

(3s.) **v. 34** 1 (2016): 141–149. ISSN-00378712 in press doi:10.5269/bspm.v34i1.14611

A Decomposition of Pairwise Continuity via Ideals

T. Noiri, M. Rajamani and M. Maheswari

ABSTRACT: In this paper, we introduce and study the notions of (i, j)-regular-J-closed sets, (i, j)-A_J-sets, (i, j)-J-locally closed sets, p-A_J-continuous functions and p-J-LC-continuous functions in ideal bitopological spaces and investigate some of their properties. Also, a new decomposition of pairwise continuity is obtained using these sets.

Key Words: (j, i)-regular closed sets, (i, j)-A-sets, (i, j)-locally closed sets, (i, j)-regular-J-closed sets, (i, j)-A_J-sets, (i, j)-J-locally closed sets, p-A_J-continuous functions and p-J-LC-continuous functions.

Contents

1	Introduction and Preliminaries	141
2	(i, j)-Regular-J-closed sets	143
3	(i, j) - $A_{\mathcal{I}}$ -sets and (i, j) - \mathcal{I} -locally closed sets	145

4 Decomposition of Pairwise continuity 146

1. Introduction and Preliminaries

In 1963, J. C. Kelly [9] introduced the notion of bitopological spaces. Such spaces are equipped with two arbitrary topologies. B. Dvalishvili [3] introduced the concept of (i, j)-regular closed sets in bitopological spaces. In [8], M. Jelic introduced the concepts of (i, j)-A-sets, (i, j)-locally closed sets, p-A-continuity and p-LC-continuity in bitopological spaces. Throughout this paper, τ_j -cl(A) and τ_i -int(A) denote the closure of A with respect to τ_j and the interior of A with respect to τ_i and the spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) are bitopological spaces on which no separation axioms are assumed unless explicitly stated.

An ideal topological space is a topological space (X, τ) with an ideal \mathfrak{I} on X and is denoted by (X, τ, \mathfrak{I}) . The subject of ideals in topological spaces has been introduced and studied by Kuratowski [11] and Vaidyanathaswamy [17].

Let (X, τ_1, τ_2) be a bitopological space and let \mathcal{I} be an *ideal* of subsets of X. An *ideal bitopological* space is a bitopological space (X, τ_1, τ_2) with an ideal \mathcal{I} on X and is denoted by $(X, \tau_1, \tau_2, \mathcal{I})$. For a subset A of X and $j = 1, 2, A^*_{\tau_j}(\mathcal{I}) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau_j(X, x)\}$ is called the *local function* [11] of A with respect to \mathcal{I} and τ_j . We simply write A^*_j instead of $A^*_{\tau_j}(\mathcal{I})$ in case there is no chance for confusion. For every ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$, there exists

