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Ideally slowly oscillating sequences

B. Hazarika

abstract: An ideal I is a family of subsets of positive integers N which is closed
under taking finite unions and subsets of its elements. In this paper, we introduce the
notion of ideally slowly oscillating sequences, which is lying between ideal convergent
and ideal quasi-Cauchy sequences, and study on ideally slowly oscillating continuous
functions, and ideally slowly oscillating compactness.
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1. Introduction

The idea of statistical convergence first appeared, under the name of almost
convergence, in the first edition of celebrated monograph [37] of Zygmund. Later,
this idea was introduced by Fast [22] and Steinhaus [34]. Actually, this concept is
based on the natural density of subsets of N of positive integers. A subset E of N
is said to have natural or asymptotic density δ(E), if

δ(E) = lim
n→∞

|E(n)|

n
exists,

where E(n) = {k ≤ n : k ∈ E} and |E| denotes the cardinality of the set E.

Any number sequence x = (xk) is said to be statistically convergent to the
number L if for each ε > 0, δ({k ∈ N : |xk − L| ≥ ε}) = 0, i.e.

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

Kostyrko et al. [29] introduced the notion of ideal convergence which is a
generalization of statistical convergence (see [23]) based on the structure of the
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admissible ideal I of subsets of natural numbers N.

A family of sets I ⊂ P (N) (the power sets of N) is said to be an ideal on N if
and only if

(i) φ ∈ I

(ii) for each A,B ∈ I, we have A ∪B ∈ I

(ii) for each A ∈ I and each B ⊂ A, we have B ∈ I.

A non-empty family of sets F ⊂ P (N) is said to be a filter on N if and only if

(i) φ /∈ F

(ii) for each A,B ∈ F, we have A ∩B ∈ F

(iii) each A ∈ F and each B ⊃ A, we have B ∈ F.

An ideal I is called non-trivial ideal if I 6= φ and N /∈ I. Clearly I ⊂ P (N) is a
non-trivial ideal if and only if F = F (I) = {N − A : A ∈ I} is a filter on N. A
non-trivial ideal I ⊂ P (N) is called admissible if and only if {{n} : n ∈ N} ⊂ I.

Recall that a sequence x = (xn) of points in R is said to be I-convergent to the
number ℓ if for every ε > 0, the set {n ∈ N : |xn − ℓ| ≥ ε} ∈ I. In this case we write
I-limxn = ℓ. A sequence x = (xn) of points in R is said to be I-quasi-Cauchy if
I − limn(xn+1 − xn) = 0. We see that I-convergence of a sequence (xn) implies
I-quasi-Cauchyness of (xn). We note that the definition of a quasi-Cauchy sequence
is a special case of an ideal quasi-Cauchy sequences where I is taken as the finite
subsets of the set of positive integers. Cakalli and Hazarika [3] introduced the con-
cept of ideal quasi Cauchy sequences and proved some results related to ideal ward
continuity and ideal ward compactness. For more details on ideal convergence we
refer to [25,26,27,28,32,33].

A real valued function is continuous on the set of real numbers if and only if it
preserves Cauchy sequences. Using the idea of continuity of a real function and the
idea of compactness in terms of sequences, many kinds of continuities were intro-
duced and investigated, not all but some of them we recall in the following: forward
continuity [6], slowly oscillating continuity [9,14,15,21], statistical ward continu-
ity [7], δ-ward continuity [11], ideal ward continuty [3,12], Nθ-ward continuity
[4,5] and λ-statistical ward continuity [13]. The concept of a Cauchy sequence
involves far more than that the distance between successive terms is tending to
zero. Nevertheless, sequences which satisfy this weaker property are interesting in
their own right. A sequence (xn) of points in R is called quasi-Cauchy if (∆xn)
is a null sequence where ∆xn = xn+1 − xn. In [2] Burton and Coleman named
these sequences as "quasi-Cauchy" and in [8] Çakallı used the term "ward conver-
gent to 0" sequences. In terms of quasi-Cauchy we restate the definitions of ward
compactness and ward continuity as follows: a function f is ward continuous if it
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preserves quasi-Cauchy sequences, i.e. (f(xn)) is quasi-Cauchy whenever (xn) is,
and a subset E of R is ward compact if any sequence x = (xn) of points in E has
a quasi-Cauchy subsequence z = (zk) = (xnk

) of the sequence x.

