

$g^{*}\lambda_{\mu}$ –closed sets in Generalized Topological Spaces

P. Jeyanthi, P. Nalayini, M. Mocanu

ABSTRACT: In this paper we introduce some new classes of generalized closed sets called $^{*}\lambda_{\mu}$ –closed, $^{*}\lambda_{\mu}$ – g_{μ} –closed and $g^{*}\lambda_{\mu}$ –closed sets in generalized topological spaces, which are related to the classes of g_{μ} –closed sets, g – λ_{μ} –closed sets and λ_{μ} – g –closed sets. We investigate the properties of the newly introduced classes, as well as the connections among the above mentioned classes of generalized closed sets. Also, we give a unified framework for the study of several types of generalized closed sets in a space endowed with two generalized topologies.

Key Words: Generalized topology, λ_{μ} –closed, $^{*}\lambda_{\mu}$ –closed, $^{*}\lambda_{\mu}$ – g –closed, $^{*}\lambda_{\mu}$ – g_{μ} –closed and $g^{*}\lambda_{\mu}$ –closed sets.

Contents

1	Introduction	203
2	$^{*}\lambda_{\mu}$–g–closed sets	206
3	$^{*}\lambda_{\mu}$–g_{μ}– Closed sets	208
4	$g^{*}\lambda_{\mu}$ – Closed sets	210
5	A Unified framework of generalized closed sets in GTS'	211

1. Introduction

In 1997, Á.Császár [2] introduced the concept of generalization of topological space, which is a generalized topological space. A subset μ of $exp(X)$ is called a generalized topology [4] on X if $\emptyset \in \mu$ and μ is closed under arbitrary union. Elements of μ are called μ –open sets. A set X with a GT μ on it is said to be a generalized topological space (briefly GTS) and is denoted by (X, μ) . For a subset A of X , we denote by $c_{\mu}(A)$ the intersection of all closed sets containing A and by $i_{\mu}(A)$ the union of all μ –open sets contained in A . Then $c_{\mu}(A)$ is the smallest closed set containing A and $i_{\mu}(A)$ is the largest μ –open set contained in A . A point $x \in X$ is called a μ –cluster point of A if for every $U \in \mu$ with $x \in U$ we have $A \cap U \neq \emptyset$. It is known from [4] that $c_{\mu}(A)$ is the set of all μ –cluster points of A . A GTS (X, μ) is called a quasi-topological space [3] if μ is closed under finite intersections. A subset A of X is said to be π –regular [5] (resp. σ –regular) if $A = i_{\mu}c_{\mu}(A)$ (resp. $A = c_{\mu}i_{\mu}(A)$).

Definition 1.1. [6] Let (X, μ) be a GTS and $A \subset X$. Then the subsets $\wedge_\mu(A)$ and $\vee_\mu(A)$ are defined as follows:

$$\wedge_\mu(A) = \begin{cases} \cap\{G : A \subseteq G, G \in \mu\} & \text{if there exists } G \in \mu \text{ such that } A \subseteq G; \\ X & \text{otherwise.} \end{cases}$$

and

$$\vee_\mu(A) = \begin{cases} \cup\{H : H \subseteq A, H^c \in \mu\} & \text{if there exists } H \text{ such that } H^c \in \mu \text{ and } H \subseteq A; \\ \emptyset & \text{otherwise.} \end{cases}$$

Definition 1.2. [1] A subset A of a GTS (X, μ) is said to be a (\wedge, μ) -closed (briefly λ_μ -closed) set if $A = T \cap C$, where T is a \wedge_μ -set and C is a μ -closed set. The complement of a λ_μ -closed set is called a λ_μ -open set.

Given a GTS (X, μ) , we denote the class of μ -closed sets by $C(X, \mu)$ and the class of \wedge_μ -sets by $\wedge_\mu(X, \mu)$. Moreover, following [1] we denote the class of λ_μ -closed sets (resp. λ_μ -open sets) by $\wedge_\mu - C(X, \mu)$ (resp. $\wedge_\mu - O(X, \mu)$).

It is known that $\mu \subset \wedge_\mu(X, \mu)$ and $\wedge_\mu(X, \mu)$ is a GT closed to arbitrary intersections, by Proposition 2.3 of [6] and Theorem 2.7, Remark 2.8 [6]. Note that $X \in \wedge_\mu(X, \mu) \cap C(X, \mu)$ by Theorem 2.7 [6]. By Theorem 2.6 and 2.7 [1], we have

$$\wedge_\mu - C(X, \mu) \supset \wedge_\mu(X, \mu) \cup C(X, \mu)$$

and $\wedge_\mu - C(X, \mu)$ is closed to arbitrary intersections, hence $\wedge_\mu - O(X, \mu)$ is a GT. From $\mu \subset \wedge_\mu - C(X, \mu)$ and $C(X, \mu) \subset \wedge_\mu - C(X, \mu)$ we conclude that μ -closed sets and μ -open sets are simultaneously λ_μ -closed and \wedge_μ -open, i.e.

$$\mu \cup C(X, \mu) \subset \wedge_\mu - C(X, \mu) \cap \wedge_\mu - O(X, \mu).$$

Definition 1.3. [1] Let (X, μ) be a GTS. A point $x \in X$ is called a (\wedge, μ) -cluster point of A if for every (\wedge, μ) -open set U of X containing x , we have $A \cap U \neq \emptyset$. The set of all (\wedge, μ) -cluster points of A is called the (\wedge, μ) -closure of A and is denoted by $A^{(\wedge, \mu)}$.