²⁰⁰⁰ Mathematics Subject Classification: 54A05

a topology $\tau_i^*(\mathfrak{I})$, finer than τ_j . Additionally, τ_j - $cl^*(A) = A \cup A_i^*$ defines a Kuratowski closure operator [18] for $\tau_i^*(\mathcal{I})$. Also, τ_j -cl^{*}(A) $\subseteq \tau_j$ -cl(A) for any subset A of X. The hypothesis $X = X_i^*$ is equivalent to the hypothesis $\tau_i \cap \mathcal{I} = \emptyset$. In an ideal topological spaces (X, τ, \mathcal{I}) , a space is called Hayashi-Samuels space if $\tau \cap \mathcal{I} = \emptyset$. In an ideal bitopological spaces $(X, \tau_1, \tau_2, \mathcal{I})$, we call a space is a Hayashi-Samuels space if $\tau_i \cap \mathcal{I} = \emptyset$, j = 1 or 2. For every ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$, there exists a topology $\tau_j^*(\mathcal{I})$, finer than τ_j , generated by $\beta(\mathcal{I}, \tau_j) = \{U - I : U \in \tau_j \text{ and }$ $I \in \mathcal{I}$, but in general $\beta(\mathcal{I}, \tau_j)$ is not always a topology. If $\mathcal{I} = \{\emptyset\}$, then $A_j^* = \tau_j$ cl(A). Hence in this case $\tau_j - cl^*(A) = \tau_j - cl(A)$ and $\tau_j^* = \tau_j$. If $\mathcal{I} = \mathcal{P}(X)$, then $A_i^* = \emptyset$ for every $A \subseteq X$. The family of all nowhere dense subsets of a bitopological space (X, τ_1, τ_2) is defined by $ij - \mathcal{N} = \{A \subseteq X : \tau_i - int(\tau_j - cl(A)) = \emptyset\}$, where i, j = 1, 2 and $i \neq j$. Recently, M. Rajamani et al. [14] introduced the notions of $(i, j) - B_{\mathcal{I}}$ -sets, $(i, j) - C_{\mathcal{I}}$ -sets, $(i, j) - S_{\mathcal{I}}$ -sets, $(i, j) - \alpha$ - \mathcal{I} -open sets, (i, j)-semi- \mathcal{I} -open sets, (i, j)-pre-J-open sets and (i, j)- β -J-open sets and obtained decompositions of pairwise continuity. In this paper, we introduce the notions of (i, j)-regular-J-closed sets, (i, j)- $A_{\mathcal{I}}$ -sets, (i, j)- \mathcal{I} -locally closed sets, p- $A_{\mathcal{I}}$ -continuous functions and p- \mathcal{I} -LC-continuous functions to obtain another decomposition of pairwise continuity in ideal bitopological spaces.

Definition 1.1. A subset A of a space (X, τ_1, τ_2) is said to be

- 1. (i, j)-regular closed [3] if $A = \tau_i cl(\tau_j int(A))$,
- 2. (i, j)-semi-open [12] if $A \subseteq \tau_j$ -cl $(\tau_i$ -int(A)),
- 3. (i, j)-pre-open [8] if $A \subseteq \tau_i$ -int $(\tau_j$ -cl(A)),
- 4. (i, j)- α -open [15] if $A \subseteq \tau_i$ -int $(\tau_j$ -cl $(\tau_i$ -int(A))),
- 5. (i, j)- α^* -set [16] if τ_i -int(A) = τ_i -int(τ_j -cl(τ_i -int(A))),
- 6. (i, j)-A-set [8] if $A = U \cap V$, where U is τ_i -open and V is (j, i)-regular closed, 7. (i, j)-locally closed set (briefly (i, j)-LC-set) [8] if $A = U \cap V$, where U is τ_i -open

and V is τ_j -closed, 8. (i, j)-C-set [16] if $A = U \cap V$, where U is τ_i -open and V is an (i, j)- α^* -set, where $i \neq j, i, j = 1, 2$.

Definition 1.2. A subset A of an ideal topological space (X, τ, J) is said to be

- 1. *-dense-in-itself [5] if $A \subseteq A^*$,
- 2. τ^* -closed [6] if $A^* \subseteq A$,
- 3. *-perfect [5] if $A = A^*$,
- 4. α -J-open [4] if $A \subseteq int(cl^*(int(A)))$,
- 5. semi-J-open [4] if $A \subseteq cl^*(int(A))$,
- 6. pre-J-open [2] if $A \subseteq int(cl^*(A))$,
- 7. $\operatorname{J-open}[\gamma]$ if $A \subseteq int(A^*)$,
- 8. α^* -J-set [4] if $int(A) = int(cl^*(int(A)))$,
- 9. regular-J-closed [10] if $A = (int(A))^*$,
- 10. J-locally closed [2] if $A = U \cap V$, where $U \in \tau$ and V is *-perfect,
- 11. $C_{\mathfrak{I}}$ -set [4] if $A = U \cap V$, where $U \in \tau$ and V is an α^* - \mathfrak{I} -set,
- 12. $A_{\mathfrak{I}}$ -set [10] if $A = U \cap V$, where $U \in \tau$ and V is a regular- \mathfrak{I} -closed set.

