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Existence of Renormalized Solutions for p(x)-Parabolic Equations with
three Unbounded Nonlinearities

Youssef Akdim, Nezha El gorch and Mounir Mekkour

abstract: In this article, we study the existence of a renormalized solution for
the nonlinear p(x)-parabolic problem associated to the equation:

∂b(x, u)

∂t
− div(a(x, t, u,∇u)) +H(x, t, u,∇u) = f − divF in Q = Ω× (0, T )

with f ∈ L1(Q), b(x, u0) ∈ L1(Ω) and F ∈ (LP ′(.)(Q))N .

The main contribution of our work is to prove the existence of a renormalized so-
lution in the Sobolev space with variable exponent. The critical growth condition
on H(x, t, u,∇u) is with respect to∇u, no growth with respect to u and no sign
condition or the coercivity condition.

Key Words: Variable exponent Sobolev,Young’s Inequality,Renomalized So-
lution, Parabolic problems,Tree unbounded nonlinearities.
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1. Introduction

In the present paper we establish the existence of a renormalized solution for a
class of nonlinear p(x)-parabolic equation of the type:

(P)



















∂b(x,u)
∂t

− div(a(x, t, u,∇u)) +H(x, t, u,∇u) = f − divF in Q = Ω× (0, T )

b(x,u)|t=0= b(x, u0) in Ω

u = 0 on ∂Ω× (0, T ).

In the problem (P), Ω is a bounded domain in R
N (N ≥ 1), T is a positive real

number, while b(x, u0) ∈ L1(Ω), f ∈ L1(Q) and F ∈ (LP ′(.)(Q))N .
The operator −div(a(x, t, u,∇u) is a Leray–Lions operator defined on
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Lp−

(0, T ;W
1,p(.)
0 (Ω)) (see assumption (3.3)-(3.5) of section 3) which is coercive

b(x, u) is an unbounded function of u, H is a non linear lower order term.
The notion of renormalized solutions was introduced by R. J. Diperna and P. L. Li-
ons [12] for the study of the Boltzmann equation, it was then used by L. Boccardo
and al [11] when the right hand side is in W−1,p′

(Ω) and by J. M Rakoston [16]
when the right hand side is in L1(Ω).
For the degenerated parabolic equations the existence of weak solutions have been
proved by L. Aharouch and al [2] in the case where a(x, t, u,∇u)is strictly mono-
tone H = 0, F = 0 and f ∈ Lp′

(0, T,W−1,p′

(Ω,W ∗)), see also the existence and
uniqueness of a renormalized solution proved by Y. Akdim and al [5] in the case
where a(x, t, s, ξ) is independent of s, H = 0 and F = 0.
In the case H(x, t, u,∇u) = divφ(u) and F = 0, the existence of renormalized
solution has been established by H. Redwane in the classical Sobolev space and in
Orlicz space [20,22] and by Y. Akdim and al [4] in the degenerate Sobolev space
without the sign condition and the coercivity condition on the termH(x, t, u,∇u) =
div(φ(x, t, u)) and F = 0, the existence of renormalized solutions has been estab-
lished by A.Aberqi and al [1] in the classical Sobolev space.
Recently while b(x, u) = u, a(x, t, u,∇u) = |∇u|p(x)−2∇u and F = 0, C. Zhang
and S. Zhou [24] proved the existence of renormalized and entropy solutions with
L1-data and see also M. Bendahmane, P. Wittbold, A. Zimmermann [8] proved
the existence of renormalized solutions for a nonlinear parabolic equation with
L1-data. The notion was then adapted to an elliptic version of problem (P) by E.
Azroul, M. B Benboubker and M. Rhoudaf [7] where the right hand side is in
L1(Ω) +W−1,p′(.)(Ω) and H(x, u,∇u) satisfying a sign condition on u.
It is our purpose to prove the existence of a renormalized solution of variable ex-
ponent Sobolev spaces for the problem (P) setting without the sign condition and
without the coercivity condition, the critical growth condition on H is only with
respect to ∇u and not with respect to u (see assumption H2), where the right
hand side is assumed to satisfy: f belongs to L1(Q) and F ∈ (LP ′(.)(Q))N .
This article is organized as follows: In Section 2 we collect some important propo-
sitions and results of variable exponent Lebesgue–Sobolev spaces that will be used
throughout the paper. In Section 3 we make precise all the assumption on b, a,H, f
and b(x, u0) and give the definition of a renormalized solution of the problem (P)
for which our problem has a solution. In Section 4 we establish the existence of
such a solution (Theorem 4.1). In Section 5 we give the proof of theorem 4.2,
lemma 4.6 and proposition 4.8 (see appendix). Section 6 is devoted to an example
which illustrates our abstract result.

2. Mathematical preliminaries on variable exponent Sobolev spaces

2-1 Sobolev space with exponent variable
In this section we recall some definitions and basic properties of the generalised
Lebegue–Sobolev spaces with variable exponent Lp(.)(Ω), W 1,p(.)(Ω) and

W
1,p(.)
0 (Ω), we refer to Fan and Zhao [13] for further properties of variable expo-

nent Lebesgue - Sobolev spaces.
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Let Ω be a bounded open subsect of RN (N ≥ 2), we say that a real-valued contin-
uous function p(.) is log-Höder continuous in Ω if

|p(x)− p(y)| ≤
C

| log |x− y||
∀x, y ∈ Ω̄ such that |x− y| <

1

2
,

with possible different constant C. We denote
C+(Ω̄) = {log-Höder continuous function p : Ω̄ → R with 1 < p− ≤ p+ < N},
where

p− = min{p(x) : x ∈ Ω̄} and p+ = max{p(x) : x ∈ Ω̄}

we denote by P (Ω) the set of Lebesgue measurable function
P (Ω) = {u : Ω → R measurable} and P+(Ω) = {u : Ω → [1,∞) measurable}.
We define the variable exponent Lebesgue space for p ∈ C+(Ω̄) by

Lp(.)(Ω) = {u ∈ P (Ω) :

∫

Ω

|u(x)|p(x) <∞},

this space is endowed with the (Luxembourg) norm define by the formula

||u||Lp(.)(Ω) = ||u||p(.) = inf{λ > 0 :

∫

Ω

|
u(x)

λ
|p(x)dx ≤ 1}.

If 1 < p− ≤ p+ < ∞ then Lp(.)(Ω) is a uniformly convex Banach space and
therefore reflexive and if p ∈ P+(Ω) ∩ L∞(Ω), then Lp(.)(Ω) is separable space.
We denote by Lp′(.)(Ω) the conjugate space of Lp(.)(Ω) where 1

p(.) +
1

p′(.) = 1, see

[14,23].

Proposition 2.1. (Young’s Inequality ) Let p, p′ ∈ C+(Ω̄), where p′ the conjugate,
i.e., 1

p(.) +
1

p′(.) = 1. For all a, b > 0, we have

ab ≤
ap(x)

p(x)
+
bp

′(x)

p′(x)
.

Proposition 2.2. (Generalised Hölder Inequality)see [13,18]

i) For any functions u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω), we have
|
∫

Ω uvdx| ≤ ( 1
p−

+ 1
p′−

)||u||p(.)||v||p′(.) ≤ 2||u||p(.)||v||p′(.).

ii) For all p, q ∈ C+(Ω̄) such that p(x) ≤ q(x) a.e. in Ω, we have
Lq(.) →֒ Lp(.) and the embedding is continuous.

Lemma 2.3. (See [13])If we denote ρ(u) =
∫

Ω
|u(x)|p(x)dx ∀u ∈ Lp(.)(Ω) then,

min
{

||u||p
−

p(.), ||u||
p+

p(.)

}

≤ ρ(u) ≤ max
{

||u||p
−

p(.), ||u||
p+

p(.)

}

.
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Proposition 2.4. See( [14,23]) For u ∈ Lp(.)(Ω) and {uk}k∈N ⊂ Lp(.)(Ω) then,
the following assertions hold

u 6= 0 ⇒ [||u||p(x) = λ⇔ ρ(
u

λ
) = 1], (2.1)

||u||p(.) > 1 ⇒ ||u||p
−

p(.) ≤ ρ(u) ≤ ||u||p
+

p(.), (2.2)

||u||p(.) < 1 ⇒ ||u||p
+

p(.) ≤ ρ(u) ≤ ||u||p
−

p(.), (2.3)

lim
k→∞

||uk||p(.) = 0 ⇔ lim
k→∞

ρ(uk) = 0, (2.4)

lim
k→∞

||uk||Lp(.)(Ω) = ∞ ⇔ lim
k→∞

ρ(uk) = ∞. (2.5)

Lemma 2.5. . Let fn → f a.e and fn ⇀ f in Lp(.)(Ω). Then,

lim
n→∞

∫

Ω

|fn|
p(x)dx−

∫

Ω

|f − fn|
p(x)dx =

∫

Ω

|f |p(x)dx.

