a group and it’s center is non-trivial. If p is a
prime number and Γ3(G) ∼= Γ3(U6p), then | G |= 6p.

Proof: Since n(Γ3(U6p)) =| U6p \ CU6p
(U3

6p) |, we obtain

n(Γ3(U6p)) = 5 | CU6p
(U3

6p) | .

On the other hand, p is a prime number and | CU6p
(U3

6p) | divides 2p and 3p,
because Γ3(G) ∼= Γ3(U6p) = K2p,3p. Thus | CG(G

3) |= 1 or | CG(G
3) |= p. But

the center of G is non-trivial, so | CG(G
3) |= p. It follows that | G |= 6p. ✷
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