2. Preliminaries and Notations

Throughout this paper, N, and R will denote the set of all positive integers, and
the set of all real numbers, respectively. We will use boldface letters x, y, z, ... for
sequences x = (xn), y = (yn), z = (zn), ... of terms in R.

It is known that a sequence (xn) of points in R, the set of real numbers, is
slowly oscillating if

lim
λ→1+

limn max
n+1≤k≤[λn]

|xk − xn| = 0

where [λn] denotes the integer part of λn. This is equivalent to the following if
(xm − xn) → 0 whenever 1 ≤ m

n
→ 1 as m,n → ∞. Using ε > 0 and δ this is

also equivalent to the case when for any given ε > 0, there exists δ = δ(ε) > 0 and
N = N(ε) such that |xm−xn| < ε if n ≥ N(ε) and n ≤ m ≤ (1+ δ)n (see [9]). For
more details on slowly oscillating sequences we refer to [1,16,17,18,19,24,30,31,36].

A function defined on a subset E of R is called slowly oscillating continuous if
it preserves slowly oscillating sequences, i.e. (f(xn)) is slowly oscillating whenever
(xn) is.

Throughout this paper we assume I is a non-trivial admissible ideal in N, also,
I(R) and ∆I will denote the set of all I-convergent sequences and the set of all
I-quasi-Cauchy sequences of points in R, respectively.

Connor and Grosse-Erdman [20] gave sequential definitions of continuity for
real functions calling G-continuity (see [10]) instead of A-continuity and their re-
sults covers the earlier works related to A-continuity where a method of sequential
convergence, or briefly a method, is a linear function G defined on a linear subspace
of s, space of all sequences, denoted by cG, into R. A sequence x = (xn) is said to
be G-convergent to ℓ if x ∈ cG and G(x) = ℓ. In particular, lim denotes the limit
function limx = limn xn on the linear space c and st-lim denotes the statistical
limit function st-limx = st-limn xn on the linear space st(R). Also I-lim denotes
the I-limit function I-limx = I-limn xn on the linear space I(R).

A method G is called regular if every convergent sequence x = (xn) is G-
convergent with G(x) = limx. A method is called subsequential if whenever
x is G-convergent with G(x) = ℓ, then there is a subsequence (xnk

) of x with
limk xnk

= ℓ.
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3. Ideally slowly oscillating sequences

In this section we introduce the concepts of ideally slowly oscillating continuity
and ideally slowly oscillating compactness and establish some intresting results re-
lated to these notions.

Tripathy and Hazarika [35], we say that x = (xk) is an ideally Cauchy sequence
if for any ε > 0 there exists m = m(ε) ∈ N such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.
Any sequence is ideally convergent if and only if it is ideally Cauchy.

Definition 3.1. A sequence x = (xn) of real or complex numbers is said to be

ideally slowly oscillating if for any given ε > 0, there exist δ = δ(ε) > 0 and the

positive integer N = N(ε), the set

{N(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |xk − xn| ≥ ε} ∈ I.

It is clear that an ideally convergent sequence is ideally slowly oscillating, but

the converse need not to be true. The sequence (xn) =
(

∑n

j=1
1
j

)

is ideally slowly

oscillating but not ideally convergent.

Example 3.2. Define the sequence (xn) by

xn =

{

(−2)n , if n = i2, n = i2 + 1, i ∈ N;
0 , otherwise

Then the sequence (xn) is ideally slowly oscillating, but not slowly oscillating be-

cause

|xi2+1 − xi2 | = 3.2i
2

9 0 as i → ∞,

whenever 1 < (i2+1)
i2

→ 1 as i → ∞.