Theorem 2.6. For any function u ∈ Lp(.)(Ω) and un ∈ Lp(.)(Ω), we have then,
the following are equivalent assertions

i) limn→∞ ||un − u||p(.) = 0

ii) limk→∞ ρ(un − u) = 0

iii) un converge to u in measure and limn→∞ ρ(un) = ρ(u).

Which share the same type of properties as Lp(.)(Ω), we define also the variable
Sobolev space by

W 1,p(.)(Ω) = {u ∈ Lp(.)(Ω) and |∇u| ∈ Lp(.)(Ω)},

where the norm is defined by

||u||1,p(.) = ||u||p(.) + ||∇u||p(.) ∀u ∈W 1,p(.)(Ω).

We denote by W
1,p(.)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(.)(Ω), i.e.,

W
1,p(.)
0 (Ω) = C∞

0 (Ω)
W 1,p(.)(Ω)

and we define the Sobolev exponent by p∗(x) = Np(x)
N−p(x) for p(x) < N .

Proposition 2.7. [14]

i) Assuming 1 < p− ≤ p+ <∞ the spaces W 1,p(.)(Ω) and W
1,p(.)
0 (Ω)

are separable and reflexive Banach spaces.

ii) If q ∈ C+(Ω̄) and q(x) < p∗(x) for any x ∈ Ω, then the embedding

W
1,p(.)
0 (Ω) →֒→֒ Lq(.)(Ω) is continuous and compact.
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iii) Poincaré inequality: there exists a constant C > 0, such that

||u||p(.) ≤ C||∇u||p(.) ∀u ∈W
1,p(.)
0 (Ω).

Remark 2.8. By (iii) of Proposition 2.4, we deduce that ||∇u||p(.) and ||u||1,p(.)

are equivalent norms in W
1,p(.)
0 (Ω).

We will also use the standard notation for Bochner spaces, i.e., if q ≥ 1
and X is a Banach space then Lq(0, T ;X) denotes the space of strongly mea-
surable function u : (0, T ) → X for which t 7→ ‖u(t)‖X ∈ Lq((0, T ). Morever,
C([0, T ];X) denotes the space of continuous function u : [0, T ] → X endowed with
the norm ‖u‖C([0,T ];X) = maxt∈[0,T ] ‖u(t)‖X .

Lp−

(0, T ;W
1,p(x)
0 (Ω)) =

{

u : (0, T ) → W
1,p(x)
0 (Ω) measurable;

(

∫ T

0

‖u(t)‖p
−

W
1,p(x)
0 (Ω)

dt
)

1

p−

<∞
}

and we define the space

L∞(0, T ;X) =
{

u : (0, T ) → X measurable, ∃ C > 0 /‖u(t)‖X ≤ C a.e.
}

,

where the norm is defined by

‖u‖L∞(0,T ;X) = inf
{

C > 0; ‖u(t)‖X ≤ C a.e.
}

.

We introduce the functional space see [8]

V =
{

f ∈ Lp−

(0, T ;W
1,p(.)
0 (Ω)); |∇f | ∈ Lp(.)(Q)

}

, (2.6)

which endowed with the norm

‖f‖V = ‖∇f‖Lp(.)(Q)

or, the equivalent norm

‖|f |‖V = ‖f‖
Lp−(0,T ;W

1,p(.)
0 (Ω))

+ ‖∇f‖Lp(.)(Q),

is a separable and reflexive Banach space. The equivalence of the two norms is
an easy consequence of the continuous embedding Lp(.)(Q) →֒ Lp−

(0, T ;Lp(.)(Ω))
and the Poincaré inequality. We state some further properties of V in the following
lemma.

Lemma 2.9. Let V be defined as in (2.6) and its dual space be denote by V ∗.
Then,
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i) we have the following continuous dense embeddings

Lp+

(0, T ;W
1,p(.)
0 (Ω)) →֒ V →֒ Lp−

(0, T ;W
1,p(.)
0 (Ω)).

In particular, since D(Q) is dense in Lp+

(0, T ;W
1,p(.)
0 (Ω)), it is dense in V

and for the corresponding dual spaces, we have

L(p−)′(0, T ; (W
1,p(.)
0 (Ω))∗) →֒ V ∗ →֒ L(p+)′(0, T ; (W

1,p(.)
0 (Ω))∗).

Note that, we have the following continuous dense embeddings

Lp+

(0, T ;Lp(.)(Ω)) →֒ Lp(.)(Q) →֒ Lp−

(0, T ;Lp(.)(Ω)).

ii) One can represent the elements of V ∗ as follows: if T ∈ V ∗, then there
exists F = (f1, ...., fN) ∈ (LP ′(.)(Q))N such that T = divF and

〈T, ξ〉V ∗,V =

∫ T

0

∫

Ω

F.∇ξdxdt,

for any ξ ∈ V. Moreover, we have

‖T ‖V ∗ = max
{

‖fi‖Lp(.)(Q), i = 1, ....., n
}

.

Remark 2.10. The space V ∩ L∞(Q), is endowed with the norm defined by the
formula

‖v‖V ∩L∞(Q) = max
{

‖v‖V , ‖v‖L∞(Q)

}

, v ∈ V ∩ L∞(Q),

is a Banach space. In fact, it is the dual space of the Banach space V ∗ + L1(Q)
endowed with the norm

‖v‖V ∗+L1(Q) = inf
{

‖v1‖V ∗ + ‖v2‖L1(Q); v = v1 + v2, v1 ∈ V ∗, v2 ∈ L1(Q)
}

.

2-2 Some Technical Results.

Lemma 2.11. ( [2]) Assume (3.3) -(3.5) and let (un)n be a sequence in

Lp−

(0, T ;Lp(.)(Ω)) such that un ⇀ u weakly in Lp−

(0, T ;Lp(.)(Ω)) and
∫

Q

(

a(x, t, un,∇un)− a(x, t, un,∇u)
)

∇(un − u)dx→ 0.

Then, un → u strongly in Lp−

(0, T ;Lp(.)(Ω)).

Lemma 2.12. ( [8])Let g ∈ Lp(.)(Q) and gn ∈ Lp(.)(Q) with ‖gn‖p(x) ≤ C for

1 < p(x) <∞, if gn(x) → g(x) a.e. on Q. Then, gn ⇀ g in Lp(.)(Q).

Lemma 2.13. See [19]

W =
{

u ∈ V ;ut ∈ V ∗ + L1(Q)
}

→֒ C([0, T ];L1(Ω))

and
W ∩ L∞(Q) →֒ C([0, T ];L2(Ω)).
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Definition 2.14. A monotone map T : D(T ) → X∗ is called maximal monotone
if its graph

G(T ) =
{

(u, T (u)) ∈ X ×X∗ for all u ∈ D(T )
}

,

is not a proper subset of any monotone set in X ×X∗.
Let us consider the operator ∂

∂t
which induces a linear map L from the subset

D(L) =
{

v ∈ X : v′ ∈ X∗, v(0) = 0
}

of X in to X∗by

〈

Lu, v
〉

X
=

∫ T

0

〈u′(t), v(t)〉V dt u ∈ D(L), v ∈ X.

Definition 2.15. See [5] A mapping S is called pseudo–monotone with un ⇀ u
and Lun ⇀ Lu and limn→∞ sup〈S(un), un − u〉 ≤ 0, that we have

limn→∞ sup
〈

S(un), un − u
〉

= 0 and S(un)⇀ S(u) as n→ ∞.

