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Homotopy Analysis Method to determine Magneto Hydrodynamics

flow of compressible fluid in a channel with porous walls

R. Mohammadyari, J. Rahimi, I. Rahimipetroudi and M. Rahimi-Esbo

abstract: In this article magnetohydrodynamics (MHD) boundary layer flow
of compressible fluid in a channel with porous walls is researched. In this study
it is shown that the nonlinear Navier-Stokes equations can be reduced to an ordi-
nary differential equation, using the similarity transformations and boundary layer
approximations. Analytical solution of the developed nonlinear equation is carried
out by the Homotopy Analysis Method (HAM). In addition to applying HAM for
solving obtained equation, the result of the mentioned method is compared with a
type of numerical analysis as Boundary Value Problem method (BVP) and a good
agreement is seen. The effects of the Reynolds number and Hartman number are
investigated.
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Nomenclature

BVP boundary value problem method
B0 uniform static magnetic field
HAM Homotopy Analysis Method
~ Auxiliary parameter
H Auxiliary function
L Non-linear operator
f similarity function
H channel width (m)
M Hartman number
p Pressure(Pa)
Re Reynolds number
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u x velocity(m/s)
v y velocity(m/s)

Greek symbols

µ dynamic viscosity (N.s/m2)
ρ density (kg/m3)
σ electrical conductivity (Siemens/m, where Siemens=1/Ω)

1. Introduction

Magnetohydrodynamics is essential in plasma physics and astrophysics and
studies the motion of electrically conducting media in the presence of a magnetic
field. In natural systems include the Earth’s core and solar flares, and in the
engineering world, the electromagnetic casting of metals and the confinement of
plasmas MHD effects are important [1]. Recently reactor designs commonly in-
volve the use of electrically conducting liquid metals, in fusion engineering, are
much of the interest [2].
In recent decades many attempts have been made to develop analytical methods
for solving such nonlinear equations. One of them is the perturbation method [3],
which is strongly dependent on a so called small parameter to be defined according
to the physics of the problem. Thus, it is worth developing some new analytical
techniques,which are independent of defining a small parameter such as Homotopy
Perturbation Method (HPM) [4,5,6,7], Variational Iteration Method (VIM) [8,9].
In fact the perturbation method cannot provide a simple way to adjust and con-
trol the region and rate of convergence of a particular approximated series. Liao
introduced the basic idea of Homotopy in topology to propose a general analytical
method for nonlinear problems, namely the Homotopy Analysis Method [10,11],
that does not need any small parameter. This method has been successfully applied
to solve many types of nonlinear problems [12,13,14].
In order to determine the velocity components, HAM is applied to solve the result-
ing nonlinear differential equation. Then the solution is compared with Boundary
Value Problem Method. An ordinary non-linear differential equation can be derived
from the governing differential equations by using similarity transformation.

2. Description of the problem

The two-dimensional MHD flow of a compressible fluid in a porous channel
with suction and injection is investigated. The geometry of the problem is shown
in figure (1-a) and (1-b). The x-axis is taken along the centerline of the channel and
the y-axis transverse to these. The flow is symmetric about both axes. The porous
walls of the channel are at y = H/2 and y = ΓH/2. The fluid injection or suction
takes place through the porous walls with velocity V0/2. Here V0 > 0 corresponds to
suction and V0 < 0 for injection. Let u and v be the velocity components along the
x- and y-axes respectively, and B0 is a uniform static magnetic field in y-direction.
The compressible electrically conducting fluid that flows though the axial direction
in the channel will induce a magnetic field in the medium in an applied magnetic
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(a)

(b)

Figure 1: Axial section of the channel in case of (a) suction (b) injection

field. The magnetic Reynolds number (Rem = σµmUL) represents the relative
strength of the induced field. In the above relation the characteristics such as U
and L are the scale length and velocity and µm is magnetic permeability. If the
magnetic Reynolds number is small, the induced magnetic field will be neglected
[17]. It can be assumed that the electric field is zero as no external electric field is
applied and the effect of polarization of the ionized fluid is negligible. The equations
for the MHD boundary layer flow of a compressible fluid with are:

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (2.1)
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Assuming the symmetry about the x-axis and no-slip conditions at y = H/2, we
have:

∂u

∂y
= 0, v = 0, aty = 0

u = 0, v =
V0

2
y =

H

2

(2.3)

The Equation (4) represents the non-dimensional parameters to rewrite the Equa-
tion (2) in the non-dimensional form, in which f(y∗) is assumed as a similarity
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function.

x∗ =
x

H
, y∗ =

y

H
, u = −V0x

∗f ′(y∗), v = V0f(y
∗) (2.4)

Applying the above equation, Equations (2) and (3) may be written as:

f ′′′Re(f ′2 − ff ′′)−M2f ′ = 0 (2.5)

f = 0, f ′′ = 0 aty∗ = 0

f =
1

2
, f ′ = 0 aty∗ =

1

2

(2.6)

Where M2 = σB2
0H

2/µ and Re = ρHV0/µ are known as Hartman number and
Reynolds number respectively. To solve Equations (5) and (6), the DTM method
is employed.

