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Implementation of Homotopy Analysis Method on circular permeable

slider containing of incompressible Newtonian fluid

J. Rahimi, M. Rahimi-Esbo, D. D. Ganji , I. Rahimipetroudi,R. Mohammadyari

abstract: The aim of this paper is to examine the classical problem of an incom-
pressible Newtonian fluid through the porous of a circular slider which is moving
laterally on a horizontal plan. Employing the similarity variables, the governing
differential equations have been reduced to ordinary ones and solved via Homotopy
Analysis Method (HAM). The analytical solution for the coupled Nonlinear Ordi-
nary Differential Equations resulting from the momentum equation is obtained and
Velocity fields have been computed and discussed for different values of the Reynolds
number. Also the fourth-order Runge-Kutta numerical method (NUM) is used for
the validity of these analytical methods and excellent agreement are observed be-
tween the solutions obtained from HAM and numerical results.
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1. Introduction

Sliding friction is greatly reduced if a fluid of constant density is forced through
the porous bottom of a circular slider between two solid surfaces moving relative
to each other. Porous sliders are important in fluid cushioned moving pads. An
interesting subject has been carried out by different authores [1,2,3,4]. The fluid
dynamical and heat transfer of the circular porous slider bearing is discussed by
[5]. Most of problems and scientific phenomena such as heat transfer are inherently
of nonlinearity. We know that except a limited number of these problems, most of
them do not have exact solutions. Therefore, these nonlinear equations should be
solved approximately either numerically or analytically. In the numerical method,
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stability and convergence should be considered so as to avoid divergence or inap-
propriate results. Time consuming is another problem of numerical techniques.
Analytical solutions often fit under classical perturbation methods.

Perturbation method [6] provides the most versatile tools available in nonlinear
analysis of engineering problem, but its limitations restrict its application [7] [8]:
Perturbation method [9] is based on assuming a small parameter. The majority of
nonlinear problems, especially those having strong nonlinearity, have no small pa-
rameters at all. The approximate solutions obtained by the perturbation methods,
in most cases, are valid only for small values of the small parameter. Generally, the
perturbation solutions are uniformly valid as long as a scientific system parameter
is small. However, we cannot rely fully on the approximations, because there is
no criterion on which the small parameter should exist. Thus, it is essential to
check the validity of the approximations numerically and/or experimentally. To
overcome these difficulties, some new methods have been proposed such as VIM,
HPM, ADM and so on.

Disappointingly, the majority of nonlinear problems have no small parameter
at all. Recently, several new techniques have been presented to overcome the men-
tioned difficulties. Some of these techniques include Variational Iteration Method
(VIM) [9][10], decomposition method [11], Homotopy Perturbation Method (HPM)
[12] [13] and Homotopy Analysis Method [14,15,16,17,18,19,20,21,22] etc. The Ho-
motopy Analysis method (HAM) has been introduced by Liao in 1992. In the
present work, the governing equation of circular porous slider is solved through
HAM. The convergence of the series solution is also explicitly discussed. Obtaining
the analytical solution of the models and comparing with numerical result reveal
the capability, effectiveness and convenience of HAM. This method gives successive
approximations of high accuracy solution.

2. Problem statement and mathematical formulation

We consider the flow field due to a circular porous slider as shown in Fig.1. A
fluid of constant density is forced through the porous bottom of the slider and thus
separated the slider from the ground. An incompressible fluid is forced through
the porous wall of the slider with a velocity W . Figure b, shows the slider which
is fixed at the plane, z = d with a viscous fluid injected through it. The base is
the plane at, z = 0 which is moving in the x-direction with velocity U . For detail,
please see [23,24]. As the gap d is small, it can be assumed that both planes are
extended to infinity.