3. Essential Assumption

Throughout the paper, we assume that the following assumptions hold true.
ASSUMPTION (H1)
Let Ω be a bounded open subset of RN (N ≥ 1), p ∈ C+(Ω̄) and
b : Ω × R → R is a Carathéodory function such that for every x ∈ Ω, b(x, .) is a
strictly increasing C1 function with

b(x, 0) = 0. (3.1)

Next, for any k > 0, there exist λk > 0 and functions Ak ∈ L∞(Ω) and Bk ∈
Lp(.)(Ω) such that

λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣

∣

∣
Dx

(∂b(x, s)

∂s

)
∣

∣

∣
≤ Bk(x). (3.2)

for almost every x ∈ Ω and every s such that |s| ≤ k, we denote by
Dx(∂b(x, s) \ ∂s) the gradient of ∂b(x, s) \ ∂s defined in the sense of distributions.
ASSUMPTION (H2)
We consider a Leray–Lions operator defined by the formula

Au = −div(a(x, t, u,∇u)),

where a : Ω × [0, T ] × R × R
N → R is a Carathéodory function, i.e., (measurable

with respect to x in Ω for every (s, ξ) ∈ R × R
N and continuous with respect to

(s, ξ) ∈ R × R
N for almost every x in Ω) which satisfies the following conditions

there exist k ∈ Lp′(.)(Q) and α > 0, β > 0 such that, for almost every (x, t) ∈ Q
all (s, ξ) ∈ R× R

N .

|a(x, t, s, ξ)| ≤ β
[

k(x, t) + |s|p(x)−1 + |ξ|p(x)−1
]

(3.3)
[

a(x, t, s, ξ)− a(x, t, s, η)
]

(ξ − η) > 0 ∀ ξ 6= η (3.4)

a(x, t, s, ξ) · ξ ≥ α|ξ|p(x). (3.5)
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ASSUMPTION (H3)
Let H : Ω × [0, T ] × R × R

N → R be a Carathéodory function such that for a.e.
(x, t) ∈ Q and for all s ∈ R, ξ ∈ R

N , the growth condition

|H(x, t, s, ξ)| ≤ γ(x, t) + g(s)|ξ|p(x). (3.6)

is satisfied, where g : R → R
+ is a bounded continuous positive function that

belongs to L1(R), while γ ∈ L1(Q).
We recall that, for k > 0 and s ∈ R, the truncation function Tk(.) defined by

Tk(s) =

{

s if |s| ≤ k

k s
|s| if |s| > k.

Definition 3.1. Let f ∈ L1(Q), F ∈ (LP ′(.)(Q))N and b(., u0) ∈ L1(Ω)
A real–valued function u defined on Q is a renormalized solution of problem (P) if

Tk(u) ∈ Lp−

(0, T ;W
1,p(.)
0 (Ω)) for all k ≥ 0, b(x, u) ∈ L∞(0, T ;L1(Ω)), (3.7)

∫

{m≤|u|≤m+1}

a(x, t, u,∇u)∇udxdt → 0 as m→ ∞, (3.8)

∂BS(x, u)

∂t
− div

(

S′(u)a(x, t, u,∇u)
)

+ S′′(u)a(x, t, u,∇u)∇u

+H(x, t, u,∇u)S′(u) = fS′(u)− div
(

s′(u)F
)

+ s′′(u)F∇u in D′(Q), (3.9)

for all S ∈ W 2,∞(R) which are piecewise C1 and such that S′ has a compact

support in R, where BS(x, z) =
∫ z

0
∂b(x,r)

∂r
S′(r)dr and

BS(x, u) |t=0= BS(x, u0) in Ω. (3.10)

Remark 3.2. Equation (3.9) is formally obtained through pointwise multiplication
of problem (P) by S′(u). However, while a(x, t, u,∇u) and H(x, t, u,∇u) do not in
general make sense in (P), all the terms in (3.9) have a meaning in D′(Q). Indeed,
if M is such that supp S′ ⊂ [−M,M ], the following identifications are made in
(3.9)

• S(u) belongs to V ∩ L∞(Q). Since S is a bounded function.

• S′(u) a(x, t, u,∇u) identifies with S′(u) a(x, t, TM (u),∇TM (u)) a.e. in Q.

for any ϕ ∈ D(Q), using Hölder inequality

∫

Q

S′(u)a(x, t, u,∇u)∇ϕdxdt =

∫

Q

S′(u)a(x, t, TM (u),∇TM (u))∇ϕdxdt

≤ CM‖S′‖L∞(Q) max
{(

∫

Q

|∇TM (u)|p(x)ω(x)
)

1

p′−

,

(

∫

Q

|∇TM (u)|p(x)ω(x)
)

1

p′+
}

‖∇ϕ‖Lp(.)(Q,ω∗),
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where M > 0 is that suppS′ ⊂ [−M,M ]. As D(Q) is dense in V, we deduce that

div(S′(u)a(x, t, u,∇u)) ∈ V ∗.

• S′′(u) a(x, t, u,∇u)∇u identifies with S′′(u) a(x, u, TM (u),∇TM (u))∇TM (u)
and

S′′(u)a(x, u, TM (u),∇TM (u))∇TM (u) ∈ L1(Q).

• S′(u) H(x, t, u,∇u) identifies with S′(u)H(x, t, TM (u),∇TM (u)) a.e. in Q.
Since |TM (u)| ≤ M a.e. in Q and S′(u) ∈ L∞(Q), we see from (3.6) and
(3.7) that

S′(u)H(x, t, TM (u),∇TM (u)) ∈ L1(Q).

• S′(u) f belongs to L1(Q) while S′(u)F belongs to (Lp′(.)(Q))N .

• S′′(u) F∇u identifies with S′′(u) F∇TM (u), which belongs to L1(Q).

The above considerations show that equation (3.9) hold in D′(Q) and that

∂BS(x, u)

∂t
∈ V ∗ + L1(Q).

Due to the properties of S and (3.9) ∂S(u)
∂t

∈ V ∗+L1(Q) using lemma 2.13, which
implies that S(u) ∈ C0([0, T );L1(Ω)), so that the initial condition (3.10) makes
sense, since, due to the properties of S (increasing) and (3.2), we have

∣

∣

∣
(BS(x, r) −BS(x, r

′)
∣

∣

∣
≤ Ak(x)

∣

∣

∣
S(r)− S(r′)

∣

∣

∣
for all r, r′ ∈ R. (3.11)

4. Existence Results.

In this section, we establish the following existence theorem:

Theorem 4.1. Let f ∈ L1(Q), F ∈ (Lp′(.)(Q))N , p(.) ∈ C+(Ω̄) and assume that
u0 is a measurable function such that b(., u0) ∈ L1(Ω). Assume that (H1)–(H3)
hold true. Then, there exists a renormalized solution u of problem (P) in the sense
of Definition (3.1).

Proof. The proof is in five steps.
STEP 1: Approximate problem :
For n > 0, we define approximations of b,H, f, F and u0. First, set

bn(x, r) = b(x, Tn(r)) +
1

n
r. (4.1)

bn is a Carathéodory function and satisfies (3.2) : there exist λn > 0 and functions
An ∈ L∞(Ω) and Bn ∈ Lp(.)(Ω) such that

λn ≤
∂bn(x, s)

∂s
≤ An(x) and

∣

∣

∣
Dx

(∂bn(x, s)

∂s

)∣

∣

∣
≤ Bn(x) a.e. in Ω, s ∈ R.
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Next, set

Hn(x, t, s, ξ) =
H(x, t, s, ξ)

1 + 1
n
|H(x, t, s, ξ)|

,

Note that |Hn(x, t, s, ξ)| ≤ |H(x, t, s, ξ)|

and |Hn(x, t, s, ξ)| ≤ n for all (s, ξ) ∈ R× R
N .

and select fn, u0n and bn so that

fn ∈ Lp′(.)(Q) and fn → f a.e. in Q and strongly in L1(Q) as n → ∞, (4.2)

u0n ∈ D(Ω), ‖bn(x, u0n)‖L1(Ω) ≤ ‖ b(x, u0)‖L1(Ω), (4.3)

bn(x, u0n) → b(x, u0) a.e. in Ω and strongly in L1(Ω). (4.4)

Let us now consider the approximate problem

(Pn)











∂bn(x,un)
∂t

− div(a(x, t, un,∇un)) +Hn(x, t, un,∇un) = fn − divF in D′(Q),

bn(x, un) |t=0= bn(x, u0n) in Ω

un = 0 on ∂Ω× (0, T ).

Theorem 4.2. Let fn ∈ Lp′−

(0, T ;W−1,p′(.)(Ω)), p(.) ∈ C+(Ω) for fixed n, the ap-

proximate problem (Pn) has at least one weak solution un ∈ Lp−

(0, T ;W
1,p(.)
0 (Ω)).

Proof. See Appendix.
In view of Theorem 4.2, there exists at least one weak solution un ∈ Lp−

(0;T ;

W
1,p(.)
0 (Ω)) of the problem (Pn).(see [15]).

STEP 2: A Priori Estimates:

Proposition 4.3. Let un a solution of the approximate problem (Pn). Then, there
exists a constant C( which does not depend on the n and k) such that

‖Tk(un)‖Lp−(0,T ;W
1,p(.)
0 (Ω))

≤ C k ∀ k > 0.