Definition 1.3. [14] A subset A of an ideal bitopological space (X, τ_1, τ_2, J) is said to be

1. (i, j)-pre-J-open if $A \subseteq \tau_i$ -int $(\tau_j$ -cl*(A)),

- 2. (i, j)-J-open if $A \subseteq \tau_i$ -int (A_i^*) ,
- 3. (i, j)-semi-J-open if $A \subseteq \tau_j$ -cl* $(\tau_i$ -int(A)),
- 4. (i, j)- α - \mathcal{J} -open if $A \subseteq \tau_i$ -int $(\tau_j$ - $cl^*(\tau_i$ -int(A))),
- 5. (i, j)- α^* -J-set if τ_i -int $(\tau_j$ - $cl^*(\tau_i$ -int $(A))) = \tau_i$ -int(A),

6. (i, j)- $C_{\mathfrak{I}}$ -set if $A = U \cap V$, where $U \in \tau_i$ and V is an (i, j)- α^* - \mathfrak{I} -set, where $i \neq j$, i, j = 1, 2.

Lemma 1.4. [6] Let (X, τ) be a topological space with ideals \mathfrak{I} and \mathfrak{J} and \mathfrak{A} , B subsets of X. Then the following properties hold:

1. If $A \subseteq B$, then $A^* \subseteq B^*$, 2. If $\mathfrak{I} \subseteq \mathfrak{J} \Rightarrow A^*(\mathfrak{J}) \subseteq B^*(\mathfrak{I})$, 3. $A^* = cl(A^*) \subseteq cl(A)$, 4. $(A^*)^* \subseteq A^*$, 5. $(A \cup B)^* = A^* \cup B^*$.

Lemma 1.5. [14] Let $(X, \tau_1, \tau_2, \mathfrak{I})$ be an ideal bitopological space and let $\mathfrak{I} = ij$ - \mathfrak{N} be the family of all nowhere dense subsets of (X, τ_1, τ_2) . Then $A_i^*(\mathfrak{I}) = \tau_j - cl(\tau_i - int(\tau_j - cl(A))).$

Lemma 1.6. [14] Let $(X, \tau_1, \tau_2, \mathfrak{I})$ be an ideal bitopological space and $\mathfrak{I} = \{\emptyset\}$ or $\mathfrak{I} = ij$ -N. Then a subset A of X is (i, j)-pre- \mathfrak{I} -open if and only if A is (i, j)-preopen.

2. (i, j)-Regular-J-closed sets

Definition 2.1. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be (i, j)-regular- \mathcal{I} -closed if $A = (\tau_i \text{-}int(A))_i^*$.

Proposition 2.2. For a subset of an ideal bitopological space (X, τ_1, τ_2, J) , the following hold:

1. Every (i, j)-regular-J-closed set is (i, j)- α^* -J-set and (i, j)-semi-J-open.

2. Every (i, j)-regular-J-closed set is τ_j -*-perfect.

Proof: (1) Let A be an (i, j)-regular-J-closed set. Then, we have τ_j - $cl^*(\tau_i$ - $int(A))) = \tau_i$ - $int(A) \cup (\tau_i$ - $int(A))_j^* = \tau_i$ - $int(A) \cup A = A$. Thus τ_i - $int(\tau_j$ - $cl^*(\tau_i$ - $int(A))) = \tau_i$ -int(A) and $A \subseteq \tau_j$ - $cl^*(\tau_i$ -int(A)). Therefore, A is (i, j)- α^* -J-set and (i, j)-semi-J-open.

2. Let A be an (i, j)-regular-J-closed set. Then, $A = (\tau_i \text{-}int(A))_j^*$. Since $\tau_i \text{-}int(A) \subseteq A$, $(\tau_i \text{-}int(A))_j^* \subseteq A_j^*$ by (1) of Lemma 1.4. Then we have $A = (\tau_i \text{-}int(A))_j^* \subseteq A_j^*$. On the other hand, by (5) of Lemma 1.4, $A_j^* = ((\tau_i \text{-}int(A))_j^*)_j^* \subseteq (\tau_i \text{-}int(A))_j^* = A$. Therefore, we obtain $A = A_j^*$. Thus, A is τ_j -*-perfect. \Box

Remark 2.3. The converses of Proposition 2.2 need not be true as the following examples show.