Considering the u, v and w to be the velocity components in the direction x, y

and z, respectively, the conservation mass and conservation momentum density
Navier-Stokes Equations are as follows:
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Figure 1: This cat is a eps file
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Where ρ is density of fluid,v is kinematic viscosity and P is pressure. The boundary
conditions are as follows:

z = 0, u = U, v = w = 0 (2.5)

z = d, , u = v = 0, w = −W (2.6)

Where U is velocity of the slider in lateral and longitudinal direction and W is
velocity of fluid injected through the porous bottom of the slider. For transforming
(2)-(4), the following equations are defined:

η =
z

d
, u = Uf(η)W

x

d
h(η), v =

W

d
h(η), w = −2W (η) (2.7)
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By substituting (7) into Navier-Stoks Equations (2)-(4), it can be obtained that

h′′′′(η) + 2Reh(η)h′′′(η) = 0, (2.8)

f ′′′ + 2Reh(η)f ′(η)−Reh′(η)f(η) = 0, (2.9)

−
P

ρ
=

WK

2d2
(x2 + y2) +

1

2
w2 − v

∂w

∂z
+A (2.10)

Where Re = Wd
v

is the cross-flow Reynolds number, A and K are constants which
will have to be determined. The boundary conditions for the transformation are
as follows:

h(0) = 0, h′(0) = 0, h′(1) = 0, h(1) =
1

2
(2.11)

f(0) = 0, f(1) = 0 (2.12)

3. Implementation of the Homotopy Analysis Method

For HAM solutions, we choose the initial guess and auxiliary linear operator in
the following form:

h0(η) = −η3 +
3

2
η2, f0(η) = 1− η, (3.1)

L1(h) = h′′′′, L2(f) = f ′′, (3.2)

L1

(

1

6
c1η

3 +
1

2
c2η

2 + c3η + c4

)

= 0, L2(c5η + c6) = 0, (3.3)

where ci(i = 1− 6) are constants. Let P ∈ [0, 1] denotes the embedding parameter
and h1, h2 indicates non-zero auxiliary parameters. We then construct the following
equations:

Zeroth-order deformation equations

(1− P )L1[H(η; p)− h0(η)] = ph1H
′(η)N [h(η; p)] (3.4)

h(0; p) = 0, h′(0; p) = 0, h′(1; p) = 0, h(1, p) =
1

2
(3.5)

(1− P )L2[F (η; p)− f0(η)] = ph2H
′(η)N [f(η; p)] (3.6)

f(0; p) = 1; f(1; p) = 0 (3.7)

N [H(η; p)] =
d4H(η; p)

dη4
+ 2ReH(η; p)

d4H(η; p)

dη4
= 0 (3.8)
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+ 2ReH(η; p)

dF (η; p)

dη
−ReF (η; p)

dH(η; p)
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(3.9)

For p = 0 and p = 1 we have

H(η; 0) = h0(η), H(η; 1) = h(η) (3.10)
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F (η; 0) = f0(η), F (η; 1) = f(η) (3.11)

When p increases from 0 to 1 then H(η; 0) and F (η; 0) varies from h0(η) and f0(η)
to h(η) and f(η) respectively. By Taylor’s theorem and using Eq. (22) and Eq.
(23), H(η; 0) and F (η; 0) can be expanded in a power series of p as follows:

H(η; p) = h0(η) +

∞
∑
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In which h is chosen in such a way that this series is convergent at p = 1, therefore
we have through Eq. (24) and Eq. (25) that

h(η) = h0(η) +
∞
∑

m−1

hm(η), f(η) = f0(η) +
∞
∑

m−1

fm(η), (3.14)

mth-order deformation equations

L1[hm(η)− χmhm−1(η)] = h1H
′(η)Rm(η) (3.15)

hm(0; p) = 0; h′
m(0; p) = 0, h′

m(1; p) = 0, hm(1; p) = 0 (3.16)

L1[fm(η)− χmfm−1(η)] = h2H
′(η)Rm(η) (3.17)

fm(0; p) = 0; fm(1; p) = 0 (3.18)

