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An Orlicz extension of difference modular sequence spaces
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abstract: In this paper we construct some new difference modular sequence
spaces defined by a sequence of Orlicz functions over n-normed spaces. We also study
several properties relevant to topological structures and interrelationship between
these spaces.
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1. Introduction and Preliminaries

Let X be a linear metric space. A function p : X → R is called paranorm, if

1. p(x) ≥ 0 for all x ∈ X ,

2. p(−x) = p(x) for all x ∈ X ,

3. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X ,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence
of vectors with p(xn − x) → 0 as n → ∞, then p(λnxn −λx) → 0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [32], Theorem 10.4.2,
pp. 183).
The notion of difference sequence spaces was introduced by Kızmaz [16], who stud-
ied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further
generalized by Et and Çolak [7] by introducing the spaces l∞(∆n), c(∆n) and
c0(∆

n). Later the concept have been studied by Bektaş et al. [3] and Et et al. [8].
Another type of generalization of the difference sequence spaces is due to Tripathy
and Esi [29] who studied the spaces l∞(∆v), c(∆v) and c0(∆v). Recently, Esi et
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al. [9] and Tripathy et al. [30] have introduced a new type of generalized difference
operators and unified those as follows.
Let v, n be non-negative integers, then for Z a given sequence space, we have

Z(∆n
v ) = {x = (xk) ∈ w : (∆n

vxk) ∈ Z}

for Z = c, c0 and l∞ where ∆n
vx = (∆n

vxk) = (∆n−1
v xk−∆n−1

v xk+v) and ∆0
vxk = xk

for all k ∈ N, which is equivalent to the following binomial representation

∆n
vxk =

n
∑

m=0

(−1)m
(

n
m

)

xk+vm.

Taking v = 1, we get the spaces l∞(∆n), c(∆n) and c0(∆
n) studied by Et and

Çolak [7]. Taking v = n = 1, we get the spaces l∞(∆), c(∆) and c0(∆) introduced
and studied by Kızmaz [16]. For more details about difference sequence spaces (see
[1], [4], [5], [19], [20], [27]) and references therein.

Let ω be the family of all real or complex sequences, which is a vector space with
the usual pointwise addition and scalar multiplication. We write en(n ≥ 1) for the
nth unit vector in ω, i.e en = {δnj}

∞
j=1 where δnj is the Kronecker delta, and ϕ for

the subspace of ω generated by en’s, n ≥ 1, i.e, ϕ = span{en : n ≥ 1}. A sequence
space η is subspace of ω containing ϕ. The sequence space η is said to be solid if
(αkxk) ∈ η whenever (xk) ∈ η for all sequences (αk) of scalars such that |αk| ≤ 1
for all k ∈ N. A sequence space η is said to be monotone if η contains the canonical
pre images of all its step spaces. A Banach sequence space (η, S) is called a BK-
space if the topology S of η is finer than the co-ordinatewise convergence topology,
or equivalently, the projection maps Pi : η → K, Pi(x) = xi, i ≥ 1 are continuous,
where K is the scalar field R or C. For x = (x1, ..., xn, ...) and n ∈ N, we write the
nth section of x as x(n) = (x1, ..., xn, 0, 0, ...). If x(n) → x in (η, S) for each x ∈ η,
we say that (η, S) is an AK-space. The norm ‖.‖η generating the topology S of η
is said to be monotone if ‖x‖η ≤ ‖y‖η for x = {xi}, y = {yi} ∈ η with |xi| ≤ |yi|,
for all i ≥ 1 (see [14]).
An Orlicz function M is a function, which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞.
Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the fol-
lowing sequence space:

ℓM =
{

x ∈ ω :

∞
∑

k=1

M
( |xk|

ρ

)

< ∞, for some ρ > 0
}

which is called as an Orlicz sequence space. The space ℓM is a Banach space with
the norm

||x|| = inf
{

ρ > 0 :

∞
∑

k=1

M
( |xk|

ρ

)

≤ 1
}

.

It is shown in [15] that every Orlicz sequence space ℓM contains a subspace iso-
morphic to ℓp(p ≥ 1). In the later stage different Orlicz sequence spaces were
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introduced and studied by Parashar and Choudhary [25], Esi and Et [6], Tripathy
and Mahanta [31], Mursaleen [21] and many others. The ∆2−condition is equiva-
lent to M(Lx) ≤ kLM(x) for all values of x ≥ 0 and for L > 1.
A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz function (see
[22], [23]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its sub-
space hM are defined as follows;

tM =
{

x ∈ ω : IM(cx) < ∞ for some c > 0
}

,

hM =
{

x ∈ ω : IM(cx) < ∞ for all c > 0
}

,

where IM is a convex modular defined by

IM(x) =
∞
∑

k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{

k > 0 : IM

(x

k

)

≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(

1 + IM(kx)
)

: k > 0
}

.