Example 2.4. Let $X = \mathbb{R}$, $\tau_1 = \tau_2 =$ usual topology on \mathbb{R} and \mathfrak{I} be the ideal of finite subsets of \mathbb{R} . Let $A = \mathbb{Q}$. Then A is (1,2)- α^* - \mathfrak{I} -set but it is not (1,2)-regular- \mathfrak{I} -closed.

Example 2.5. Let $X = \mathbb{R}$, $\tau_1 = \tau_2 =$ usual topology on \mathbb{R} and \mathfrak{I} be the ideal of finite subsets of (0,1]. Let A = (0,1]. Then A is (1,2)-semi- \mathfrak{I} -open but it is not (1,2)-regular- \mathfrak{I} -closed.

Example 2.6. Let $X = \mathbb{N}$, $\tau_1 = \{\emptyset, \{1\}, \{1,2\}, \{1,2,3\}, ...\}, \tau_2 = \mathcal{P}(\mathbb{N})$ and $\mathcal{I} = \mathcal{P}(2\mathbb{N} - 1)$, where $2\mathbb{N} - 1$ denotes the set of all odd natural numbers. Let $A = \{2, 4, 6, 8, ...\}$. Then A is τ_2 -*-perfect but it is not (1, 2)-regular- \mathcal{I} -closed.

Corollary 2.7. Every (i, j)-regular-J-closed set is τ_j^* -closed and τ_j -*-dense-initself.

Proof: The proof is obvious from (2) of Proposition 2.2.

Proposition 2.8. In an ideal bitopological space (X, τ_1, τ_2, J) , every (i, j)-regular-J-closed set is (j, i)-regular closed.

Proof: Let A be any (i, j)-regular-J-closed set. Then, we have $A = (\tau_i \operatorname{-int}(A))_j^*$. Thus, $\tau_j \operatorname{-cl}(A) = \tau_j \operatorname{-cl}((\tau_i \operatorname{-int}(A))_j^*) = (\tau_i \operatorname{-int}(A))_j^* = A$ by (3) of Lemma 1.4. Also from (3) of Lemma 1.4, we have $(\tau_i \operatorname{-int}(A))_j^* \subseteq \tau_j \operatorname{-cl}(\tau_i \operatorname{-int}(A))$ and hence $A = (\tau_i \operatorname{-int}(A))_j^* \subseteq \tau_j \operatorname{-cl}(\tau_i \operatorname{-int}(A)) \subseteq \tau_j \operatorname{-cl}(A) = A$. Thus we have $A = \tau_j \operatorname{-cl}((\tau_i \operatorname{-int}(A)))$ and hence $A = (\tau_i \operatorname{-int}(A))_j^* \subseteq \tau_j \operatorname{-cl}(\tau_i \operatorname{-int}(A)) \subseteq \tau_j \operatorname{-cl}(A) = A$. Thus we have $A = \tau_j \operatorname{-cl}((\tau_i \operatorname{-int}(A)))$ and hence $A = (\tau_i \operatorname{-int}(A) \operatorname{-int}(A) \operatorname{-int}(A) \subseteq \tau_j \operatorname{-cl}(A) = A$.

Remark 2.9. The converse of Proposition 2.8 need not be true as the following example shows.

Example 2.10. Let $X = \mathbb{R}$, $\tau_1 = \tau_2 =$ usual topology on \mathbb{R} and $\mathfrak{I} = \mathcal{P}(\mathbb{R})$. Let A = [0, 1]. Then A is (2, 1)-regular closed which is not (1, 2)-regular- \mathfrak{I} -closed.

Proposition 2.11. Every τ_j^* -closed set is an (i, j)- α^* -J-set in an ideal bitopological space (X, τ_1, τ_2, J) .