Rm(η) = f ′′′′
m−1

+ 2

m−1
∑

k=0

Re(hm−1−kh
′′′
k ) = 0 (3.19)

Rm(η) = h′′
m−1 +

m−1
∑

k=0

[2Rehm−1−kf
′
k −Refm−1−kh

′] = 0 (3.20)

Now we determine the convergency of the result, the differential equation, and the
auxiliary function according to the solution expression. So let us assume:

H ′(η) = 1 (3.21)

We have found the answer by maple analytic solution device. For second deforma-
tion of the solution are presented below

h1(η) =
1
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1

20
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9

70
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1
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1

4
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1

2
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10

3
h2Reη (3.23)

The solutions h(η) and f(η) were too long to be mentioned here, therefore, they
are shown graphically.
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Figure 2: The h1 and h2-curve of h′′(0)and f ′(0) given by the 5,6,7 and 8th−order
approximation solution for Re = 0.1

4. Convergence of the HAM solution

As pointed out by [16], the convergence region and rate of solution series can
be adjusted and controlled by means of the auxiliary parameter ~.

To influence of ~ on the convergence of solution, we plot the so-called ~-curve
of h′′(0) and f ′(0), as shown in Fig. 2. The solutions converge for ~ values which
are corresponding to the horizontal line segment in ~ curve. In our case study, it
is easy to discover that h1 = −1 and h2 = −0.5 is suitable value which is used for
values of 0.1 < Re < 6

5. Results and discussion

The objective of the present study is to apply Homotopy Analysis method to
obtain an explicit analytic solution of circular porous slider (Fig. 1). For showing
the efficiency of analytical applied method a special case is considered and results
are compared with numerical method as shown in Fig. 3. The numerical solution
is performed using the algebra package Maple 16.0, to solve the present case. The
package uses a fourth order Runge-Kutta procedure for solving nonlinear boundary
value (B-V) problem [25]. Furthermore, Validity of HAM is shown in Table 1. In
this tables, the % Error is defined as:

%Error = |h(η)NUM − h(η)Analytical| (5.1)

From the graphical representation, the results are proved to be precise and ac-
curate in solving a wide range of mathematical and engineering problems especially
Fluid mechanic cases. This accuracy gives high confidence to us about validity of
this problem and reveals an excellent agreement of engineering accuracy.
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Figure 3: Effects of Reynolds numbers on 20th-order approximation of the velocity
profile h(η) and h′(η)

Moreover, Figs. 3 and 4 are prepared in order to see the effects of Reynolds
number on the velocity profiles. Figs. 3 and 4 are depicted for showing the effect of
Reynolds number on velocity profile h(η)and h′(η), respectively. As seen in these
figures by increasing Re number, velocity profiles increases. In addition, the lateral
velocity f(η) with Re varying is depicted in Figure 4. As the result shows, in the
case of Re = 0.01, the lateral velocity is linear.
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Figure 4: Effects of Reynolds numbers on 20th-order approximation of the lAll
the illustrating results confirm the convenience, reliability and efficiency of the
proposed method. HAM can be introduced to overcome the limitations and diffi-
culties existing in other approximate methods. It is predicted that this method can
be widely used in mathematical, physical and engineering problems, due to their
simplicity and efficiency. ateral velocity f(η)

6. Conclusion

In this paper, an analytical method, called the Homotopy Analysis Method has
been successfully applied to find explicit solutions of nonlinear problems, which
occur in circular porous slider problem. The results obtained here were compared
with the numerical solutions. The results show that these methods enable to con-
vert a difficult problem into a simple problem which can easily be solved. Important
objective of our research is the examination of the convergence of HAM. The com-
parisons of the results obtained here provide more realistic solutions, reinforcing the
conclusions about the efficiency of these methods. Therefore the proposed method
is powerful mathematical tools and can be applied to a large class of linear and
nonlinear problems arising in heat transfer equations.
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