3. Implementation of the Homotopy Analysis Method

For HAM solutions, we choose the initial guess and auxiliary linear operator in
the following form:

f0(y
∗) = −

1

2
y∗3 +

3

4
y∗, (3.1)

L(f) = f ′′′′, (3.2)

L

(

1

6
c1y

∗3 +
1

2
c2y

∗2 + c3y
∗ + c4 = 0

)

, (3.3)

Where ci(i = 1, 2, 3, 4) are constants. Let P ∈ [0, 1] denotes the embedding pa-
rameter and ~ indicates non-zero auxiliary parameters. We then construct the
following equations:
Zeroth-order deformation equations

(1 − P )L [F (y∗; p)− f0(y
∗)] = phH(y∗)N [F (y∗; p)] (3.4)

F (0; p) = 1; F ′′(0, p) = 0 F (
1

2
; p) =

1

2
, F ′(

1

2
; p) = 0 (3.5)

N [F (y∗; p)] =
d4F (y∗; p)

dy∗4
+Re

[
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dy∗
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− F (y∗; p)

d3F (y∗; p)
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]

(3.6)

−M2
d2F (y∗; p)

dy∗2

For p = 0 and p = 1 we have

F (y∗; 0) = f0(y
∗) F (y∗; 1) = f(y∗) (3.7)



Homotopy Analysis Method 177

When p increases from 0 to 1 then F (y∗; p) varies from f0(y
∗) to f(y∗). By Taylor’s

theorem and using equation (13), F (y∗; p) can be expanded in a power series of p
as follows:

F (y∗; p) = f0(y
∗) +

∞
∑

m−1

fm(y∗)pm , fm(y∗) =
1

m!

∂m(F (y∗; p))

∂pm

∣

∣

∣

∣

p=0

(3.8)

In which ~is chosen in such a way that this series is convergent at p = 1, therefore
we have through equation (14) that

f(y∗) = f0(y
∗) +

∞
∑

m−1

fm(y∗), (3.9)

mth -order deformation equations

L [fm(y∗)− χmfm−1(y
∗)] = hH(y∗)Rm(y∗) (3.10)
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2
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1

2
; p) = 0 (3.11)
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χm =

{

0, m ≤ 1
1, m > 1

(3.13)

Now we determine the convergency of the result, the differential equation, and the
auxiliary function according to the solution expression. So let us assume:

H(y∗) = 1 (3.14)

We have found the answer by maple analytic solution device. The first deformation
is presented below
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160
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)

y∗
(3.15)

The solutions f(y∗) were too long to be mentioned here, therefore, they are shown
graphically

4. Convergence of the HAM solution

As pointed out by Liao [11], the convergence region and rate of solution series
can be adjusted and controlled by means of the auxiliary parameter ~. To influence
of ~ on the convergence of solution, we plot the so-called ~-curve of f ′′′(0), as shown
in Figures. 2 (a-c). The solutions converge for ~ values which are corresponding
to the horizontal line segment in ~ curve. In order to investigate the range of
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(a) The ~- validity for M = 0 and differ-
ent value of Re

(b) The ~- validity for M = 0.9 and dif-
ferent value of Re

(c) The ~- validity for M = 1 and differ-
ent value of Re

(d) The ~- validity for M = 3 and differ-
ent value of Re

Figure 2: The ~- validity for different value of M and Re.

admissible values of the auxiliary parameter ~, for various quantities of Re and M ,
the curves of ~ were derived 9th-order approximations. Figures 2- 4 shows obtained
admissible values for auxiliary parameter ~. In our case study, it is easy to discover
that h = −1.5 is suitable value which is used for values of 0.1 < M < 0.9 and
−5 < Reω < 5.

5. Result and discussion

In the present study HAM method is applied to obtain an explicit analytic
solution of compressible fluid in a channel under the presence of uniform magnetic
field (Figure. 1). First, a comparison between the applied methods and numerical
method for different values of active parameters is shown in Figures. 2. The
numerical solution is performed using the algebra package Maple 16.0, to solve the



Homotopy Analysis Method 179

present case. The package uses a fourth order Runge-Kutta procedure for solving
nonlinear boundary value (B-V) problem [18,19]. Validity of HAM is shown in
Table 1 and Table 2. In these tables, the %Error is defined as:

%Error = |f(y)NUM − f(y)HAM | (5.1)

The results are proved to be precise and accurate in solving a wide range of math-
ematical and engineering problems especially Fluid mechanic cases. This accuracy
gives high confidence to us about validity of this problem and reveals an excellent
agreement of engineering accuracy. This investigation is completed by depicting the
effects of some important parameters to evaluate how these parameters influence
on this fluid.

In figures (3) to (6) the effects of Hartman number and Reynolds number on
the velocity components f and f ′ are investigated. From figures (3) and 5), it is
observed that as the Reynolds number and Hartman number increase, the similarity
function (f) decreases. In the figures (4) and (6), toward the center point from
y∗ = 0 to the suction side as the Hartman number and Reynolds number grow,
f ′ decreases, but then this parameter increases. Hence the profile of the velocity
component in x direction will have a common point that approximately takes place
in y∗ = 0.25. So the stated point can be interpreted as a critical point in the
formation of x direction flow.
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6. Conclusion

In this research, an analytic method for solving of the two-dimensional mag-
netohydrodynamics (MHD) boundary layer flow of compressible fluid has been
presented. Differential equations were transformed to algebraic equations, using
Homotopy Analysis Method (HAM). Then HAM is compared with Boundary Value
Problem (BVP) method as a numerical solution. The effects of different Reynolds
number and Hartman number were investigated for the similarity functions f, f ′

used to determine the velocity components. It was found from the results, as the
Hartman number and Reynolds number changed a common point appeared in the
profile of the velocity component in x direction. When the velocity injection in-
creased, it was clear that the suction force assisted the structural formation of
y direction flow. This research has been also proved that HAM includes of high
accuracy to solve different problems in the engineering field.
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Figure 3: Effects of the Reynolds number for f(y∗) on the 16th-order approximation
(M = 0.1)
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Figure 4: Effects of the Reynolds number for f ′(y∗) on the 16th-order approxima-
tion (M = 2)
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Figure 5: Effects of the Hartman number for f(y∗) on the 15th-order approximation
(Re = 1)
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Figure 6: Effects of the Hartman number for f ′(y∗) on the 15th-order approxima-
tion (Re = 1)
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