Cakalli [9] introduced the notion of slowly oscillating continuity. The following
definition is an ideal version of slowly oscillating continuity.

Definition 3.3. A function f is called ideally slowly oscillating continuous if

it transforms ideally slowly oscillating sequences to ideally slowly oscillating se-

quences, that is, (f(xn)) is ideally slowly oscillating whenever (xn) is ideally slowly

oscillating.

Theorem 3.4. If f is ideally slowly oscillating continuous on a subset E of R then

it is ideally continuous on E.

Proof: Suppose that f is ideally slowly oscillating continuous on E and let (xn)
be any ideally convergent sequence in E with I − limxn = x0. Then the sequence

(yn) = (x1, x0, x2, x0, ..., xn−1, x0, xn, x0, ...)
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is also ideally convergent to x0 and hence (yn) is ideally slowly oscillating. Since f
is ideally slowly oscillating continuous, then the sequence

(f(yn)) = (f(x1), f(x0), f(x2), f(x0), ..., f(xn−1), f(x0), f(xn), f(x0), ...)

is also ideally slowly oscillating. Hence (f(yn)) is an ideally quasi-Cauchy sequence,
so I− lim[f(xn)−f(x0)] = 0. It follows that I− lim f(xn) = f(x0). This completes
the proof of theorem. ✷

In general the converse is not true. For instance, f : [0,∞) → R, f(x) = ex

is an ideally continuous function. On the other hand (xn) = (lnn) is an ideally
slowly oscillating sequence while (f(xn)) = (n) is not. So, f is not ideally slowly
oscillating continuous on [0,∞).

Theorem 3.5. Sum of two ideally slowly oscillating continuous functions is ideally

slowly oscillating continuous.

Proof: Let f and g be ideally slowly oscillating continuous functions on a subset
E of R. To prove that f + g is ideally slowly oscillating continuous on E. Let
ε > 0 and x = (xn) is any ideally slowly oscillating sequence in E. Then (f(xn))
and (g(xn)) are ideally slowly oscillating sequences. Since (f(xn)) and (g(xn)) are
ideally slowly oscillating sequences, there exist a positive integer n1 = n1(ε) and
δ > 0 such that

{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |f(xk)− f(xn)| ≥
ε

2
} ∈ I

and

{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |g(xk)− g(xn)| ≥
ε

2
} ∈ I.

Since I is an admissible ideal, therefore we have

{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |(f + g)(xk)− (f + g)(xn)| ≥ ε}

⊆ {n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |f(xk)− f(xn)| ≥
ε

2
}

∪{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |g(xk)− g(xn)| ≥
ε

2
}

i.e.

{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |(f + g)(xk)− (f + g)(xn)| ≥ ε} ∈ I.

This compltes the proof of the theorem. ✷

We know that a function is ideally continuous at a point x0 if it continuous at
x0 in the ordinary sense. Hence we have the following corollary.

Corollary 3.6. If f is ideally slowly oscillating continuous, then it is continuous

in the ordinary sense.
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Theorem 3.7. If f is a uniformly continuous on a subset E of R, then it is ideally

slowly oscillating continuous.

Proof: Let f be uniformly continuous function and x = (xn) be any ideally slowly
oscillating sequence in E. Since f is uniformly continuous on E, for given any
ε > 0 there exists a δ > 0 such that for every x, y ∈ E with |x − y| < δ, we have
|f(x) − f(y)| < ε. Since (xn) is ideally slowly oscillating, for the same δ > 0 there
exist η > 0 and the positive integer N = N(δ) we have

{N(δ) ≤ n < k ≤ (1 + η)n and k ∈ N : |xk − xn| < δ} ∈ F.

Hence we have

{N(δ) ≤ n < k ≤ (1 + η)n and k ∈ N : |f(xk)− f(xn)| < ε} ∈ F.