Lemma 1.4. [1] Let (X, μ) be a GTS. Then the following properties hold:

- (a). $A \subseteq A^{(\wedge, \mu)}$;
- (b). $A^{(\wedge, \mu)} = \cap\{F : A \subseteq F \text{ and } F \text{ is } (\wedge, \mu)\text{-closed}\}$;
- (c). $A \subseteq B \Rightarrow A^{(\wedge, \mu)} \subseteq B^{(\wedge, \mu)}$;
- (d). A is (\wedge, μ) -closed iff $A = A^{(\wedge, \mu)}$;
- (e). $A^{(\wedge, \mu)}$ is (\wedge, μ) -closed.

Also, throughout the paper, it should be " $A^{(\wedge, \mu)}$ " instead " $c_{\lambda_\mu}(A)$ "

Definition 1.5. [10] A subset A of a GTS (X, μ) is said to be ${}^* \wedge_\mu$ -set if $A = {}^* \wedge_\mu(A)$ where ${}^* \wedge_\mu(A) = \cap\{U \subset X | A \subset U \text{ and } U \text{ is a } \lambda_\mu\text{-open}\}$. Denote the class of ${}^* \wedge_\mu$ -sets by ${}^* \wedge_\mu(X, \mu)$.

We have $\wedge_\mu - O(X, \mu) \subset {}^* \wedge_\mu(X, \mu)$ and $X \in {}^* \wedge_\mu(X, \mu)$. Since ${}^* \wedge_\mu(\cup_{i \in I} A_i) = \cup_{i \in I} {}^* \wedge_\mu(A_i)$ whenever $A_i, i \in I$, are subsets of X , the class ${}^* \wedge_\mu(X, \mu)$ is a generalized topology. Since ${}^* \wedge_\mu(\cap_{i \in I} A_i) \subset \cap_{i \in I} {}^* \wedge_\mu(A_i)$ whenever $A_i, i \in I$, are subsets of X , the class ${}^* \wedge_\mu(X, \mu)$ is closed to arbitrary intersections.

Definition 1.6. [10] A subset A of a GTS (X, μ) is said to be a ${}^*\lambda_\mu$ -closed set if $A = T \cap C$, where T is a ${}^*\wedge_\mu$ -set and C is a λ_μ -closed set. The complement of a ${}^*\lambda_\mu$ -closed set is called a ${}^*\lambda_\mu$ -open set.

Denote the class of ${}^*\lambda_\mu$ -closed sets (resp. ${}^*\lambda_\mu$ -open sets) by ${}^*\wedge_\mu - C(X, \mu)$ (resp. ${}^*\wedge_\mu - O(X, \mu)$).

The class of ${}^*\lambda_\mu$ -closed sets is closed to arbitrary intersections, since ${}^*\wedge_\mu(X, \mu)$ and $\wedge_\mu - C(X, \mu)$ have this property. In addition, X is a ${}^*\lambda_\mu$ -closed set. Therefore, the class of ${}^*\lambda_\mu$ -open sets is a generalized topology.

Lemma 1.7. For a GTS (X, μ) , $\wedge_\mu(X, \mu) \subset {}^*\wedge_\mu(X, \mu) \subset {}^*\wedge_\mu - C(X, \mu)$.

Proof: a) Since every μ -open set is λ_μ -open, we have ${}^*\wedge_\mu(A) \subset \wedge_\mu(A)$ for every $A \subset X$. Now assume that A is a \wedge_μ -set, i.e. $\wedge_\mu(A) \subset A$. Then ${}^*\wedge_\mu(A) \subset A$, hence A is a ${}^*\wedge_\mu$ -set.

b) Let $B \in {}^*\wedge_\mu(X, \mu)$. Writing $B = T \cap C$, where $T = B$ is a ${}^*\wedge_\mu$ -set and $C = X$ is a λ_μ -closed set, we see that $B \in {}^*\wedge_\mu - C(X, \mu)$. \square

Theorem 1.8. [10] For a GTS (X, μ) , λ_μ -closed sets and λ_μ -open sets are ${}^*\lambda_\mu$ -closed and ${}^*\lambda_\mu$ -open, i.e.

$$\wedge_\mu - C(X, \mu) \cup \wedge_\mu - O(X, \mu) \subset {}^*\wedge_\mu - C(X, \mu) \cap {}^*\wedge_\mu - O(X, \mu).$$

Proof. a) Let $A \in \wedge_\mu - C(X, \mu)$. Writing $A = T \cap C$, where $T = X$ is a ${}^*\wedge_\mu$ -set and $C = A$ is a λ_μ -closed set, we see that $A \in {}^*\wedge_\mu - C(X, \mu)$.

b) Since $\wedge_\mu - O(X, \mu) \subset {}^*\wedge_\mu(X, \mu) \subset {}^*\wedge_\mu - C(X, \mu)$, all the λ_μ -open sets are ${}^*\lambda_\mu$ -closed.

c) By a) and b), λ_μ -closed sets and λ_μ -open sets are ${}^*\lambda_\mu$ -closed, hence they are ${}^*\lambda_\mu$ -open.