Any Orlicz function Mk can always be represented in the following integral form

Mk(x) =

∫ x

0

ηk(t)dt,

where ηk is known as the kernel of Mk, is a right differentiable for t ≥ 0, ηk(0) =
0, ηk(t) > 0, ηk is non-decreasing and ηk(t) → ∞ as t → ∞.
Given an Orlicz function Mk with kernel ηk(t), define

νk(s) = sup{t : ηk(t) ≤ s, s ≥ 0}.

Then νk(s) possesses the same properties as ηk(t) and the function Nk defined as

Nk(x) =

∫ x

0

νk(s)ds

is an Orlicz function. The functions Mk and Nk are called mutually complementary
Orlicz functions.
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For a sequence M = (Mk) of Orlicz functions, the modular sequence class l̃(M) is
defined by

l̃(M) = {x = (xk) ∈ ω :

∞
∑

k=1

Mk(|xk|) < ∞}.

Using the sequence N = (Nk) of Orlicz functions, similarly we define l̃(N). The
class l(M) is defined by

l(M) = {x = (xk) ∈ ω :

∞
∑

k=1

xkyk converges, for all y ∈ l̃(N)}.

For a sequence M = (Mk) of Orlicz functions, the modular sequence space l(M) is
also defined as

l(M) = {x = (xk) ∈ ω :

∞
∑

k=1

Mk

( |xk|

ρ

)

< ∞, for some ρ > 0}.

The space l(M) is a Banach space with respect to the norm ‖x‖M defined as

‖x‖M = inf{ρ > 0 :
∞
∑

k=1

Mk

( |xk|

ρ

)

≤ 1}.

These spaces were introduced by Woo [33] around the year 1973 and generalizes
the Orlicz sequence space lM and the modulared sequence spaces considered earlier
by Nakano [24]. For more details about modular sequence spaces (see [15], [28])
and references therein.
An important subspace of l(M), which is an AK-space, is the space h(M) defined
as

h(M) = {x ∈ l(M) :
∞
∑

k=1

Mk

( |xk|

ρ

)

< ∞, for some ρ > 0}.

A sequence (Mk) of Orlicz functions is said to satisfy uniform ∆2− condition at
′0′ if there exist p > 0 and k0 ∈ N such that for all x ∈ (0, 1) and k > k0, we have
xM

′

k(x)
Mk(x)

≤ p, or equivalently, there exists a constant K > 1 and k0 ∈ N such that
Mk(2x)
Mk(x)

≤ K for all x ∈ (0, 1
2 ]. If the sequence (Mk) satisfy uniform ∆2− condition,

then h(M) = l(M) and vice-versa (see [33]).
Let Mk and Nk be mutually complementary Orlicz functions for each k and λ =
(λk) be a sequence of strictly positive real numbers. Bektaş and Atici [2] define
the following sequence spaces:

lMλ (∆m) =

{

x = (xk) :
∑

k≥1

Mk

( |∆mxk|

λkρ

)

< ∞, for some ρ > 0

}

and

lλN(∆
m) =

{

x = (xk) :
∑

k≥1

Nk

(λk|∆
mxk|

ρ

)

< ∞, for some ρ > 0

}

.
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Let M = (Mk) and N = (Nk) be two sequences of Orlicz functions, p = (pk) be any
bounded sequence of positive real numbers and λ = (λk) be a sequence of strictly
positive real numbers. In this paper we define the following sequence spaces:

lMλ
[

∆m
n , p

]

=
{

x = (xk) ∈ ω :
∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]pk

< ∞, for some ρ > 0
}

and

lλN
[

∆m
n , p

]

=
{

x = (xk) ∈ ω :
∑

k≥1

[

Nk

(λk|∆
m
n xk|

ρ

)]pk

< ∞, for some ρ > 0
}

.

If we take (pk) = 1, for all k then

lMλ
[

∆m
n

]

=
{

x = (xk) ∈ ω :
∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]

< ∞, for some ρ > 0
}

and

lλN
[

∆m
n

]

=
{

x = (xk) ∈ ω :
∑

k≥1

[

Nk

(λk|∆
m
n xk|

ρ

)]

< ∞, for some ρ > 0
}

.

