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Fixed Point Theorem in Fuzzy Metric Space

Santanu Acharjee

abstract: In this paper we prove a fixed point theorem on a fuzzy set defining a
new class of fuzzy metric space as structure fuzzy metric space
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1. Introduction

After Zadeh [5] introduced fuzzy sets in 1965, many researchers from various
areas have developed the theory of fuzzy sets and its applications. Deng [8],Erceg
[9], George and Veeramani [7] etc gave initial foundations of different forms of fuzzy
metric spaces. Grebiec [3] extended Banach’s [11] and Edelstein’s [13] fixed point
theorem in fuzzy metric space. Kramosil and Michalek [12] investigated common
fixed point theorems for compatible maps. The investigation of fixed point theo-
rems are going on fuzzy metric spaces.

In this paper we will study a fixed point theorem from view point of a new class
of fuzzy metric defined on a fuzzy set. This concept came to exist when the author
was investigating properties in a generalized closed set of bitopological space using
topological ideal. Often topological ideal is simply stated as ideal.

A non-empty collection I of subsets of a set X is said to be an ideal if it follows
following two conditions

(1) If A ∈ I and B ⊂ A then B ∈ I.

(2) If A ∈ I, B ∈ I, then A ∪B ∈ I.

Fixed point theorems in any areas are most useful. Mathematical economists,
physicists,computer scientists etc are using fixed point theorems in their respective
research areas. Now a days fuzzy fixed point theorems are also playing crucial
role in mathematical economics, social choices,auction theory. One remarkable
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application of convex topological fixed point theory can be found in the 1994’s
Nobel laureate John Fr. Nash’s classic seminal paper of equilibrium point of "Non-
cooperative games" [14]. His proof is based on Kakutani’s fixed point theorem
[15], which is the generalization of Brouwer’s fixed point theorem .

2. Preliminary definitions

In this section we discuss some existing definitions.

Definition 2.1. ( [6]) A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous

t-norm if * satisfies the following conditions

(a) * is commutative and associative;

(b) * is continuous;

(c) a ∗ 1 = a∀a ∈ [0, 1];

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Definition 2.2. ( [12]) Let X be a non-empty set, * be a continuous t-norm and
M : X2 × [0,∞) → [0, 1] be a fuzzy set. Consider the following conditions for all
x, y, z ∈ X and t, s ∈ [0,∞);

(M1) M(x, y, 0) = 0

(M2) M(x, x, t) = 1

(M3) M(x, y, t) = 1 ⇒ x = y

(M4) M(x, y, t) = M(y, x, t)

(M5) M(x, y, t+ s) ≥ M(x, z, t) ∗M(z, y, s)

(M6) M(x, y, .) : [0,∞) → [0, 1] is left continuous

Then (X,M, ∗) is said to be a fuzzy metric space.

3. Main result

This section contains some new definitions, terminologies and they are used to
prove one theorem in fuzzy fixed point theory.
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Definition 3.1. (X,M, ∗) is said to be a structure fuzzy metric space (SFMS)
if it satisfies conditions (M1), (M3), (M4), (M5) and (M6) of Definition 2.2.

Example 3.2. If X = R, define a ∗ b = ab and M(x, y, t) = 1

2
|x−y|+|x|+|y|

t

then

(X,M, ∗) is a SFMS.

Definition 3.3. A sequence < xn > in a SFMS is said to be structure convergent

if there exists x ∈ X such that limn→∞ M(xn, x, t) = 1 ∀t > 0. Then x is said to
be structure limit of < xn > and denoted by limn→∞ xn = x.

Definition 3.4. A sequence < xn > in a SFMS (X,M, ∗) is said to be structure

Cauchy sequence if for each t > 0 and r ∈ N such that limn→∞ M(xn+r, xn, t) =
1.

(X,M, ∗) is said to be structure complete if every structure Cauchy sequence

in it is structure convergent.

Definition 3.5. Let (X,M, ∗) be a SFMS, f and h are self maps on X. Then
f and h are said to be normalized at x if and only if M(fhx, hfx, t) = 1∀t ∈ [0,∞).