Proof: Let A be τ_j^* -closed. Then we have $\tau_i \operatorname{-int}(\tau_j \operatorname{-cl}^*(\tau_i \operatorname{-int}(A))) \subseteq \tau_i \operatorname{-int}(\tau_j \operatorname{-cl}^*(A)) = \tau_i \operatorname{-int}(A)$, because A is τ_j^* -closed. Also, $\tau_i \operatorname{-int}(A) \subseteq \tau_j \operatorname{-cl}^*(\tau_i \operatorname{-int}(A))$. Clearly, $\tau_i \operatorname{-int}(A) \subseteq \tau_i \operatorname{-int}(\tau_j \operatorname{-cl}^*(\tau_i \operatorname{-int}(A)))$. This shows that A is $(i, j) \operatorname{-a}^* \operatorname{-J-open}$.

Example 2.12. The converse of the above proposition need not be true. In Example 2.4, the set $A = \mathbb{Q}$ is $(1, 2) - \alpha^*$ -J-set but it is not τ_2^* -closed.

Proposition 2.13. Let $(X, \tau_1, \tau_2, \mathfrak{I})$ be an ideal bitopological space and $\mathfrak{I} = \{\emptyset\}$ or $\mathfrak{I} = ij$ - \mathfrak{N} , where ij- \mathfrak{N} is the ideal of all nowhere dense sets in (X, τ_1, τ_2) . Then a subset A of X is (i, j)-regular- \mathfrak{I} -closed if and only if A is (j, i)-regular closed.

Proof: By Proposition 2.8, we need to show only sufficiency in both cases.

If $\mathcal{I} = \{\emptyset\}$, then $A_j^*(\{\emptyset\}) = \tau_j - cl(A)$. If A is (j, i)-regular closed, we have $(\tau_i - int(A))_j^* = \tau_j - cl(\tau_i - int(A)) = A$. Thus A is (i, j)-regular- \mathcal{I} -closed.

If $\mathcal{I} = ij - \mathcal{N}$, then $A_j^*(ij - \mathcal{N}) = \tau_j - cl(\tau_i - int(\tau_j - cl(A)))$, for any subset A of X. If A is (j, i)-regular closed, we obtain $(\tau_i - int(A))_j^* = \tau_j - cl(\tau_i - int(\tau_j - cl(\tau_i - int(A)))) = \tau_j - cl(\tau_i - int(A)) = A$. This shows that A is (i, j)-regular- \mathcal{I} -closed. \Box

144

Remark 2.14. Following examples show that the notion of (i, j)-regular-Jclosedness is independent with the notions of τ_i -openness and (i, j)- α -J-openness.

Example 2.15. In Example 2.5, the set A = [0, 1] is (1, 2)-regular-J-closed which is not τ_1 -open and (1, 2)- α -J-open.

Example 2.16. Let $X = \mathbb{R}$, $\tau_1 = \{\emptyset, \mathbb{Q}, X\}$, $\tau_2 = usual topology on <math>\mathbb{R}$ and $\mathfrak{I} = \mathcal{P}(\mathbb{Q})$. Let $A = \mathbb{Q}$. Then the set A is τ_1 -open and (1, 2)- α - \mathfrak{I} -open but it is not (1, 2)-regular- \mathfrak{I} -closed.

Remark 2.17. From the above definitions and results, we have the following diagram. None of them is reversible.

τ_{i}^{*} -closed	\longrightarrow (i,j) - α^* - \mathcal{I} -open	(i, j) - α - \mathcal{I} - $open$
\uparrow	\uparrow	\downarrow
τ_j -*-perfect \leftarrow	(i, j) -regular- \mathcal{I} -closed \longrightarrow	(i, j) -semi- \Im -open
\downarrow	\downarrow	\downarrow
τ_j -*-dense-in-itself	(j,i)-regular closed	$\longrightarrow (i, j)$ -semi-open

Remark 2.18. We can say that (j, i)-regular closed and τ_j -*-dense-in-itself are independent. In Example 2.10, the set A = [1, 2] is (2, 1)-regular closed but not τ_2 -*-dense-in-itself. Also, in Example 2.4 the set $A = \mathbb{Q}$ is τ_2 -*-dense-in-itself but not (2, 1)-regular closed.