If (λk) = 1 for all k ∈ N, then

lM
[

∆m
n , p

]

=
{

x = (xk) ∈ ω :
∑

k≥1

[

Mk

( |∆m
n xk|

ρ

)]pk

< ∞, for some ρ > 0
}

and

lN
[

∆m
n , p

]

=
{

x = (xk) ∈ ω :
∑

k≥1

[

Nk

( |∆m
n xk|

ρ

)]pk

< ∞, for some ρ > 0
}

.

If we take (pk) = 1, for all k and n=1 we get the spaces defined by Bektaş and
Atici [2].
The following inequality will be used throughout the paper. Let p = (pk) be a
sequence of positive real numbers with 0 < pk ≤ supk pk = H, and let D =
max

{

1, 2H−1
}

. Then, for the factorable sequences (ak) and (bk) in the complex
plane, we have

|ak + bk|
pk ≤ D(|ak|

pk + |bk|
pk). (1.1)

Throughout the paper we write Mk(1) = 1 and Nk(1) = 1 for all k ∈ N.

The main purpose of this paper is to study some difference new modular sequence
spaces defined by a sequence of Orlicz functions over n−normed spaces. We shall
study some topological, algebraic properties of the sequence spaces lMλ

[

∆m
n , p

]

and

lλN
[

∆m
n , p

]

in the second section of the paper. In the third section we shall deter-
mine the dual spaces of h(M), l(M, λ, p) and l(N, λ, p). Finally, we shall study
some sequence spaces over n− normed spaces in the fourth section of the pa-
per. We have also made an attempt to study some topological, algebraic proper-
ties and inclusion relations between the sequence spaces lMλ

[

∆m
n , p, ‖·, · · · , ·‖

]

and

lλN
[

∆m
n , p, ‖·, · · · , ·‖

]

.
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2. Some topological properties of the spaces lMλ
[

∆m
n , p

]

and lλN
[

∆m
n , p

]

The purpose of this section is to study the properties like linearity, paranorm,
solidity and relevant inclusion relations in the spaces lMλ

[

∆m
n , p

]

and lλN
[

∆m
n , p

]

.

Theorem 2.1. Let M = (Mk) and N = (Nk) be two sequences of Orlicz func-
tions, p = (pk) be a bounded sequence of positive real numbers and λ = (λk) be a
sequence of strictly positive real numbers. Then the sequence spaces lMλ

[

∆m
n , p

]

and

lλN
[

∆m
n , p

]

are linear spaces over the complex field C.

Proof: Let x = (xk) and y = (yk) ∈ lMλ
[

∆m
n , p

]

and α, β ∈ C. Then there exist
positive real numbers ρ1 and ρ2 such that

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ1

)]pk

< ∞

and
∑

k≥1

[

Mk

( |∆m
n yk|

λkρ2

)]pk

< ∞.

Define ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M ′
ks are non-decreasing and convex function

so by using inequality (1.1), we have

∑

k≥1

[

Mk

( |∆m
n (αxk + βyk)|

λkρ3

)]pk

≤
∑

k≥1

[

Mk

( |α∆m
n xk|

λkρ3
+

|β∆m
n yk|

λkρ3

)]pk

≤ D
∑

k≥1

[

Mk

( |∆m
n xk|

λkρ1

)]pk

+D
∑

k≥1

[

Mk

( |∆m
n yk|

λkρ2

)]pk

< ∞.

Therefore, αx+ βy ∈ lMλ
[

∆m
n , p

]

and hence, lMλ
[

∆m
n , p

]

is a linear space. Similarly,

we can prove that lλN
[

∆m
n , p

]

is a linear space. This completes the proof. ✷

Theorem 2.2. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a
bounded sequence of positive real numbers and λ = (λk) be a sequence of strictly
positive real numbers. Then the sequence space lMλ

[

∆m
n , p

]

is a paranormed space
with paranorm defined by

g(x) = inf

{

(ρ)
pk
H :

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]pk

)
1

H

≤ 1

}

where H = max(1, G), 0 < pk ≤ sup
k

pk = G.
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Proof: Clearly g(x) ≥ 0, for x = (xk) ∈ lMλ
[

∆m
n , p

]

. Since Mk(0) = 0, we get
g(0) = 0. Again, if g(x) = 0, then

g(x) = inf

{

(ρ)
pk
H :

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]pk

)
1

H

≤ 1

}

= 0,

this implies that for a given ǫ > 0, there exist some ρǫ (0 < ρǫ < ǫ) such that

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρǫ

)]pk

)
1

H

≤ 1.