The above discussion can be summarized in the following diagram:

$$\begin{array}{ccc} \mu\text{-open} & \Rightarrow & \lambda_\mu\text{-open} \\ \Downarrow & & \Downarrow \\ \wedge_\mu\text{-set} & \Rightarrow & {}^*\wedge_\mu\text{-set} \\ \Downarrow & & \Downarrow \\ \mu\text{-closed} & \Rightarrow & \lambda_\mu\text{-closed} \Rightarrow {}^*\lambda_\mu\text{-closed} \end{array}$$

From the above diagram, we have the following observation, which are used in the subsequent chapters.

Observation 1.9. For a GTS (X, μ) , the following hold:

- i). Since X is μ -closed and Φ is a \wedge_μ -set, X and Φ are λ_μ -closed.
- ii). μ -closed sets and μ -open sets are λ_μ -closed and λ_μ -open.
- iii). Every λ_μ -open set is a ${}^*\wedge_\mu$ -set.
- iv). λ_μ -closed sets and λ_μ -open sets are ${}^*\lambda_\mu$ -closed and ${}^*\lambda_\mu$ -open.

Definition 1.10. A subset A of a GTS (X, μ) is called g_μ -closed [11] (resp. $g - \lambda_\mu$ -closed [9], $\lambda_\mu - g$ -closed [9]) if $c_\mu(A) \subset U$ (resp. $c_{\lambda_\mu}(A) \subset U, c_\mu(A) \subset U$) whenever $A \subset U$ and U is μ -open (resp. U is μ -open, U is λ_μ -open) in (X, μ) .

For $A \subset X$ we denote by $c_{\lambda_\mu}(A)$ the intersection of all ${}^*\lambda_\mu$ -closed subsets of X containing A , we have

$$c_{\lambda_\mu}(A) \subset c_{\lambda_\mu}(A) \subset c_\mu(A)$$

for every $A \subset X$.

The purpose of this present paper is to define some new class of generalized closed sets called ${}^*\lambda_\mu$ - g -closed, ${}^*\lambda_\mu$ - g_μ -closed and g_{λ_μ} -closed sets and also we obtain some basic properties of these closed sets in generalized topological spaces. Moreover the relations between these classes of sets are established.

2. ${}^*\lambda_\mu$ -closed sets

Definition 2.1. Let (X, μ) be a GTS. A subset A of X is called ${}^*\lambda_\mu$ - g -closed set if $c_\mu(A) \subset U$ whenever $A \subset U$ and U is ${}^*\lambda_\mu$ -open in X . The complements of a ${}^*\lambda_\mu$ - g -closed sets are called ${}^*\lambda_\mu$ - g -open sets.

Theorem 2.2. Every μ -closed set is a ${}^*\lambda_\mu$ - g -closed set.

Proof: Let A be μ -closed set and U be any ${}^*\lambda_\mu$ -open set containing A . Since A is μ -closed, $c_\mu(A) = A$. Therefore $c_\mu(A) \subset U$ and hence A is ${}^*\lambda_\mu$ - g -closed.

Example 2.3 shows that the converse of the above theorem is not true.

Example 2.3. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, X\}$. Then $\{a, c\}$ is ${}^*\lambda_\mu$ - g -closed but not μ -closed.

Theorem 2.4 shows that every ${}^*\lambda_\mu$ - g -closed set is a g_μ -closed set (a g - λ_μ -closed set, a λ_μ - g -closed set) and Example 2.5 shows that no converse is true.

Theorem 2.4. Let (X, μ) be a GTS. Then the following hold:

- Every ${}^*\lambda_\mu$ - g -closed set is a g_μ -closed set.
- Every ${}^*\lambda_\mu$ - g -closed set is a $g - \lambda_\mu$ -closed set.
- Every ${}^*\lambda_\mu$ - g -closed set is a λ_μ - g -closed set.

Proof: a). Let A be a ${}^*\lambda_\mu$ - g -closed set and U be an μ -open set containing A in (X, μ) . Since every μ -open set is ${}^*\lambda_\mu$ -open and A is ${}^*\lambda_\mu$ - g -closed, $c_\mu(A) \subset U$. Therefore A is g_μ -closed.

b). Let A be a ${}^*\lambda_\mu$ - g -closed set and U be an μ -open set containing A in (X, μ) . From the above part, $c_\mu(A) \subset U$. Since $c_{\lambda_\mu}(A) \subset c_\mu(A)$, $c_{\lambda_\mu}(A) \subset U$ and hence A is $g - \lambda_\mu$ -closed.

c). Let A be a ${}^*\lambda_\mu$ - g -closed set and U be an λ_μ -open set containing A in (X, μ) . Since every λ_μ -open set is ${}^*\lambda_\mu$ -open and A is ${}^*\lambda_\mu$ - g -closed, $c_\mu(A) \subset U$. Therefore A is λ_μ - g -closed.