This completes the proof of theorem. ✷

Definition 3.8. A sequence (xn) of real numbers is called ideally Cesáro slowly

oscillating if (tn) is ideally slowly oscillating, where tn = 1
n

∑n

k=1 xk, is the Cesáro

means of the sequence (xn). Also a function f is called ideally Cesáro slowly oscil-

lating continuous if it preserves ideally Cesáro slowly oscillating sequences.

By using the similar argument used in proof of Theorem 3.7, we immediately
have the following result.

Theorem 3.9. If f is a uniformly continuous on a subset E of R and (xn) is

an ideally slowly oscillating sequence in E, then (f(xn)) is ideally Cesáro slowly

oscillating.

Definition 3.10. A sequence of functions (fn) defined on a subset E of R is said

to be uniformly ideally convergent to a function f if for each ε > 0, the set

{x ∈ E, n ∈ N : |fn(x) − f(x)| ≥ ε} ∈ I.

Note that ordinary uniform convergence implies uniform ideal convergence.

Theorem 3.11. If (fn) is a sequence of ideally slowly oscillating continuous func-

tions defined on a subset E of R and (fn) is uniformly ideally convergent to a

function f on E, then f is ideally slowly oscillating continuous on E.

Proof: Let ε > 0 and (xn) be any ideally slowly oscillating sequence of points in
E. By uniform ideal convergence of (fn) for each ε > 0, we have

{x ∈ E and n ∈ N : |fn(x) − f(x)| ≥
ε

3
} ∈ I.

Also since fn is ideally slowly oscillating continuous, there exist a positive integer
n1 = N(ε) and δ > 0 such that

{N(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |fn1
(xk)− fn1

(xn)| ≥
ε

3
} ∈ I.
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Since I is an admissible ideal, we have

{N(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |f(xk)− f(xn)| ≥ ε}

⊆ {N(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |f(xk)− fn1
(xk)| ≥

ε

3
}

∪{N(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |fn1
(xk)− fn1

(xn)| ≥
ε

3
}

∪{N(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |fn1
(xn)− f(xn)| ≥

ε

3
}

i.e.

{N(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |f(xk)− f(xn)| ≥
ε

3
} ∈ I.

Thus (f(xn)) is an ideally slowly oscillating sequence and this completes the proof
of theorem. ✷

Corollary 3.12. If (fn) is a sequence of ideally slowly oscillating continuous func-

tions defined on a subset E of R and (fn) is uniformly convergent to a function f
on E, then f is ideally slowly oscillating continuous on E.

Using the same techniques as in the Theorem 3.11, the following result can be
obtained easily.

Theorem 3.13. If (fn) is a sequence of ideally Cesáro slowly oscillating continuous

functions defined on a subset E of R and (fn) is uniformly ideally convergent to a

function f on E, then f is ideally Cesáro slowly oscillating continuous on E.

Theorem 3.14. The set of all ideally slowly oscillating continuous functions de-

fined on a subset E of R is a closed subset of all continuous functions on E, that

is isoc(E) = isoc(E), where isoc(E) is the set of all ideally slowly oscillating con-

tinuous functions defined on E and isoc(E) denotes the set of all cluster points of

isoc(E).

Proof: Let f be any element of isoc(E). Then there exists a sequence of points
in isoc(E) such that lim fk = f. Now let (xn) be any ideally slowly oscillating
sequence in E. Since (fk) converges to f, there exist a positive integer n1 = n1(ε)
such that for all x ∈ E and for all n ≥ n1, |f(x) − fn(x)| <

ε
3 . By definition of

ideal, for all x ∈ E we have

{n ∈ N : |f(x)− fn(x)| ≥
ε

3
} ∈ I.