3. (i, j)-A_J-sets and (i, j)-J-locally closed sets

Definition 3.1. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathfrak{I})$ is called an

1. (i, j)-A_J-set if $A = U \cap V$, where $U \in \tau_i$ and V is an (i, j)-regular-J-closed set,

2. (i, j)-J-locally-closed set (briefly (i, j)-J-LC set) if $A=U \cap V$, where $U \in \tau_i$ and V is τ_j -*-perfect.

Proposition 3.2. Let (X, τ_1, τ_2, J) be an ideal bitopological space and A a subset of X. Then the following hold:

1. If A is a τ_i -open set and $(X, \tau_1, \tau_2, \mathfrak{I})$ is a Hayashi-Samuels space, then A is an (i, j)-A_I-set.

2. If A is an (i, j)-regular-J-closed set, then A is an (i, j)-A_J-set.

Proof: Since $X \in \tau_i$ and X is an (i, j)-regular-J-closed set, the proof is obvious.

Remark 3.3. The converses of Proposition 3.2 need not be true as the following example shows.

Example 3.4. Let $X = \mathbb{R}$, $\tau_1 = \{\emptyset, \mathbb{Q}, X\}$, $\tau_2 = usual topology on \mathbb{R}$ and \Im be the ideal of finite subsets of \mathbb{R} . Let $A = \mathbb{Q}$. Then A is a (1,2)-A_J-set but it is not (1,2)-regular-J-closed. In Example 2.5, the set A = [0,1] is a (1,2)-A_J-set but it is not τ_1 -open.

Proposition 3.5. Let (X, τ_1, τ_2, J) be an ideal bitopological space and A a subset of X. Then the following hold:

1. If A is an (i, j)-A_J-set then A is an (i, j)-C_J-set and an (i, j)-J-locally-closed set.

2. If A is an (i, j)-A_J-set then A is an (i, j)-A-set.

Proof: This is an immediate consequence of Proposition 2.2 and 2.8.

Remark 3.6. The converses of Proposition 3.5 need not be true. In Example 2.10, the set A = [1,2] is a (1,2)-A-set but it is not a (1,2)-A_J-set. In Example 2.16, the set $A = \mathbb{Q} \cup \{\sqrt{2}\}$ is a (1,2)-C_J-set but it is not a (1,2)-A_J-set. In Example 2.6, the set $A = \{2,4,6,8,...\}$ is (1,2)-J-locally-closed but it is not a (1,2)-A_J-set.

Proposition 3.7. For a subset A of a Hayashi-Samuels space (X, τ_1, τ_2, J) , the following are equivalent:

1. A is a τ_i -open set.

2. A is an (i, j)- α -J-open set and an (i, j)- A_{J} -set.

3. A is an (i, j)-pre-J-open set and an (i, j)-A_J-set.

Proof: $1 \Rightarrow 2$. Let A be a τ_i -open set. Hence A is an (i, j)- α - \mathcal{I} -open set. On the other hand, $A = A \cap X$, where $A \in \tau_i$ and X is an (i, j)-regular- \mathcal{I} -closed set. Hence A is an (i, j)- $A_{\mathcal{I}}$ -set.

 $\mathbf{2} \Rightarrow \mathbf{3}$. This is obvious since every (i, j)- α -J-open set is (i, j)-pre-J-open.

4. Decomposition of Pairwise continuity

Definition 4.1. [13] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be pcontinuous if the induced mappings $f : (X, \tau_k) \to (Y, \sigma_k), (k = 1, 2)$ are continuous.