Example 2.5. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b, c\}, \{b, c, d\}, X\}$. If $A = \{a, b, d\}$ then A is both g_μ -closed and $g - \lambda_\mu$ -closed but not ${}^*\lambda_\mu$ - g -closed. Further if $B = \{a, c, d\}$ is λ_μ - g -closed but not ${}^*\lambda_\mu$ - g -closed.

Theorem 2.6 gives a characterization of ${}^* \lambda_\mu$ -closed sets.

Theorem 2.6. *Let (X, μ) be a GTS. Then a subset A of X is ${}^* \lambda_\mu$ -closed set if and only if $F \subset c_\mu(A) \setminus A$ and F is ${}^* \lambda_\mu$ -closed imply that F is empty.*

Proof: Let F be a ${}^* \lambda_\mu$ -closed subset of $c_\mu(A) \setminus A$. Then $A \subset X \setminus F$ and $X \setminus F$ is ${}^* \lambda_\mu$ -open. Since A is ${}^* \lambda_\mu$ -closed, we have $c_\mu(A) \subset X \setminus F$. Consequently $F \subset X \setminus c_\mu(A)$. Hence F is empty.

Conversely, Suppose the implication holds and $A \subset U$, where U is ${}^* \lambda_\mu$ -open. If $c_\mu(A) \not\subset U$, then $c_\mu(A) \cap (X \setminus U)$ is a non-empty ${}^* \lambda_\mu$ -closed subset of $c_\mu(A) \setminus A$. Therefore A is ${}^* \lambda_\mu$ -closed.

Theorem 2.7. *If A is ${}^* \lambda_\mu$ -closed set in a GTS (X, μ) , then $c_\mu(A) \setminus A$ contains no non-empty λ_μ -closed (λ_μ -open / μ -open / μ -closed) subset of X .*

Proof: Suppose $c_\mu(A) \setminus A$ contains on non empty λ_μ -closed (λ_μ -open / μ -open / μ -closed) subset of X . Since every λ_μ -closed (λ_μ -open / μ -open / μ -closed) is ${}^* \lambda_\mu$ -closed, we have F is a non-empty ${}^* \lambda_\mu$ -closed set contained in $c_\mu(A) \setminus A$, which is a contradiction to Theorem 2.6. Hence the proof.

Example 2.8 shows that the converse of the above theorem is not true.

Example 2.8. *Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b, c\}, \{b, c, d\}, X\}$. If $A = \{a, b, d\}$ then $c_\mu(A) \setminus A = \{c\}$, which is neither contain a nonempty λ_μ -closed set nor contain a nonempty λ_μ -open set, but A is not a ${}^* \lambda_\mu$ -closed set.*

If $B = \{a, c, d\}$ then $c_\mu(B) \setminus B = \{b\}$, which is neither contain a nonempty μ -closed set nor contain a nonempty μ -open set, but B is not a ${}^ \lambda_\mu$ -closed set.*

Lemma 2.9. [7] *For a GTS (X, μ) and $S, T \subset X$, the following properties hold:*

- (a). $i_\mu(s \cap T) \subset i_\mu(S) \cap i_\mu(T)$.
- (b). $c_\mu(s) \cup c_\mu(T) \subset c_\mu(S) \cup T$.

Remark 2.10. [7] $i_\mu(s \cap T) \supset i_\mu(S) \cap i_\mu(T)$ is not true in general for subset S and T of a GTS (X, μ) .

Theorem 2.11. [5] *Let (X, μ) be a quasi-topological space. Then $c_\mu(A \cup B) = c_\mu(A) \cup c_\mu(B)$ for every A and B of X .*

Theorem 2.12. *Let (X, μ) be a quasi-topological space. Then $A \cup B$ is a ${}^* \lambda_\mu$ -closed set whenever A and B are ${}^* \lambda_\mu$ -closed sets.*

Proof: Let U be a ${}^* \lambda_\mu$ -closed set such that $A \cup B \subset U$. Then $A \subset U$ and $B \subset U$. Since A and B are ${}^* \lambda_\mu$ -closed, $c_\mu(A) \subset U$ and $c_\mu(B) \subset U$. Hence $c_\mu(A \cup B) = c_\mu(A) \cup c_\mu(B) \subset U$ and so that proof follows.

Example 2.13. *Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, X\}$. Then μ is a GT but not a quasi-topology. If $A = \{a\}$ and $B = \{c\}$, then A and B are ${}^* \lambda_\mu$ -closed sets but their union is not a ${}^* \lambda_\mu$ -closed set.*

Example 2.14. *Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. If $A = \{a, b\}$ and $B = \{a, c\}$, then A and B are ${}^* \lambda_\mu$ -closed sets but $A \cap B = \{a\}$ is not a ${}^* \lambda_\mu$ -closed set.*

Theorem 2.15. *Let (X, μ) be a GTS. If A is ${}^*\lambda_\mu - g$ -closed and B is μ -closed, then $A \cap B$ is a ${}^*\lambda_\mu - g$ -closed set.*

Proof: Suppose $A \cap B \subset U$ where U is ${}^*\lambda_\mu$ -open. Then $A \subset U \cup (X \setminus B)$. Since A is ${}^*\lambda_\mu - g$ -closed, $c_\mu(A) \subset U \cup (X \setminus B)$ and so $c_\mu(A) \cap B \subset U$. Hence $c_\mu(A \cap B) \subset U$, which implies that $A \cap B$ is a ${}^*\lambda_\mu - g$ -closed set.