Proof.
Let ϕ ∈ Lp−

(0, T ;W
1,p(.)
0 (Ω))∩ L∞(Q) , with ϕ > 0, Choosing v = exp(G(un))ϕ

as a test function in (Pn) where G(s) =
∫ s

0
( g(r)

α
)dr. (the function g appears in

(3.6)), we have

∫

Q

∂bn(x, un)

∂t
exp(G(un))ϕdxdt+

∫

Q

a(x, t, un,∇un)∇(exp(G(un))ϕ)dxdt

+

∫

Q

Hn(x, t, un,∇un) exp(G(un))ϕdxdt

=

∫

Q

fn exp(G(un))ϕdxdt +

∫

Q

F∇(exp(G(un))ϕ)dxdt.
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In view of (3.6), we obtain

∫

Q

∂bn(x, un)

∂t
exp(G(un))ϕdxdt+

∫

Q

a(x, t, un,∇un)∇un
g(un)

α
exp(G(un))ϕdxdt

+

∫

Q

a(x, t, un,∇un) exp(G(un))∇ϕdxdt

≤

∫

Q

γ(x, t) exp(G(un))ϕdxdt +

∫

Q

fn exp(G(un))ϕdxdt

+

∫

Q

g(un)|∇un|
p(x) exp(G(un))ϕdxdt +

∫

Q

F∇(exp(G(un))ϕ)dxdt

By using (3.5), we obtain

∫

Q

∂bn(x, un)

∂t
exp(G(un))ϕdxdt+

∫

Q

a(x, t, un,∇un) exp(G(un))∇ϕdxdt

≤

∫

Q

γ(x, t) exp(G(un))ϕdxdt+

∫

Q

fn exp(G(un))ϕdxdt

+

∫

Q

F∇(exp(G(un)))ϕdxdt+

∫

Q

F exp(G(un))∇ϕdxdt (4.5)

for all ϕ ∈ Lp−

(0, T ;W
1,p(.)
0 (Ω)) ∩ L∞(Q), with ϕ > 0.

On the other hand, taking v = exp(−G(un))ϕ as a test function in (Pn), we deduce
as in (4.5), that

∫

Q

∂bn(x, un)

∂t
exp(−G(un))ϕdxdt+

∫

Q

a(x, t, un,∇un) exp(−G(un))∇ϕdxdt

+

∫

Q

γ(x, t) exp(−G(un))ϕdxdt ≥

∫

Q

fn exp(−G(un))ϕdxdt

+

∫

Q

F∇(exp(−G(un)))ϕdxdt+

∫

Q

F exp(−G(un))∇ϕdxdt (4.6)

for all ϕ ∈ Lp−

(0, T ;W
1,p(.)
0 (Ω)) ∩ L∞(Q), with ϕ > 0.

Letting ϕ = Tk(un)
+χ(0, τ ), for every τ ∈ [0, T ] in (4.5), we have

∫

Ω

Bn
k,G(x, un(τ ))dx+

∫

Qτ

a(x, t, un,∇un) exp(G(un))∇Tk(un)
+dxdt

≤

∫

Qτ

γ(x, t) exp(G(un))Tk(un)
+dxdt+

∫

Qτ

fn exp(G(un))Tk(un)
+dxdt

+

∫

Qτ

F∇Tk(un)
+ exp(G(un))dxdt (4.7)

+

∫

Qτ

FTk(un)
+ exp(G(un))∇un

g(un)

α
dxdt+

∫

Ω

Bn
k,G(x, u0n)dx,
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where

Bn
k,G(x, r) =

∫ r

0

∂bn(x, s)

∂s
Tk(s)

+ exp(G(s))ds.

Due to the definition of Bn
k,G and |G(un)| ≤ exp(

‖g‖L1(R)

α
), we have

0 ≤

∫

Ω

Bn
k,G(x, u0n)dx ≤ k exp

(‖g‖L1(R)

α

)

‖b(., u0‖L1(Ω). (4.8)

Using (4.8), Bn
k,G(x, un) ≥ 0 and Young’s Inequality, we obtain

∫

Qτ

a(x, t, un,∇Tk(un)
+) exp(G(un))∇Tk(un)

+dxdt

≤ k exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]

+
1

α

∫

Qτ

FTk(un)
+ exp(G(un))g(un)∇undxdt

+

∫

Qτ

F
[

exp(G(un))
]1− 1

p(x)
[

exp(G(un))
]

1
p(x)

∇Tk(un)
+dxdt

then
∫

Qτ

a(x, t, un,∇Tk(un)
+) exp(G(un))∇Tk(un)

+dxdt

≤ k exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]

+
1

α

∫

Qτ

FTk(un)
+ exp(G(un))∇ung(un)∇undxdt

+

∫

Qτ

F
[

exp(G(un))
]

1
p′(x)

[

α
2 p(x)

]
1

p(x)

[α

2
p(x)

]
1

p(x)
∣

∣

∣
∇Tk(un)

+
∣

∣

∣

[

exp(G(un))
]

1
p(x)

dxdt

using and Young’s Inequality, we obtain

∫

Qτ

a(x, t, un,∇Tk(un)
+) exp(G(un))∇Tk(un)

+dxdt

≤ k exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]

+
1

α

∫

Qτ

FTk(un)
+ exp(G(un))∇ung(un)∇undxdt

+

∫

Qτ

|F |p
′(x) exp(G(un))

[

p′(x)α
2 p(x)

]

p′(x)
p(x)

dxdt+
α

2

∫

Q

∣

∣

∣
∇Tk(un)

+
∣

∣

∣

p(x)

exp(G(un))dxdt
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then,
∫

Qτ

a(x, t, un,∇Tk(un)
+) exp(G(un))∇Tk(un)

+dxdt

≤ k exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]

+
1

α

∫

Qτ

FTk(un)
+ exp(G(un))∇ung(un)∇undxdt

+C

∫

Q

|F |p
′(x)dxdt+

α

2

∫

Q

∣

∣

∣
∇Tk(un)

+
∣

∣

∣

p(x)

exp(G(un))dxdt

and since
∫

Q

|F |p
′(x)dxdt = ρ(F ) ≤ max

{

||F ||p
−

(LP ′(.)(Q))N
, ||F ||p

+

(LP ′(.)(Q))N

}

= C′

then

∫

Qτ

a(x, t, un,∇Tk(un)
+) exp(G(un))∇Tk(un)

+dxdt

≤ k exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]

+C1 +
α

2

∫

Q

|∇Tk(un)
+|p(x) exp(G(un))dxdt

+
1

α

∫

Qτ

Fg(un) exp(G(un))∇unχ{un>0}dxdt

Thanks to (3.5), we have

α

2

∫

Qτ

|∇Tk(un)
+|p(x) exp(G(un))dxdt

≤ k exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]

+ C1

+
1

α

∫

Qτ

Fg(un) exp(G(un))∇unχ{un>0}dxdt. (4.9)

Let us observe that if we take ϕ = ρ(un) =
∫ un

0
g(s)χ{s>0}ds in (4.5) and use (3.5),

we obtain
[

∫

Ω

Bn
g (x, un)dx

]T

0
+ α

∫

Q

|∇un|
p(x)g(un)χ{un>0} exp(G(un))dxdt

≤
(

∫ ∞

0

g(s)ds
)

exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q)

]

+

∫

Q

F∇ung(un)χ{un>0} exp(G(un))dxdt

+
(

∫ ∞

0

g(s)ds
)

∫

Q

|F∇un|
g(un)

α
exp(G(un))χ{un>0}dxdt,
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where

Bn
g (x, r) =

∫ r

0

∂bn(x, s)

∂s
ρ(s) exp(G(s))ds,

which implies, using Bn
g (x, r) ≥ 0 and Young’s Inequality, we obtain

α

∫

{un>0}

|∇un|
p(x)g(un) exp(G(un))dxdt

≤ ‖g‖∞ exp
(‖g‖L1(R)

α

)[

‖γ‖L1(Q) + ‖fn‖L1(Q) + ‖b(x, u0‖L1(Ω)

]

+C2 +
α

2

∫

{un>0}

|∇un|
p(x)g(un) exp(G(un))dxdt

+C3‖g‖∞

+
α

2
‖g‖∞

∫

{un>0}

|∇un|
p(x) g(un)

α
exp(G(un))dxdt

then

∫

{un>0}

g(un)|∇un|
p(x) exp(G(un))dxdt ≤ C4.

Similarly, taking ϕ =
∫ 0

un
g(s)χ{s<0}ds as a test function in (4.6), we conclude that

∫

{un<0}

g(un)|∇un|
p(x) exp(G(un))dxdt ≤ C5.

Consequently,

∫

Q

g(un)|∇un|
p(x) exp(G(un))dxdt ≤ C6. (4.10)

Above, C1, ...., C6 are constants independent of n, we deduce that

∫

Q

|∇Tk(un)
+|p(x)dxdt ≤ k C7. (4.11)

Similarly to (4.11), we take ϕ = Tk(un)
−χ(0, τ) in (4.6) to deduce that

∫

Q

|∇Tk(un)
−|p(x)dxdt ≤ k C8. (4.12)

Combining (4.11), (4.12) and lemma 2.3, we conclude that

∫ T

0

min
{

‖∇Tk(un)‖
p+

p(.), ‖∇Tk(un)‖p(.)|
p−

}

dt ≤ ρ(∇Tk(un)) ≤ kC9.