Definition 4.2. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $p - \alpha$ continuous [15] (resp. p-pre-continuous [8], p-A-continuous [8] if for every $V \in \sigma_i$, $f^{-1}(V)$ is $(i, j) - \alpha$ -open (resp.(i, j)-pre-open, (i, j)-A-set) of (X, τ_1, τ_2) .

Definition 4.3. [14] A function $f : (X, \tau_1, \tau_2, \mathfrak{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be p- α - \mathfrak{I} -continuous (resp. p-pre- \mathfrak{I} -continuous, p- $C_{\mathfrak{I}}$ -continuous) if for every $V \in \sigma_i$, $f^{-1}(V)$ is (i, j)- α - \mathfrak{I} -open (resp. (i, j)-pre- \mathfrak{I} -open, (i, j)- $\mathcal{C}_{\mathfrak{I}}$ -set) of $(X, \tau_1, \tau_2, \mathfrak{I})$.

Definition 4.4. A function $f : (X, \tau_1, \tau_2, \mathfrak{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be p- $A_{\mathfrak{I}}$ continuous (resp. p- \mathfrak{I} -LC-continuous) if for every $V \in \sigma_i$, $f^{-1}(V)$ is an (i, j)- $A_{\mathfrak{I}}$ set (resp. (i, j)- \mathfrak{I} -LC-set) of $(X, \tau_1, \tau_2, \mathfrak{I})$.

146

Proposition 4.5. 1. Every p-A_J-continuous function is p-C_J-continuous.
2. Every p-A_J-continuous function is p-J-LC-continuous.
3. Every p-A_J-continuous function is p-A-continuous.

Proof: The proof follows from Proposition 3.5.

Remark 4.6. The converses of Proposition 4.5 need not be true as seen from the following examples show.

Example 4.7. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{c\}, \{a, b\}, X\}$ and an ideal $\Im = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and let $Y = \{p, q, r\}$ with topologies $\sigma_1 = \{\emptyset, \{r\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p, q\}, Y\}$. Let $f : (X, \tau_1, \tau_2, \Im) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function defined as f(a) = p and f(b) = q and f(c) = r. Then f is p- C_3 -continuous but not p- A_3 -continuous.

Example 4.8. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{c\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and an ideal $\Im = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and let $Y = \{p, q, r\}$ with topologies $\sigma_1 = \{\emptyset, \{q\}, \{q, r\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p\}, Y\}$. Let $f: (X, \tau_1, \tau_2, \Im) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function defined as f(a) = p, f(b) = qandf(c) = r. Then f is p- $\Im LC$ -continuous but not p- A_{\Im} -continuous.

Example 4.9. Let $X = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{d\}, \{a, d\}, X\}$ and an ideal $\Im = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$ and let $Y = \{p, q, r\}$ with topologies $\sigma_1 = \{\emptyset, \{q, r\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p\}, Y\}$. Let $f : (X, \tau_1, \tau_2, \Im) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function defined as f(a) = r, f(b) = f(c) = q and f(d) = p. Then f is p-A-continuous but not p- A_{\Im} -continuous.

Theorem 4.10. Let $(X, \tau_1, \tau_2, \mathfrak{I})$ be a Hayashi-Samuels space. For a function $f : (X, \tau_1, \tau_2, \mathfrak{I}) \to (Y, \sigma_1, \sigma_2)$, the following are equivalent:

- 2. f is p- α -J-continuous and p-A_J-continuous.
- 3. f is p-pre-J-continuous and p-A_J-continuous.

Proof: The proof is obvious from Proposition 3.7.

Corollary 4.11. Let $(X, \tau_1, \tau_2, \mathfrak{I})$ be an ideal bitopological space and $\mathfrak{I} = \{\emptyset\}$ or *ij*-N. For a function $f : (X, \tau_1, \tau_2, \mathfrak{I}) \to (Y, \sigma_1, \sigma_2)$, the following are equivalent: 1. *f* is *p*-continuous.

- 2. f is p- α -continuous and p-A-continuous.
- 3. f is p-pre-continuous and p-A-continuous.