Theorem 2.16. *Let (X, μ) be a GTS. If A is ${}^*\lambda_\mu$ -open and ${}^*\lambda_\mu - g$ -closed, then A is μ -closed.*

Proof: Since A is ${}^*\lambda_\mu$ -open and ${}^*\lambda_\mu - g$ -closed, $c_\mu(A) \subset A$ and hence A is μ -closed.

3. ${}^*\lambda_\mu - g_\mu$ - Closed sets

Definition 3.1. *Let (X, μ) be a GTS. A subset A of X is called ${}^*\lambda_\mu - g_\mu$ -closed set if $c_{\lambda_\mu}(A) \subset U$ whenever $A \subset U$ and U is ${}^*\lambda_\mu$ -open set in X . The complements of a ${}^*\lambda_\mu - g_\mu$ -closed sets are called ${}^*\lambda_\mu - g_\mu$ -open sets.*

Theorem 3.2. *For a GTS (X, μ) , Every λ_μ -closed set is ${}^*\lambda_\mu - g_\mu$ -closed.*

Proof: Let A be λ_μ -closed set and U be any ${}^*\lambda_\mu - g$ -open set containing A . Since A is λ_μ -closed, $c_{\lambda_\mu}(A) = A$. Therefore $c_{\lambda_\mu}(A) \subset U$ and hence A is ${}^*\lambda_\mu - g_\mu$ -closed.

Corollary 3.3. *For a GTS (X, μ) , the following hold:*

- a). Every μ -closed set is ${}^*\lambda_\mu - g_\mu$ -closed.
- b). Every μ -open set is ${}^*\lambda_\mu - g_\mu$ -closed.

Example 3.4 shows that the converse of the above theorem is not true.

Example 3.4. *Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. If $A = \{c\}$ then A is neither μ -closed nor μ -open but it is ${}^*\lambda_\mu - g_\mu$ -closed. If $B = \{a, b\}$, then B is ${}^*\lambda_\mu - g_\mu$ -closed but not ${}^*\lambda_\mu$ -closed.*

Theorem 3.5. *Let (X, μ) be a GTS. If $A \subset X$ and A is a ${}^*\lambda_\mu - g_\mu$ -closed set, then A is a $g - \lambda_\mu$ -closed set.*

Proof: Let U be a μ -open set containing A in (X, μ) . Since every μ -open set is ${}^*\lambda_\mu$ -open and A is ${}^*\lambda_\mu - g_\mu$ -closed, $c_{\lambda_\mu}(A) \subset U$. Therefore A is $g - \lambda_\mu$ -closed.

Example 3.6 shows that the converse of Theorem 3.5 is not true.

Example 3.6. *Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, X\}$. If $A = \{a, c\}$ then A is $g - \lambda_\mu$ -closed but not ${}^*\lambda_\mu - g_\mu$ -closed.*

Theorem 3.7 shows that the relation between ${}^*\lambda_\mu - g$ -closed set and ${}^*\lambda_\mu - g_\mu$ -closed set.

Theorem 3.7. *In a GTS (X, μ) , every ${}^*\lambda_\mu - g$ -closed set is ${}^*\lambda_\mu - g_\mu$ -closed.*

Proof: Let A be a ${}^*\lambda_\mu - g$ -closed set and U be an λ_μ -open set containing A in (X, μ) . Then $c_\mu(A) \subset U$. Since $c_{\lambda_\mu}(A) \subset c_\mu(A)$, we have $c_{\lambda_\mu}(A) \subset U$. Therefore A is ${}^*\lambda_\mu - g_\mu$ -closed.

Example 3.8 shows that the converse of the above theorem is not true.

Example 3.8. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, X\}$. If $A = \{a\}$, then A is ${}^*\lambda_\mu - g_\mu$ -closed set but it is not ${}^*\lambda_\mu - g$ -closed.

Remark 3.9. The concepts of g_μ -closed set and ${}^*\lambda_\mu - g_\mu$ -closed set are independent.

Example 3.10. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then $\{b, d\}$ is g_μ -closed but not ${}^*\lambda_\mu - g_\mu$ -closed and $\{c\}$ is ${}^*\lambda_\mu - g_\mu$ -closed but not g_μ -closed.

Theorem 3.11 gives a characterization of ${}^*\lambda_\mu - g_\mu$ -closed sets.

Theorem 3.11. Let (X, μ) be a GTS. Then a subset A of X is ${}^*\lambda_\mu - g_\mu$ -closed set if and only if $F \subset c_{\lambda_\mu}(A) \setminus A$ and F is ${}^*\lambda_\mu$ -closed imply that F is empty.

Proof: The proof is similar to that of Theorem 2.6 so that it is omitted.