‖Tk(un)‖Lp−(0,T ;W
1,p(.)
0 (Ω))

≤ k C10. (4.13)
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Where C8, C9, C10 are constants independent of n. Thus, Tk(un) is bounded

in Lp−

(0, T ;W
1,p(.)
0 (Ω)) independently of n for any k > 0. Then, we deduce from

(4.7), (4.8) and (4.13) that
∫

Ω

Bn
k,G(x, un(τ ))dx ≤ kC. (4.14)

Now we turn to proving the almost everywhere convergence of un and bn(x, un).
Consider a non decreasing function gk ∈ C2(R) such that

gk(s) =

{

s if |s| ≤ k
2

k if |s| ≥ k

Multiplying the approximate equation by g′k(un), we get

∂Bn
k (x, un)

∂t
− div(a(x, t, un,∇un)g

′
k(un)) + a(x, t, un,∇un)g

′′
k (un)∇un

+Hn(x, t, un,∇un)g
′
k(un) = fng

′
k(un)− div(Fg′k(un)) + Fg′′k (un)∇un. (4.15)

where

Bn
k (x, z) =

∫ z

0

∂bn(x, s)

∂s
g′k(s)ds.

As a consequence of (4.13), we deduce that gk(un) is bounded in Lp−

(0, T ;W
1,p(.)
0

(Ω)) and
∂Bn

k (x,un)
∂t

is bounded in L1(Q) + V ∗. Due to the properties of gk and

(3.2), we conclude that ∂gk(un)
∂t

is bounded in L1(Q) + V ∗, which implies that
gk(un) is compact in L1(Q).
Due to the choice of gk, we conclude that for each k, the sequence Tk(un)
converges almost everywhere in Q, which implies that un converges almost ev-
erywhere to some measurable function v in Q. Thus by using the same argument
as in [9], [10], [21], we can show the following lemma.

Lemma 4.4. Let un be a solution of the approximate problem (Pn). Then,

un → u a.e. in Q,

bn(x, un) → b(x, u) a.e. in Q.

We can deduce from (4.13) that

Tk(un)⇀ Tk(u) in Lp−

(0, T ;W
1,p(.)
0 (Ω)),

which implies, by using (3.3), that for all k > 0 there exists ϕk ∈ (Lp′(.)(Q))N

such that
a(x, t, u, Tk(un),∇Tk(un))⇀ ϕk in (Lp′(.)(Q))N .

Remark 4.5. .
b(., u) it belongs to L∞(0, T ;L1(Ω)).
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Proof. Let un be a solution of the approximate problem (Pn), passing to
lim inf in (4.14) as n→ ∞, we obtain

1

k

∫

Ω

Bk,G(x, u(τ ))dx ≤ C, for a.e. τ in [0, τ ].

Due to the definition of Bk,G(x, s) and the fact that 1
k
Bk,G(x, s) converges point-

wise to
∫ u

0
sgn(s)∂b(x,s)

∂s
exp(G(s))ds ≥ |b(x, u)| as k → ∞, it follows that b(., u)

belongs to L∞(0, T ;L1(Ω)). �

Lemma 4.6. Let un be a solution of the approximate problem (Pn). Then,

lim
m→∞

lim sup
n→∞

∫

{m≤|un|≤m+1}

a(x, t, un,∇(un))∇undxdt = 0. (4.16)

Proof. See Appendix.
STEP 3:Almost everywhere convergence of the gradients :
This step is devoted to prove the strong convergence of truncation of Tk(un) that,
we will use the following function of one real variable for m > k

hm(s) =











1 if |s| ≤ m

0 if |s| > m+ 1

m+ 1 + |s| if m ≤ |s| ≤ m+ 1.

Let ψi ∈ D(Ω) be a sequence which converges strongly to u0 in L1(Ω)
Set ωi

µ = (Tk(u))µ+e
−µtTk(ψi) where (Tk(u))µ is the mollification of Tk(u) with

respect to time. Note that ωi
µ is a smooth function having the following properties:

∂ωi
µ

∂t
= µ(Tk(u)− ωi

µ), ωi
µ(0) = Tk(ψi), |ωi

µ| ≤ k, (4.17)

ωi
µ → Tk(u) in Lp−

(0, T ;W
1,p(.)
0 (Ω)) as µ → ∞. (4.18)

The very definition of the sequence ωi
µ makes it possible to establish the following

lemma.

Lemma 4.7. (See [20,6]). For k ≥ 0, we have

∫

{Tk(un)−ωi
µ≥0}

∂bn(x, un)

∂t
exp(G(un))(Tk(un)− ωi

µ)hm(un)dxdt ≥ ε(n,m, µ, i).

Proposition 4.8. The subsequence of un solution of problem (Pn) satisfies for any
k ≥ 0 following assertion

lim
n→∞

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))
]

·
[

∇Tk(un)−∇Tk(u)
]

dxdt = 0.
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Proof. See Appendix.
Thanks to the lemma (2.11), we have

Tk(un) → Tk(u) strongly in Lp−

(0, T ;W
1,p(.)
0 (Ω)) ∀k. (4.19)

and

∇un → ∇u. a.e. in Q,which implies that

a(x, t, Tk(un),∇Tk(un))⇀ a(x, t, Tk(u),∇Tk(u)) in (LP ′(.)(Q))N . (4.20)

STEP 4: Equi-Integrability of the non Linearity Sequence :
We shall now prove that Hn(x, t, un,∇un) → H(x, t, u,∇u) strongly in L1(Q).
by using Vitali’s theorem. Since Hn(x, t, un,∇un) → H(x, t, u,∇u) a.e. in Q,
considering now ϕ = ρh(un) =

∫ un

0
g(s)χ{s>h}ds as a test function in (4.5), we

obtain

[

∫

Ω

Bn
h (x, un)dx

]T

0
+

∫

Q

a(x, t, un,∇un)∇ung(un)χ{un>h} exp(G(un))dxdt

≤
(

∫ ∞

h

g(s)χ{s>h}ds
)

exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q)

]

+

∫

Q

F∇ung(un)χ{un>h} exp(G(un))dxdt

+
(

∫ ∞

h

g(s)χ{s>h}ds
)

∫

Q

|F∇un|
g(un)

α
exp(G(un))χ{un>h}dxdt,

where Bn
h (x, r) =

∫ r

0
∂bn(x,s)

∂s
ρh(s) exp(G(s))ds,

which implies, in view of Bn
h (x, r) ≥ 0, (3.5) and Young’s Inequality,

α

∫

{un>h}

|∇un|
p(x)g(un) exp(G(un))dxdt

≤
(

∫ ∞

h

g(s)ds
)

exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q)‖γ‖L1(Q)

+‖bn(x, u0n‖L1(Ω)

]

+ C′

∫ ∞

h

g(s)ds

+
α

2

∫

{un>h}

|∇un|
p(x)g(un) exp(G(un))dxdt

+
(

∫ ∞

h

g(s)ds
)

∫

Q

|F∇un|
g(un)

α
exp(G(un))dxdt



242 Youssef Akdim, Nezha El gorch and Mounir Mekkour

hence
α

2

∫

{un>h}

|∇un|
p(x)g(un) exp(G(un))dxdt

≤
(

∫ ∞

h

g(s)ds
)

exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q)

+‖b(x, u0‖L1(Ω) + C′
]

+
(

∫ ∞

h

g(s)ds
)

∫

Q

|F∇un|
g(un)

α
exp(G(un))dxdt

and since g ∈ L1(R), we deduce that

lim
h→∞

sup
n∈N

∫

{un>h}

|∇un|
p(x)g(un)dxdt = 0.