Also since fn is ideally slowly oscillating continuous on E, for ε > 0 there exists a
positive integer n1 = n1(ε) and δ > 0, we have

{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |fn1
(xk)− fn1

(xn)| ≥
ε

3
} ∈ I.
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Also we have

{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |f(xk)− f(xn)| ≥ ε}

⊆ {n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |f(xk)− fn1
(xk)| ≥

ε

3
}

∪{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |fn1
(xk)− fn1

(xn)| ≥
ε

3
}

∪{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |fn1
(xn)− f(xn)| ≥

ε

3
}.

Since I is an admissible ideal, it implies that

{n1(ε) ≤ n ≤ k ≤ (1 + δ)n and k ∈ N : |f(xk)− f(xn)| ≥ ε} ∈ I.

Thus f is ideally slowly oscillating continuous function on E and this completes
the proof of theorem. ✷

Corollary 3.15. The set of all ideally slowly oscillating continuous functions de-

fined on a subset E of R is a complete subspace of the space of all continuous

functions on E.

Next we define the ideal version of the concept of slowly oscillating compactness.

Definition 3.16. A subset E of R is called ideally slowly oscillating compact if

any sequence of points in E has an ideally slowly oscillating subsequence.

Theorem 3.17. An ideally slowly oscillating continuous image of an ideally slowly

oscillating compact subset of R is ideally slowly oscillating compact.

Proof: Suppose that f is an ideally slowly oscillating continuous function on a
subset E of R and E is an ideally slowly oscillating compact subset of R. Let (yn)
be a sequence of points in f(E). Then we can write yn = f(xn) where xn ∈ E for
each n ∈ N. Since E is ideally slowly oscillating compact, there is an ideally slowly
oscillating subsequence z = (zk) = (xnk

) of (xn). Then, ideally slowly oscillating
continuity of f implies that f(zk) is an ideally slowly oscillating subsequence of
f(xn). Hence f(E) is ideally slowly oscillating compact. ✷

Corollary 3.18. An ideally slowly oscillating continuous image of any compact

subset of R is ideally slowly oscillating compact.

Proof: The proof follows for the preceding theorem. ✷

Theorem 3.19. Let E be an ideally slowly oscillating compact subset of R and let

f : E → R be an ideally slowly oscillating continuous function. Then f is uniformly

continuous on E.
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Proof: Suppose that f is not uniformly continuous on E, there exist ε > 0 and
the sequences (xn) and (yn) of points in E such that |xn − yn| <

1
n

but

|f(xn)− f(yn)| ≥ ε for all n ∈ N. (3.1)

Since E is ideally slowly oscillating compact, there is an ideally slowly oscillating
subsequence (xnk

) of (xn). It is clear from the inequality

|ynk
− ynm

| ≤ |ynk
− xnk

|+ |xnk
− xnm

|+ |xnm
− ynm

|

that the corresponding subsequence (ynk
) of (yn) is also ideally slowly oscillating.

Then observe that the sequence

(xn1
, yn1

, xn2
, yn2

, ..., xnk
, ynk

, ...)

is ideally slowly oscillating. Since f is ideally slowly oscillating continuous, the
sequence

(f(xn1
), f(yn1

), f(xn2
), f(yn2

), ..., f(xnk
), f(ynk

), ...)

must be ideally slowly oscillating. But this is contradicts the result (3.1). This
contradiction completes the proof of the theorem. ✷

Corollary 3.20. A real valued function defined on a bounded subset of R is uni-

formly continuous if and only if it is ideally slowly oscillating continuous.

Proof: The proof of the result follows from the fact that totally boundedness
coincides with ideally slowly oscillating compactness and boundedness coincides
with totally boundedness in R. ✷

4. Conclusions

In this paper, the concept of ideally slowly oscillating continuity of a real func-
tion and the concept of ideally slowly oscillating compactness of a subset of R

are introduced and investigated. In this investigation we have obtained theorems
related to continuity, compactness, ideally continuity, uniform continuity and ide-
ally slowly oscillating continuity. Finally, we note that the results of this paper
can be obtained by defining the ideas of ideal quasi-slowly oscillating and ideal
∆-quasi-slowly oscillating sequences.
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