Theorem 3.12. If A is ${}^*\lambda_\mu - g_\mu$ -closed set in a GTS (X, μ) , then $c_{\lambda_\mu}(A) \setminus A$ contains no non empty λ_μ -closed (λ_μ -open / μ -open / μ -closed) subset of X .

Proof: The proof is similar to that of Theorem 2.7 so that it is omitted.

Example 3.13 shows that the converse of above Theorem is not true.

Example 3.13. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b, c\}, \{b, c, d\}, X\}$. If $A = \{a, d\}$, $c_{\lambda_\mu}(A) \setminus A = \{b, c\}$, which does not contain both a nonempty μ -open set and λ_μ -open set but A is not ${}^*\lambda_\mu - g_\mu$ -closed set. If $B = \{c, d\}$, $c_{\lambda_\mu}(B) \setminus B = \{b\}$, which does not contain both a nonempty μ -closed set and λ_μ -closed set but B is not a ${}^*\lambda_\mu - g_\mu$ -closed set.

Theorem 3.14. Let (X, μ) be a GTS and A and B be subsets of X . If $A \subset B \subset c_{\lambda_\mu}(A)$ and A is ${}^*\lambda_\mu - g_\mu$ -closed set then B is ${}^*\lambda_\mu - g_\mu$ -closed.

Proof: If F is ${}^*\lambda_\mu$ -closed such that $F \subset c_{\lambda_\mu}(B) \setminus B$, then $F \subset c_{\lambda_\mu}(A) \setminus A$. Since A is ${}^*\lambda_\mu - g_\mu$ -closed, by Theorem 3.10, $F = \emptyset$ and so B is ${}^*\lambda_\mu - g_\mu$ -closed.

Theorem 3.15. Let A be a ${}^*\lambda_\mu - g_\mu$ -closed set in a quasi-topological space (X, μ) . Then the following hold:

- a). If A is a π -regular set, then $i_\pi(A)$ and $c_\sigma(A)$ are ${}^*\lambda_\mu - g_\mu$ -closed sets.
- b). If A is a σ -regular set, then $c_\pi(A)$ and $i_\sigma(A)$ are ${}^*\lambda_\mu - g_\mu$ -closed sets.

Proof: a). Since A is π -regular set, $c_\sigma(A) = A \cup i_\mu c_\mu(A) = A$ and $i_\pi(A) = A \cap i_\mu c_\mu(A) = A$. Thus $i_\pi(A)$ and $c_\sigma(A)$ are ${}^*\lambda_\mu - g_\mu$ -closed sets.

b). Since A is a σ -regular set, $c_\pi(A) = A$ and $i_\sigma(A) = A$. Thus $c_\pi(A)$ and $i_\sigma(A)$ are ${}^*\lambda_\mu - g_\mu$ -closed sets.

Remark 3.16. *The union (resp. intersection) of two ${}^*\lambda_\mu - g_\mu$ -closed sets need not be ${}^*\lambda_\mu - g_\mu$ -closed set.*

Example 3.17. *Let $X = \{a, b, c, d, e\}$ and $\mu = \{\emptyset, \{a\}, \{a, b, c\}, X\}$. Then $\{a\}$ and $\{d, e\}$ are ${}^*\lambda_\mu - g_\mu$ -closed sets but their union is not a ${}^*\lambda_\mu - g_\mu$ -closed set. Further $\{a, b, d\}$ and $\{a, c, d, e\}$ are ${}^*\lambda_\mu - g_\mu$ -closed sets but their intersection is not a ${}^*\lambda_\mu - g_\mu$ -closed set.*

4. ${}^{g*\lambda_\mu}$ - Closed sets

Definition 4.1. *Let (X, μ) be a GTS. A subset A of X is called ${}^{g*\lambda_\mu}$ -closed set if $c_{\lambda_\mu}(A) \subset U$ whenever $A \subset U$ and U is ${}^*\lambda_\mu$ -open set in X . The complements of a ${}^{g*\lambda_\mu}$ -closed sets are called ${}^{g*\lambda_\mu}$ -open sets.*

Theorem 4.2. *For a GTS (X, μ) , Every ${}^*\lambda_\mu$ -closed set is ${}^{g*\lambda_\mu}$ -closed.*

Proof: Let A be ${}^*\lambda_\mu$ -closed set and U be any ${}^*\lambda_\mu$ -open set containing A . Since A is ${}^*\lambda_\mu$ -closed, $c_{\lambda_\mu}(A) = A$. Therefore $c_{\lambda_\mu}(A) \subset U$ and hence A is ${}^{g*\lambda_\mu}$ -closed.

Corollary 4.3. *For a GTS (X, μ) , the following hold:*

- a). Every λ_μ -closed set is ${}^{g*\lambda_\mu}$ -closed.
- b). Every λ_μ -open set is ${}^{g*\lambda_\mu}$ -closed.
- c). Every μ -closed set is ${}^{g*\lambda_\mu}$ -closed.
- d). Every μ -open set is ${}^{g*\lambda_\mu}$ -closed.

Example 4.4 shows that the converse of Theorem 4.2 and the converses of a)-d) from corollary 4.3 are not true.