Thus,

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkǫ

)]pk

)
1

H

≤

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρǫ

)]pk

)
1

H

≤ 1.

Suppose that xk 6= 0 for each k ∈ N. This implies that ∆m
n xk 6= 0 for each k ∈ N.

Let ǫ → 0, then
|∆m

n xk|
λkǫ

→ ∞. It follows that

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρǫ

)]pk

)
1

H

→ ∞,

which is a contradiction. Therefore, ∆m
n xk = 0 for each k and thus xk = 0 for each

k ∈ N. Let ρ1 > 0 and ρ2 > 0 be such that

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ1

)]pk

)
1

H

≤ 1

and

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ2

)]pk

)
1

H

≤ 1.

Let ρ = ρ1 + ρ2. Then by Minkowski’s inequality, we have
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(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]pk

)
1

H

≤

(

∑

k≥1

[

Mk

( |∆m
n xk|

λk(ρ1 + ρ2)

)]pk

)
1

H

≤

(

∑

k≥1

[

ρ1
ρ1 + ρ2

Mk

( |∆m
n xk|

λkρ1

)

+
ρ2

ρ1 + ρ2
Mk

( |∆m
n xk|

λkρ2

)

]pk
)

1

H

≤

(

ρ1
ρ1 + ρ2

)(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ1

)

]pk
)

1

H

+

(

ρ1
ρ1 + ρ2

)(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ2

)

]pk
)

1

H

≤ 1.

Since ρ’s are non-negative, so we have

g(x+ y) = inf

{

(ρ1 + ρ2)
pk
H :

(

∑

k≥1

[

Mk

( |∆m
n (xk + yk)|

λk(ρ1 + ρ2)

)]pk

)
1

H

≤ 1

}

≤ inf

{

(ρ1)
pk
H :

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ1

)]pk

)
1

H

≤ 1

}

+ inf

{

(ρ2)
pk
H :

(

∑

k≥1

[

Mk

( |∆m
n yk|

λkρ2

)]pk

)
1

H

≤ 1

}

.

Therefore, g(x+ y) ≤ g(x) + g(y). Finally, we prove that the scalar multiplication
is continuous. Let µ be any complex number, therefore, by definition

g(µx) = inf

{

(ρ)
pk
H :

(

∑

k≥1

[

Mk

( |∆m
n µxk|

λkρ

)]pk

)
1

H

≤ 1

}

and

thus,

g(µx) = inf

{

(|µ|t)
pk
H :

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkt

)]pk

)
1

H

≤ 1

}

where t = ρ
|µ| . Since |µ|pk ≤ max(1, |µ| sup pk). Hence,

g(µx) = max(1, |µ| sup pk) inf

{

(t)
pk
H :

(

∑

k≥1

[

Mk

( |∆m
n xk|

λkt

)]pk

)
1

H

≤ 1

}

.
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So, the fact that scalar multiplication is continuous follows from the above inequal-
ity. This completes the proof. ✷

Theorem 2.3. Suppose M = (Mk) be a sequence of Orlicz functions, p = (pk) be
a bounded sequence of positive real numbers and λ = (λk) be a sequence of strictly
positive real numbers. If 0 < pk ≤ qk < ∞, for each k ∈ N, then lMλ

[

∆m
n , p

]

⊆

lMλ
[

∆m
n , q

]

.

Proof: Suppose that x = (xk) ∈ lMλ
[

∆m
n , p

]

. This implies that

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]pk

≤ 1

for sufficiently large value of k say k ≥ k0, for some fixed k0 ∈ N. Since M = (Mk)
is non decreasing, we have

∞
∑

k=k0

[

Mk

( |∆m
n xk|

λkρ

)]qk
≤

∞
∑

k=k0

[

Mk

( |∆m
n xk|

λkρ

)]pk

< ∞.

Hence, x = (xk) ∈ lMλ
[

∆m
n , q

]

. This completes the proof. ✷

Theorem 2.4. (i) If 0 < inf pk ≤ pk < 1 for each k, then lMλ
[

∆m
n , p

]

⊆ lMλ
[

∆m
n

]

.

(ii) If 1 ≤ pk ≤ sup pk < ∞ for each k, then lMλ
[

∆m
n

]

⊆ lMλ
[

∆m
n , p

]

.

Proof: (i) Let x = (xk) ∈ lMλ
[

∆m
n , p

]

. Since 0 < inf pk < 1, we have

∞
∑

k=1

[

Mk

( |∆m
n xk|

λkρ

)]

≤

∞
∑

k=1

[

Mk

( |∆m
n xk|

λkρ

)]pk

and hence, x = (xk) ∈ lMλ
[

∆m
n

]

.