Proof: 1 Let $I = \{\emptyset\}$. Then we have $A_j^* = \tau_j - cl(A)$ and hence $\tau_j - cl^*(A) = \tau_j - cl(A)$ for any subset A of X. Therefore, we obtain A is $(i, j) - \alpha$ -J-open if and only if it is $(i, j) - \alpha$ -open. By Proposition 2.13, A is an $(i, j) - A_J$ -set if and only if it is an (i, j)-A-set and A is (i, j)-pre-J-open if and only if it is (i, j)-pre-open. The proof of the corollary follows immediately from Lemma 1.6 and Theorem 4.10.

^{1.} f is p-continuous.

2 Let $\mathcal{I} = ij$ -N. Then we have $A_j^* = \tau_j \cdot cl(\tau_i \cdot int(\tau_j \cdot cl(A)))$ and $\tau_j \cdot cl^*(A) = A \cup A_j^* = A \cup \tau_j \cdot cl(\tau_i \cdot int(\tau_j \cdot cl(A)))$ for any subset A of X. Therefore, $\tau_i \cdot int(\tau_j \cdot cl^*(\tau_i \cdot int(A))) = \tau_i \cdot int[\tau_i \cdot int(A) \cup \tau_j \cdot cl(\tau_i \cdot int(\tau_j \cdot cl(\tau_i \cdot int(A))))] = \tau_i \cdot int[\tau_i \cdot int(A) \cup \tau_j \cdot cl(\tau_i \cdot int(A)))] = \tau_i \cdot int[\tau_i \cdot int(A) \cup \tau_j \cdot cl(\tau_i \cdot int(A))]$. We obtain A is $(i, j) \cdot \alpha$ - \mathcal{I} -open if and only if it is $(i, j) \cdot \alpha$ -open. By Proposition 2.13, A is an $(i, j) \cdot \alpha$ - \mathcal{I} -set if and only if it is $(i, j) \cdot \alpha$ -open. The proof of the corollary follows immediately from Lemma 1.6 and Theorem 4.10. \Box

References

- M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32(1992), 21-30.
- J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arXiv:Math/9901017v1 5 Jan. 1999(Internet).
- B. Dvalishvili, On dimension and some other problems of bitopological spaces, Trudi Tbil. Math. Instituta, T.LVI(1977), 15-52.
- E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- 5. E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- D. Jankovic and T. R. Hamlett, Compatible extension of ideals, Boll. U. M. I., (7)6-B(3)(1992), 453-465.
- M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math, Ser. 3(1990), 25-29.
- 9. J. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- A. Keskin, T. Noiri and S. Yuksel, *Idealization of a decomposition theorem*, Acta Math. Hungar., **102(4)**(2004), 269-277.
- 11. K. Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- S. N. Maheshwari and R. Prasad, Semi-open sets and semi-continuous function in bitopological spaces, Math Notae, 26 (1977-78), 29-37.
- 13. W. J. Pervin, Connectedness in bitopological spaces, Indag. Math. 29 (1967), 369-372.
- M. Rajamani, V. Inthumathi and M. Maheswari, Decompositions of pairwise continuity in ideal bitopological spaces, J. Adv. Res. Pure Math., 4(3) (2012), 8-18.
- S. Sampath Kumar, On decomposition of pairwise continuity, Bull. Cal. Math. Soc. 89 (1997), 441-446.
- P. Sundaram and M. Rajamani, Another Decomposition of pairwise continuity, Proc. of the Annual Conference of KMA and International Seminar on Mathematics Tradition of Kerala, St. Dominic's College, Kanjirapally, Jan. 17-19(2000), 70-71.
- R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci. 20(1945), 51-61.
- 18. R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, New York, 1960.

T. Noiri 2949-I Shiokita-Cho, Hinagu, Yatsushiro-Shi, Kumamoto-Ken, 869-5142, Japan E-mail address: t.noiri@nifty.com

and

M. Rajamani and M. Maheswari Department of Mathematics, NGM College, Pollachi - 642 001, Tamil Nadu, India. E-mail address: mahimrk@gmail.com