Example 4.4. *Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. If $A = \{c\}$ then A is neither μ -closed nor μ -open but it is ${}^{g*\lambda_\mu}$ -closed. If $B = \{a, b\}$, then B is neither λ_μ -closed but nor λ_μ -open but it is ${}^{g*\lambda_\mu}$ -closed. If $C = \{a, c\}$ then C is ${}^*\lambda_\mu$ -closed but is not ${}^{g*\lambda_\mu}$ -closed.*

Remark 4.5. *The concepts of $g - \lambda_\mu$ -closed set and ${}^{g*\lambda_\mu}$ -closed set are independent.*

Example 4.6. *Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b, c\}, \{b, c, d\}, X\}$. Then $\{a, d\}$ is ${}^{g*\lambda_\mu}$ -closed but $g - \lambda_\mu$ -closed and $\{c\}$ is $g - \lambda_\mu$ -closed but not ${}^{g*\lambda_\mu}$ -closed.*

Theorem 4.7 shows that the relation between ${}^{g*\lambda_\mu}$ -closed set and generalized closed sets defined in section 3.

Theorem 4.7. *For a GTS (X, μ) , Every ${}^*\lambda_\mu - g_\mu$ -closed set is ${}^{g*\lambda_\mu}$ -closed.*

Proof: Let A be a ${}^*\lambda_\mu - g_\mu$ -closed sets and U be an ${}^*\lambda_\mu$ -open set containing A in (X, μ) . Then $c_{\lambda_\mu}(A) \subset U$. Since $c_{\lambda_\mu}(A) \subset c_{\lambda_\mu}(A)$, we have $c_{\lambda_\mu}(A) \subset U$. Therefore A is ${}^{g*\lambda_\mu}$ -closed.

Example 4.8 shows that the converse of Theorem 4.7 is not true.

Example 4.8. *Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. If $A = \{a, c\}$ then A is ${}^{g*\lambda_\mu}$ -closed but not ${}^*\lambda_\mu - g_\mu$ -closed.*

5. A Unified framework of generalized closed sets in GTS'

Given an ordered pair of topologies (τ_1, τ_2) on X , a subset $A \subset X$ is said to be (i,j) -g-closed if $\tau_j - cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau_i$, where $i, j \in \{1, 2\}$ with $i \neq j$ [6]. This definition could be easily generalized: Given a pair of generalized topologies (μ_1, μ_2) on X , a subset $A \subset X$ is said to be $g(\mu_i, \mu_j)$ -closed if $c_{\mu_j}(A) \subset U$ whenever $A \subset U$ and $U \in \mu_i$, where $i, j \in \{1, 2\}$.

If $i = j$, the class of $g(\mu_i, \mu_i)$ -closed sets is the class of g_{μ_i} -closed sets.

Observation 5.1. For a space (X, μ_1, μ_2) , the following are hold:

- a). If $\mu_1 = \mu$ and μ_2 is the class of λ_μ -open sets, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is $g - \lambda_\mu$ -closed.
- b). If μ_1 is the class of λ_μ -open sets and $\mu_2 = \mu$, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is $\lambda_\mu - g$ -closed.
- c). If μ_1 is the class of ${}^* \lambda_\mu$ -open sets and $\mu_2 = \mu$, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is ${}^* \lambda_\mu - g$ -closed.
- d). If μ_1 is the class of ${}^* \lambda_\mu$ -open sets and μ_2 is the class of λ_μ -open sets, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is ${}^* \lambda_\mu - g_\mu$ -closed.
- e). If $\mu_1 = \mu_2$ represents the class of ${}^* \lambda_\mu$ -open sets, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is $g^* \lambda_\mu$ -closed.

Theorem 5.2. If $\mu_1 \subset \mu_2$, then:

- a). A is $g(\mu_2, \mu_1)$ -closed $\Rightarrow A$ is g_{μ_1} -closed and g_{μ_2} -closed.
- b). A is g_{μ_1} -closed $\Rightarrow A$ is $g(\mu_1, \mu_2)$ -closed.
- c). A is μ_1 -closed $\Rightarrow A$ is $g(\mu_2, \mu_1)$ -closed.

Proof: Since $\mu_1 \subset \mu_2$, we have $c_{\mu_2}(A) \subset c_{\mu_1}(A)$ for every $A \subset X$.

a) Let A be $g(\mu_2, \mu_1)$ -closed. Assume that $A \subset U$ and $U \in \mu_1$. We prove that $c_{\mu_1}(A) \subset U$. Since $\mu_1 \subset \mu_2$, we have $U \in \mu_2$. But A is $g(\mu_2, \mu_1)$ -closed, therefore $c_{\mu_1}(A) \subset U$.

Assume that $A \subset V$ and $V \in \mu_2$. We prove that $c_{\mu_2}(A) \subset V$. Since A is $g(\mu_2, \mu_1)$ -closed, we have $c_{\mu_1}(A) \subset V$. But $c_{\mu_2}(A) \subset c_{\mu_1}(A)$, hence $c_{\mu_2}(A) \subset V$.

b) Let A be g_{μ_1} -closed. Assume that $A \subset U$ and $U \in \mu_1$. We prove that $c_{\mu_2}(A) \subset U$. By our assumption, we have $c_{\mu_1}(A) \subset U$, but $c_{\mu_2}(A) \subset c_{\mu_1}(A)$, hence the claim follows.

c) Let A be μ_1 -closed. If $A \subset W$ and $W \in \mu_2$, then $c_{\mu_1}(A) = A \subset W$.