Similarly, taking ϕ = ρh(un) =
∫ 0

un
g(s)χ{s<−h}ds as a test function in (4.6),

we conclude that, limh→∞ supn∈N

∫

{un<−h}
|∇un|

p(x)g(un)dxdt = 0. Consequently,

limh→∞ supn∈N

∫

{|un|>h}
|∇un|

p(x)g(un)dxdt = 0.Which implies, for h large enough

and for a subset E of Q,

lim
measE→0

∫

E

|∇un|
p(x)g(un)dxdt ≤ ‖g‖∞ lim

measE→0

∫

E

|∇Thun|
p(x)dxdt

+

∫

{|un|>h}

|∇un|
p(x)g(un)dxdt

so g(un)|∇un|
p(x) is equi-integrable. Thus, we have shown that

g(un)|∇un|
p(x) → g(u)|∇u|p(x) stongly in L1(Q).

consequently, by using (3.6), we conclude that

Hn(x, t, un,∇un) → H(x, t, u,∇u) strongly in L1(Q). � (4.21)

STEP 5: Passing to the limit:

a) Proof that u satisfies (3.8). For any fixed m ≥ 0, we have

∫

{m≤|un|≤m+1}

a(x, t, un,∇un)∇undxdt

=

∫

Q

a(x, t, un,∇un)
[

∇Tm+1(un)−∇Tm(un)
]

dxdt

=

∫

Q

a(x, t, Tm+1(un),∇Tm+1(un))∇Tm+1(un)

−

∫

Q

a(x, t, Tm(un),∇Tm(un))∇Tm(un)dxdt
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According to (4.19) and (4.20), one can passing to the limit as n → ∞ for fixed
m ≥ 0 to obtain

lim
n→∞

∫

{m≤|un|≤m+1}

a(x, t, un,∇un)∇undxdt

=

∫

Q

a(x, t, Tm+1(u),∇Tm+1(u))∇Tm+1(u)

−

∫

Q

a(x, t, Tm(u),∇Tm(u))∇Tm(u)dxdt

=

∫

{m≤|un|≤m+1}

a(x, t, u,∇u)∇udxdt (4.22)

Taking the limit as m → ∞ in (4.22) and using the estimate (4.16) shows that u
satisfies(3.8). �

b) Proof that u satisfies (3.9)

Let S ∈ W 2,∞(R) be such that S′ has a compact support . Let M > 0 such that
supp(S′)⊂ [−M,M ] . Pointwise multiplication of the approximate problem (Pn)
by S′(un) leads to

∂Bn
S(x, un)

∂t
− div

[

S′(un)a(x, t, un,∇un)
]

+ S′′(un)a(x, t, un,∇un)∇un

+Hn(x, t, un,∇un)S
′(un) = fnS

′(un)− div
(

S′(un)F
)

+ S′′(un)F∇un in D′(Q).

(4.23)
In what follows we pass to the limit in (4.23) as n tends to ∞.

• Limit of
∂Bn

S (x,un)
∂t

. Since S is bounded and continuous, un → u a.e. in Q
implies that Bn

S(x, un) converge to BS(x, u) a.e. in Q and L∞ weakly .

Then,
∂Bn

S(x, un)

∂t
→

∂BS(x, u)

∂t
in D′(Q). as n→ ∞.

• Limit of −div
[

S′(un)a(x, t, un,∇un)
]

. Since supp(S′)⊂ [−M,M ], we have, for

n ≥M

S′(un)a(x, t, un,∇un) = S′(un)a(x, t, TM (un),∇TM (un)) a.e. in Q.

The pointwise convergence of un to u and (4.20) and the boundedness of S′ yied,
as n→ ∞,

S′(un)a(x, t, un,∇un)⇀ S′(u)a(x, t, TM (u),∇TM (u)) in (Lp′(.)(Q))Nas n→ ∞ (4.24)

S′(u)a(x, t, TM (u),∇TM (u)) has been denoted by S′(u)a(x, t, u,∇u) in equation
(3.9).
• Limit of S′′(un)a(x, t, un,∇un)∇un .Consider the "energy" term
S′′(un)a(x, t, un,∇un)∇un = S′′(un)a(x, t, TM (un),∇TM (un))∇TM (un) a.e. in Q. The
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pointwise convergence of S′(un) to S′(u) and (4.20) as n → ∞ and the boundedness of
S′′ yield

S′′(un)a(x, t, un,∇un)∇un ⇀ S′′(u)a(x, t, TM (u),∇TM (u))∇TM (u) in L1(Q). (4.25)

Recall that S′′(u)a(x, t, TM (u),∇TM (u))∇TM ((u)) = S′′(u)a(x, t, u,∇u)∇u a.e. in Q. •
Limit of S′(un)Hn(x, t, un,∇un). From supp(S′)⊂ [−M,M ] and (4.21), we have

S′(un)Hn(x, t, un,∇un) → S′(u)H(x, t, u,∇u) strongly in L1(Q) as k n→ ∞. (4.26)

• Limit of S′(un)fn . Since un → u a.e. in Q, we have S′(un)fn → S′(u)f strongly in
L1(Q), as n→ ∞
• Limit of div(S′(un)F )S′(un) is bounded and converges to S′(u) a.e. in Q.

then div(S′(un)F ) → div(S′(u)F ) strongly in Lp′− (0, T ;W−1,p′(.)(Ω)) as n→ ∞.

• Limit of S′′(un)F∇un. This term is equal to F∇S′(un) .
Since ∇S′(un) converge to ∇S′(u) weakly in (Lp(.)(Q))N , we obtain
S′′(un)F∇un = F∇S′(un) ⇀ F∇S′(u) weakly in L1(Q) as n → ∞. The term F∇S′(u)
identifies with S′′(u)F∇u.
As a consequence of the above convergence result, we are in a position to pass to the limit
as n→ ∞ in equation (4.23) and to conclude that u satisfies (3.9). �

c) Proof that u satisfies (3.10)

S is bounded, and Bn
S(x, un) is bounded in L∞(Q). Secondly, by (4.23) we have

∂Bn
S (x,un)

∂t

is bounded in L1(Q) + V ∗.
As a consequence, an Aubin type Lemma (see, e.g, [17] implies that Bn

S(x, un) lies in a
compact set in C0([0, T ], L1(Ω)).
It follows that on the hand, Bn

S(x, un) |t=0= Bn
S (x, u

n
0 ) converge to BS(x, u) |t=0 strongly

in L1(Ω) implies that :BS(x, u) |t=0= BS(x, u0) in Ω.
As a conclusion of Steps 1 to 5, the proof of theorem 4.1 is complete . �

5. APPENDIX

Proof of theorem 4.2
We define the operator Ln : Lp−(0, T ;W

1,p(x)
0 (Ω)) → Lp′− (0, T ;W−1,p′(.)(Ω)) by

〈

Lnu, v
〉

=
∫

Q

∂bn(x,u)
∂t

vdxdt =
∫

Q

∂bn(x,u)
∂u

∂u
∂t
vdxdt ∀u, v ∈ Lp− (0, T ;W

1,p(.)
0 (Ω)) then,

∣

∣

∣

〈

Lnu, v
〉∣

∣

∣
≤

∣

∣

∣

∫ T

0

∫

Ω

An(x)
∂u

∂t
vdxdt

∣

∣

∣

≤
( 1

p−
+

1

p′−

)

‖An‖L∞

∫ T

0

‖
∂u

∂t
‖
Lp′(x)(Ω)

‖v‖Lp(x)(Ω)dt

≤ C
( 1

p−
+

1

p′−

)

‖An‖L∞

∫ T

0

‖
∂u

∂t
‖
W−1,p′(.)(Ω)

‖v‖
W

1,p(x)
0 (Ω)

dt

≤ C
( 1

p−
+

1

p′−

)

‖An‖L∞‖
∂u

∂t
‖
Lp′− (0,T,W−1,p′(.)(Ω))

‖v‖
Lp− (0,T,W

1,p(x)
0 (Ω))

≤ C1‖v‖
Lp− (0,T,W

1,p(x)
0 (Ω))

. (5.1)
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We define the operator Gn : Lp−(0, T ;W
1,p(.)
0 (Ω)) → Lp− (0, T,W−1,p′(.)(Ω))

by,
〈

Gnu, v
〉

=

∫

Q

Hn(x, t, u,∇u)vdxdt ∀u, v ∈ Lp−(0, T ;W
1,p(.)
0 (Ω)).

Thanks to the Hölder Inequality, we have that for u, v ∈ Lp− (0, T ;W
1,p(.)
0 (Ω))

∫

Q

Hn(x, t, u,∇u)vdxdt ≤
∣

∣

∣

∫ T

0

∫

Ω

Hn(x, t, u,∇u)vdxdt
∣

∣

∣

≤
( 1

p−
+

1

p′−

)

∫ T

0

(

∫

Ω

∣

∣

∣
Hn(x, t, u,∇u)

∣

∣

∣

p′(x)

dx
)θ

‖v‖Lp(x)(Ω)dt

≤ C
( 1

p−
+

1

p′−

)

∫ T

0

(nθp′+ (measΩ)θ‖v‖
W

1,p(x)
0 (Ω)

dt

≤ C2‖v‖
Lp− (0,T ;W

1,p(.)
0 (Ω))

. (5.2)

with θ =

{

1/p′− if ‖Hn(x, t, u,∇u)‖L1(Q) > 1

1/p′+ if ‖Hn(x, t, u,∇u)‖L1(Q) ≤ 1.