The functions f and h are said to be normalized on X if f and h are normalized
at all points x of X.

Definition 3.6. The functions f and h are said to be common domain normalized

(CDN) if they are normalized at the coincidence point of f and h.

Remark 3.7. A SFMS has a unique limit point.

Proof: Proof is easy, so omitted. ✷

Now we discuss the main theorem of this section.

Theorem 3.8. Let (X,M, ∗) be a SFMS and let f, h : X → X be two mappings
with the following conditions,

(a) f(X) ⊂ h(X)

(b) Either f(X) or h(X) is structure complete

(c) M(fx, fy, kt) ≥ M(hx, hy, t) for all x, y ∈ X and 0 < k < 1,t ∈ [0,∞)

(d) limt→∞ M(x, y, t) = 1

Then f and h have a coincidence point; moreover if f and h are CDN then f

and h have a unique fixed point.
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Proof:

By condition (a), for some xo ∈ X ; we have x1 ∈ X such that fx0 = hx1 =
y1(say). Thus by using mathematical induction, we have fxn = hxn+1 = yn+1

where n ∈ N and y0 = hx0.

For 0 < k < 1 and t ∈ [0,∞) we have M(y1, y2, kt) = M(fxo, fx1, kt) ≥

M(hxo, hx1, t) = M(y0, y1, t)

M(y2, y3, kt) = M(fx1, fx2, kt) ≥ M(hx1, hx2, t) = M(y1, y2, t) ≥ M(yo, y1,
t

k
).

Thus M(y2, y3, t) ≥ M(yo, y1,
t

k2 )

Proceeding by mathematical induction we have M(yn, yn+1, t) ≥ M(yo, y1,
t

Kn )

Thus for r ∈ N, t ∈ [0,∞) we have M(yn, yn+r, t) ≥ M(yn, yn+1,
t

2
) ∗

M(yn+1, yn+r,
t

2
) ≥ M(yn, yn+1,

t

2
) ∗M(yn+1, yn+2,

t

4
) ∗M(yn+2, yn+r,

t

4
) ≥ ... ≥

M(yo, y1,
t

2kn ) ∗M(yo, y1,
t

4kn+1 ) ∗ ... ∗M(yo, y1,
t

2rkn+r−1 )
If n → ∞ then limn→∞ M(yn, yn+r, t) = 1

Thus < yn > is a structure Cauchy sequence. Let h(X) is structure complete;
then there exists u ∈ h(X) such that limn→∞ yn+1 = limn→∞ hxn+1 = u =
limn→∞ fxn. Let hp = u for some p ∈ X

Thus M(fp, hp, kt) = limn→∞ M(fp, fxn, kt) ≥ limn→∞ M(hp, hxn, t) =
limn→∞ M(u, hxn, t) = 1. So, fp = hp and it proves that f and h have a co-
incidence point.

Now let f and h are normalized at some coincidence point θ. Thus from defi-
nition, we have M(fhθ, hfθ, t) = 1∀t ≥ 0. This condition (M3) implies fhθ = hfθ.

Let fθ = hθ = v then M(fv, v, kt) = M(fv, fθ, kt) ≥ M(hv, hθ, t) =
M(hfθ, fθ, t) ≥ M(hv, hθ, t

k
) ≥...≥ M(hv, hθ, t

kn ). If n → ∞ then we must have
fv = v. In similar manner we can show that hv = v. Thus v is common fixed
point of f and h. Proceeding in the same way we may work for h(X).

Uniqueness of fixed point: Let λ be another common fixed point of f and h; then

M(v, λ, kt) = M(fv, fλ, kt) ≥ M(hv, hλ, t) = M(v, λ, t) = M(fv, fλ, t) ≥

M(hv, hλ, t

k
) = M(v, λ, t

k
) ≥...≥ M(v, λ, t

kn ).Thus if n → ∞ then v = λ. Hence
the proof. ✷
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