Theorem 5.3. Assume that $\mu'_1 \subset \mu''_1$ and $\mu''_2 \subset \mu'_2$. If A is $g(\mu''_1, \mu''_2)$ -closed, then A is $g(\mu'_1, \mu'_2)$ -closed.

Proof: Let A be $g(\mu''_1, \mu''_2)$ -closed. Consider $U \in \mu'_1$ such that $A \subset U$. We prove that $c_{\mu'_2}(A) \subset U$. Since $U \in \mu''_1$ and A is $g(\mu''_1, \mu''_2)$ -closed, we have $c_{\mu''_2}(A) \subset U$. But $\mu''_2 \subset \mu'_2$ implies $c_{\mu'_2}(A) \subset c_{\mu''_2}(A)$, therefore the claim holds true.

Remark 5.4. Assume that μ_1 and μ_2 are generalized topologies on X .

(i). Let $\mu_1 = \mu$ and μ_2 be the class of ${}^* \lambda_\mu$ -open sets. From remark 5.2 a), we obtain Theorem 2.4 (a) and Theorem 4.7.

(ii). Let $\mu_1 = \mu$ and μ_2 be the class of λ_μ -open sets. From remark 5.2 b), we recover the fact every g_μ -closed set $g - \lambda_\mu$ -closed. So Theorem 2.4 b), follows from this and Theorem 2.4.

(iii). Let μ'_1 be the class of λ_μ -open sets and μ''_1 be the class of ${}^*\lambda_\mu$ -open sets and take $\mu'_2 = \mu''_2 = \mu$. From Theorem 5.3, we obtain Theorem 2.4 c.

(iv) Let μ_1 be the class of ${}^*\lambda_\mu$ -open sets and μ_2 be the class of λ_μ -open sets. Since $\mu_2 \subset \mu_1$, by Theorem 5.2 we obtain that every ${}^*\lambda_\mu - g$ -closed set is g_{λ_μ} -closed (and g_{λ_μ} -closed). By Theorem 5.2 c) we get Theorem 3.2 a).

(v) Let $\mu'_1 = \mu$ and μ''_1 be the class of λ_μ^* -open sets, and let $\mu'_2 = \mu''_2$ be the class of λ_μ -open sets. From Theorem 5.3 we obtain Theorem 3.4.

(vi) Let $\mu'_1 = \mu''_1$ be the class of λ_μ^* -open sets and let μ'_2 be the class of λ_μ -open sets, while $\mu''_2 = \mu$. From Theorem 5.3 we get Theorem 3.6.

References

1. Bishwarbhar Roy and Erdal Ekici, On (\wedge, μ) -closed sets in Generalized topological spaces, Methods of Functional Analysis and Topology., 17(2)(2011), 174-179.
2. Á.Császár, Generalized open sets, Acta Math.Hungar., 75(1-2) (1997), 65-87.
3. Á.Császár, Further remark on the formula for γ -interior, Acta Math.Hungar., 113(4):(2006), 325-332.
4. Á.Császár, Generalized open sets in generalized topologies, Acta Math.Hungar., 2005, 106(53-66).
5. Á.Császár, δ – and θ – modifications of generalized topologies, Acta Math.Hungar., 120 (2008), 275-279.
6. E. Ekici and B. Roy , New generalized topologies on generalized topological spaces due to Császár, Acta Math.Hungar., 132(1-2) (2011),117-124.
7. E. Ekici, Generalized submaximal spaces, Acta Math.Hungar., 134(1-2) (2012),132-138.
8. A. Ghareeb and T. Noiri, \wedge -generalized closed sets in bitopological spaces, Journal of Egyptian Mathematical Society., 19 (2011) 142-145.
9. R. Jamunarani, P. Jeyanthi and M. Velrajan, Generalized λ_μ -closed sets in Generalized Topological Spaces, Journal of Advance Studies in Topology, Vol 4, No 3, 2013, 39-46.
10. P.Jeyanthi and P.Nalayini, ${}^*\wedge_\mu$ - sets and ${}^*\vee_\mu$ - sets in Generalized Topological Spaces., (Communicated).
11. S.Maragathavalli,M.Sheiljohn and D.Sivaraj, On g-closed sets in generalized topological spaces., Journal of Advanced Research in Pure Mathematics, Vol 2, 2010, (57-64).

P. Jeyanthi, P. Nalayini
 Research Centre
 Department of Mathematics
 Govindammal Aditanar College for Women
 Tiruchendur-628 215, Tamil Nadu, India
 E-mail address: jeyajeyanthi@rediffmail.com
 E-mail address: nalayini4@gmail.com

and

Marcelina Mocanu
 Department of Mathematics, Informatics and Education Sciences
 V. Alecsandri University of Bacau, Romania
 E-mail address: mmocanu@ub.ro