Lemma 5.1. Let Bn : Lp− (0, T ;W
1,p(.)
0 (Ω)) → Lp′− (0, T,W−1,p′(.)(Ω)).

The operator Bn = A+Gn is

a)coercive
b) pseudo-monotone

c) bounded and demi continuous.

Proof. a) For the coercivity, we have for any u ∈ Lp− (0, T ;W
1,p(.)
0 (Ω))

〈

Bnu, u
〉

=
〈

Gnu, u
〉

+
〈

Au, u
〉

⇒
〈

Bnu, u
〉

−
〈

Gnu, u
〉

=
〈

Au, u
〉

then,
〈

Bnu, u
〉

−
〈

Gnu, u
〉

=

∫

Q

a(x, t, u,∇u)∇udxdt

=

∫ T

0

∫

Ω

a(x, t, u,∇u)∇udxdt

≥

∫ T

0

α(

∫

Ω

|∇u|p(x)dx)dt (using (3.5))

≥ α‖∇u‖δ
Lp− (0,T ;W

1,p(.)
0 (Ω))

≥ β‖u‖δ
Lp− (0,T ;W

1,p(.)
0 (Ω))

,

which is due to Poincaré Inequality with

δ =







p− if ‖∇u‖
Lp− (0,T ;W

1,p(.)
0 (Ω))

> 1

p+ if ‖∇u‖
Lp− (0,T ;W

1,p(.)
0 (Ω))

≤ 1

hence,
〈

Bnu, u
〉

−
〈

Gnu, u
〉

≥ β‖u‖δ
Lp− (0,T ;W

1,p(.)
0 (Ω))

then,
〈

Bnu, u
〉

≥ β‖ u‖δ
Lp− (0,T ;W

1,p(.)
0 (Ω))

− C2‖u‖
Lp− (0,T ;W

1,p(.)
0 (Ω))
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then, we have
〈

Bnu, u
〉

‖u‖
Lp− (0,T ;W

1,p(.)
0 (Ω))

≥ β‖u‖δ−1

Lp− (0,T ;W
1,p(.)
0 (Ω))

− C2 → +∞

⇒

〈

Bnu, u
〉

‖u‖
Lp− (0,T ;W

1,p(x)
0 (Ω))

→ +∞ as ‖u‖
Lp− (0,T ;W

1,p(.)
0 (Ω))

→ +∞

then Bn is coercive. �

b)It remains to show that Bn is pseudo–monotone.

Let (uk)k a sequence in Lp−(0, T ;W
1,p(.)
0 (Ω)) such that

uk ⇀ u in Lp− (0, T ;W
1,p(.)
0 (Ω))

Lnuk ⇀ Lnu in Lp′− (0, T ;W−1,p′(.)(Ω)) (5.3)

lim
k→∞

sup
〈

Bnuk, uk − u
〉

≤ 0

that, we have prove that

Bnuk ⇀ Bnu in Lp′−(0, T ;W
1,p(.)
0 (Ω)) and 〈Bnuk, uk〉 → 〈Bnu, u〉.

By the definition of the operator Ln defined in definition (2.1), we obtain that uk is

bounded in W
1,p(.)
0 (Ω) and since W

1,p(.)
0 (Ω) →֒ Lp′(.)(Ω) then uk → u in Lp−(0, T ;

W
1,p(.)
0 (Ω)), then the growth condition (3.3) (a(x, t, uk,∇uk))k is bounded in (Lp′(.)(Q))N

therefore, there exists a function ϕ ∈ (Lp′(.)(Q))N such that

a(x, t, uk,∇uk)⇀ ϕ as k → +∞. (5.4)

Similarly, using condition (3.6)
(

Hn(x, t, uk,∇uk)
)

k
is bounded in (L1(Q)) then, there

exists a function ψn ∈ L1(Q) such that

Hn(x, t, uk,∇uk) → ψn in L1(Q) as k → +∞. (5.5)

lim
k→∞

〈

Bnuk, uk

〉

= limk→∞

[〈

Gnuk, uk

〉

+
〈

Auk, uk

〉]

= lim
k→∞

[

∫

Q

a(x, t, uk,∇uk)∇ukdxdt+

∫

Q

H(x, t, uk,∇uk)ukdxdt
]

=

∫

Q

ϕ∇ukdxdt+

∫

Q

ψnukdxdt (5.6)

using (5.3) and, (5.6), we obtain

lim
k→∞

sup
〈

Bnuk, uk

〉

= lim
k→∞

sup
{

∫

Q

a(x, t, uk,∇uk)∇ukdxdt

+

∫

Q

H(x, t, uk,∇uk)ukdxdt
}

≤

∫

Q

ϕ∇udxdt+

∫

Q

ψnudxdt (5.7)
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thanks to ( 5.5), we have

∫

Q

Hn(x, t, uk,∇uk)dxdt→

∫

Q

ψndxdt. (5.8)

therefore,

lim
k→∞

sup

∫

Q

a(x, t, uk,∇uk)∇uk ≤

∫

Q

ϕ∇udxdt (5.9)

on the other hand, using (3.4), we have

∫

Q

[

a(x, t, uk,∇uk)− a(x, t, uk,∇u)
]

(∇uk −∇u)dxdt ≥ 0. (5.10)

Then,
∫

Q

a(x, t, uk,∇uk)∇ukdxdt ≥ −

∫

Q

a(x, t, uk,∇u)∇udxdt

+

∫

Q

a(x, t, uk,∇uk)∇udxdt

+

∫

Q

a(x, t, uk,∇u)∇ukdxdt

and by (5.4), we get

lim
k→∞

inf

∫

Q

a(x, t, uk,∇uk)∇ukdxdt ≥

∫

Q

ϕ∇udxdt.

this implies, thanks to (5.9), that

lim
k→∞

∫

Q

a(x, t, uk,∇uk)∇ukdxdt =

∫

Q

ϕ∇udxdt (5.11)

Now by (5.11), we can obtain

lim
k→∞

∫

Q

a(x, t, uk,∇uk)− a(x, t, uk,∇u))(∇uk −∇u)dxdt = 0

In view of the lemma 2.11, we obtain

uk → u in Lp− (0, T ;W
1,p(.)
0 (Ω))

∇uk → ∇u a.e. in Q.

Then,

a(x, t, uk,∇uk)⇀ a(x, t, u,∇u) in (Lp′(.)(Q))N

Hn(x, t, uk,∇uk) ⇀ H(x, t, u,∇u) in L1(Q),

we deduce that
Auk ⇀ Au in (Lp′− (Q))N

and
Gnuk ⇀ Gnu in (L1(Q))
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which implies

Bnuk ⇀ Bnu in Lp′− (0, T ;W
1,p(.)
0 (Ω))

and
〈

Bnuk, uk

〉

→
〈

Bnu, u
〉

completing the proof of assertion(b). �

c) Using Hölder′s inequality and the growth condition (3.3), we can show that the
operatorA is bounded and by using (5.2), we conclude that Bn is bounded. For to show
that Bn is demicontinuous
Let uk → u in Lp− (0, T ;W

1,p(.)
0 (Ω)) and prove that

〈

Bnuk, ψ
〉

→ 〈Bnu, ψ〉 for all ψ ∈ Lp− (0, T ;W
1,p(.)
0 (Ω)).

Since a(x, t, uk,∇uk) → a(x, t, u,∇u) as k → ∞ a.e. in Q. Then, by the growth
condition (3.3) and lemma 2.12

a(x, t, uk,∇uk)⇀ a(x, t, u,∇u) in Lp′(.)(Q))N

and for all ϕ ∈ Lp− (0, T ;W
1,p(.)
0 (Ω)) , 〈Auk, ϕ〉 → 〈Au,ϕ〉 as k → ∞

similarly, Gnuk → Gnu as k → ∞ a.e. in Q then, by the (3.6) and lemma 2.12 Gnuk ⇀

Gnu in Lp′(.)(Q) and for all φ ∈ Lp−(0, T ;W
1,p(.)
0 (Ω)),

〈

Gnuk, φ
〉

→
〈

Gnu, φ
〉

as k → ∞ which implies Bn is demi continuous. �

Proof of lemma 4.6.
Set ϕ = T1(un − Tm(un))

+ = αm(un) in (4.5), this function is admissible since ϕ ∈

Lp− (0, T ;W
1,p(.)
0 (Ω)) and ϕ ≥ 0. Then, we have

∫

Q

∂bn(x, un)

∂t
exp(G(un))αm(un)dxdt

+

∫

{m≤un≤m+1}

a(x, t, un,∇un)∇un exp(G(un))dxdt

≤

∫

Q

|γ(x, t)| exp(G(un))αm(un)dxdt+

∫

Q

|fn| exp(G(un))αm(un)dxdt

+

∫

Q

F∇un
g(un)

α
exp(G(un))αm(un)dxdt

+

∫

{m≤un≤m+1}

F∇un exp(G(un))dxdt.

This gives, by setting Bm
n,G(x, r) =

∫ r

0

∂bn(x,s)
∂s

exp(G(s))αm(s)ds and by Young’s Inequal-
ity,

∫

Ω

Bm
n,G(x, un)(T )dx +

∫

{m≤un≤m+1}

a(x, t, un,∇un) exp(G(un))∇undxdt

≤ exp
(‖g‖L1(R)

α

)[

∫

{|un|>m}

(|γ|+ |fn|)dxdt+

∫

{|u0n|>m}

|bn(x, u0n)|dx
]

dxdt

+C1

∫

{un≥m}

|F |p
′(x)dxdt+

α

2

∫

{m≤un≤m+1}

|∇un|
p(x) exp(G(un))dxdt

+C2

∫

{un≥m}

|F |p
′(x)dxdt+

α

2

∫

{|un|>m}

|∇un|
p(x)g(un) exp(G(un))dxdt.
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Since Bm
n,G(x, un)(T ) > 0 and use (3.5), we obtain

1

2

∫

{m≤un≤m+1}

a(x, t, un,∇un)∇un exp(G(un))dxdt

≤ exp
(‖g‖L1(R)

α

)[

∫

{|un|>m}

(|γ)|+ |fn|)dxdt. (5.12)

+

∫

{|u0n|>m}

|bn(x, u0n)|dx
]

+ C3

∫

{un>m}

|F |p
′(x)dxdt

+C4

∫

{un>m}

|∇un|
p(x)g(un) exp(G(un))dxdt

Taking ϕ = ρm(un) =
∫ un

0
g(s)χ{s>m}ds as a test function in (4.5), we obtain

[

∫

Ω

Bm
m,n(x, un)dx

]T

0
+

∫

Q

a(x, t, un,∇un)∇un exp(G(un))g(un)χ{un>m}dxdt

≤
(

∫ ∞

m

g(s)χ{s>m}ds
)

exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) + ‖γ‖L1(Q)

]

+

∫

Q

F∇ung(un)χ{un>m} exp(G(un))dxdt

+
(

∫ ∞

m

g(s)χ{s>m}ds

∫

Q

F∇un
g(un)

α
χ{un>m} exp(G(un))dxdt

where Bm
m,n(x, r) =

∫ r

0

∂bn(x,s)
∂s

ρm(s) exp(G(s))ds, which implies, since Bm
m,n(x, r) ≥ 0,

by (3.5) and Young’s Inequality,

(α− 1

2

)

∫

{un>m}

|∇un|
p(x)g(un) exp(G(un))dxdt

≤
(

∫ ∞

m

g(s)ds
)

exp
(‖g‖L1(R)

α

)[

‖fn‖L1(Q) (5.13)

+‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω) + C5

]

Using (5.13) and the strong convergence of fn in L1(Ω) and bn(x, u0n) in L1(Ω)

γ ∈ L1(Ω), g ∈ L1(R) and F ∈ (Lp′(.)(Q))N , by Lebesgue’s theorem,
passing to limit in (5.12), we conclude that

lim
m→∞

lim sup
n→∞

∫

{m≤un≤m+1}

a(x, t, un,∇un)∇undxdt = 0. (5.14)

On the other hand, taking ϕ = T1(un−Tm(un))
− as a test function in (4.6) and reasoning

as in the proof (5.14), we deduce that

lim
m→∞

lim sup
n→∞

∫

{−(m+1)≤un≤−m}

a(x, t, un,∇un)∇undxdt = 0. (5.15)

By using (5.14) and (5.15), we have

lim
m→∞

lim sup
n→∞

∫

{m≤|un|≤m+1}

a(x, t, un,∇un)∇undxdt = 0. � (5.16)
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Proof of Proposition 4.2

For m > k, let ϕ = (Tk(un)− ωi
µ)

+hm(un) ∈ Lp−(0, T ;W
1,p(.)
0 (Ω)) ∩ L∞(Q) and ϕ ≥ 0

. If we take this function in (4.5), we obtain

∫

{Tk(un)−wi
µ≥0}

∂bn(x, un)

∂t
exp(G(un))(Tk(un)− wi

µ)hm(un)dxdt

+

∫

{Tk(un)−wi
µ≥0}

a(x, t, un,∇un)∇(Tk(un)− wi
µ)hm(un)dxdt

−

∫

{m≤un≤m+1}

exp(G(un))a(x, t, un,∇un)∇un(Tk(un)− wi
µ)

+dxdt

≤

∫

Q

(fn + γ) exp(G(un))(Tk(un)− wi
µ)

+hm(un)dxdt (5.17)

+

∫

Q

F∇un
g(un)

α
exp(G(un))(Tk(un)− ωi

µ)
+hm(un)dxdt

+

∫

{Tk(un)−ωi
µ≥0}

F exp(G(un))(Tk(un)− ωi
µ)hm(un)dxdt

−

∫

{m≤un≤m+1}

F exp(G(un))(Tk(un)− ωi
µ)

+dxdt

Observe that

∣

∣

∣

∫

{m≤un≤m+1}

exp(G(un))a(x, t, un,∇un)∇un(Tk(un)−wi
µ)

+dxdt
∣

∣

∣

≤ 2k exp
(‖g‖L1(R)

α

)

∫

{m≤un≤m+1}

a(x, t, un,∇un)∇undxdt.

and

∣

∣

∣

∫

{m≤un≤m+1}

F∇un exp(G(un))(Tk(un)− ωi
µ)

+dxdt
∣

∣

∣

≤ 2k exp
(‖g‖L1(R)

α

)‖F‖
Lp′(.)(Q))N

α
1

p−

(

∫

{m≤un≤m+1}

a(x, t, un,∇(un))∇un)dxdt
) 1

p−

Tanks to (4.16) the third and fourth integrals on the right hand side tend to zero as n

and m tend to infinity and by Lebesgue’s theorem and F ∈ (Lp′(.)(Q))N , we deduce that
the right hand side converges to zero as n, m and µ tend to infinity . Since

(

Tk(un)− ωi
µ

)+

hm(un)⇀
(

Tk(u)− ωi
µ

)+

hm(u) in L∞(Q) as n→ ∞

and strongly in Lp−(0, T ;W
1,p(.)
0 (Ω)) and (Tk(un) − ωi

µ)
+hm(un) ⇀ 0 in L∞(Q) and

strongly in Lp− (0, T ;W
1,p(.)
0 (Ω)) as µ→ ∞, it follows that the first and second integrals

on the right-hand side of (5.17) converge to zeros as n, m, µ → ∞, using [3] lemma 4.7
and lemma 2.11 the proof of Proposition 4.2 is complete. �
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6. Example

Consider the following special case : b(x, s) = F (x)K(s), where F ∈ W 1,p(.)(Ω) with
p(x) = sin |x|+ 3, p ∈ C+(Ω̄) and K ∈ C1(R),K(0) = 0
b is a Carathéodory function satisfing the following assertions :
b(x, 0) = 0. Next, for any k > 0, there exist λk > 0 and function Ak ∈ L∞(Ω) Bk ∈
Lp(.)(Ω) such that

λk = inf
|s|≤k

K′(s) ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣

∣

∣Dx

(∂b(x, s)

∂s

)∣

∣

∣ ≤ Bk(x). (6.1)

for almost every x ∈ Ω and every s such that |s| ≤ k, we have

Au = −△p(x) = −div(|∇u|p(x)−2∇u). (6.2)

we are (|∇u|p(x)−2∇u − |∇v|p(x)−2∇v)(u − v) > 0 for almost all x ∈ Ω, u, v ∈ R
N and

u 6= v then the monotonicity condition is satisfying.
The operator −div(|∇u|p(x)−2∇u) is a Carathéodory function satisfing the growth condi-
tion (3.3) and the coercivity (3.5).

H(x, t, u,∇u) =
−u

2 + u4
|∇u|p(x) + γ(x, t). (6.3)

where γ ∈ L1(Q), H(x, t, u,∇u) is a Carathéodory function and

|H(x, t, u,∇u)| ≤
|u|

2 + u4
|∇u|p(x) + γ(x, t)

= g(u)|∇u|p(x) + γ(x, t),

where g(u) = |u|

2+u4 | is bounded positive continuous function which belongs to L1(R).
Note that H(x, t, u,∇u) does not satisfy the sign condition or the coercivity condition.
Finally, the hypotheses of Theorem 4.1 are satisfied. Therefore, the problem (P) has at
least one renormalized solution.
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