(ii) Suppose pk for each k sup pk < ∞ and let x = (xk) ∈ lMλ
[

∆m
n

]

. Then for
each 0 < ǫ < 1, there exists a positive integer N such that

∞
∑

k=1

[

Mk

( |∆m
n xk|

λkρ

)]

≤ ǫ < 1, for all k ∈ N,

this implies that

∞
∑

k=1

[

Mk

( |∆m
n xk|

λkρ

)]pk

≤

∞
∑

k=1

[

Mk

( |∆m
n xk|

λkρ

)]

.

Thus, x = (xk) ∈ lMλ
[

∆m
n , p

]

. This completes the proof. ✷
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Theorem 2.5. The sequence space lMλ
[

∆m
n , p

]

is solid.

Proof: Let x = (xk) ∈ lMλ
[

∆m
n , p

]

. Then

∞
∑

k=1

[

Mk

( |∆m
n xk|

λkρ

)]pk

< ∞.

Let (αk) be a sequence of scalars such that |αk| ≤ 1 for all k ∈ N. Then the result
follows from the following inequality

∞
∑

k=1

[

Mk

( |∆m
n αkxk|

λkρ

)]pk

≤

∞
∑

k=1

[

Mk

( |∆m
n xk|

λkρ

)]pk

.

This completes the proof. ✷

Corollary 2.6. The sequence space lMλ
[

∆m
n , p

]

is monotone.

Proof: It is obvious so we omit the proof. ✷

Theorem 2.7. Let M = (Mk) and M
′

= (M
′

k) be two sequences of Orlicz functions.
Then, we have

lMλ
[

∆m
n , p

]

∩ lM
′

λ

[

∆m
n , p

]

⊆ lM+M
′

λ

[

∆m
n , p

]

.

Proof: Let x = (xk) ∈ lMλ
[

∆m
n , p

]

∩ lM
′

λ

[

∆m
n , p

]

. Then

∑

k≥1

[

Mk

( |∆m
n xk|

λkρ1

)]pk

< ∞, for some ρ1 > 0

and
∑

k≥1

[

M
′

k

( |∆m
n xk|

λkρ2

)]pk

< ∞, for some ρ2 > 0.

Let ρ = max(ρ1, ρ2). The result follows from the inequality

∑

k≥1

[

(Mk +M
′

k)
( |∆m

n xk|

λkρ1

)]pk

=
∑

k≥1

[

Mk

( |∆m
n xk|

λkρ1

)

+M
′

k

( |∆m
n xk|

λkρ1

)]pk

≤ D
∑

k≥1

[

Mk

( |∆m
n xk|

λkρ1

)]pk

+D
∑

k≥1

[

M
′

k

( |∆m
n xk|

λkρ1

)]pk

.

This completes the proof. ✷

The proof of the following theorems are easy so omitted.
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Theorem 2.8. The sequence space lMλ
[

∆m
n , p

]

is a normed space with norm

‖x‖Mλ =

m
∑

i=1

|xi|+ inf
{

ρ > 0 :
∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]pk

≤ 1
}

.

Theorem 2.9. The sequence space lλN
[

∆m
n , p

]

is a normed space with norm

‖x‖λN =

m
∑

i=1

|xi|+ inf
{

ρ > 0 :
∑

k≥1

[

Nk

(λk|∆
m
n xk|

ρ

)]pk

≤ 1
}

.

Theorem 2.10. The spaces
(

lMλ
[

∆m
n , p

]

, ‖.‖Mλ

)

and
(

lλN
[

∆m
n , p

]

, ‖.‖λN

)

are Ba-

nach spaces.

Theorem 2.11. The space lMλ
[

∆m
n , p

]

equipped with the norm ‖.‖Mλ and the space

lλN
[

∆m
n , p

]

equipped with the norm ‖.‖λN are BK-spaces.

Proof: The space
(

lMλ
[

∆m
n , p

]

, ‖.‖Mλ

)

is a Banach space by the Theorem 2.10.

Now let ‖xl − x‖Mλ → 0 as l → ∞. Then

|xl
k − xk| → 0 as l → ∞, for each k ≤ m

and

inf

{

ρ > 0 :
∑

k≥1

[

Mk

( |∆m
n xl

k −∆m
n xk|

λkρ

)]pk

≤ 1

}

→ 0

as l → ∞ for all k ∈ N.

If Mk

(

|∆m
n xl

k−∆m
n xk|

λk‖x‖
M

λ

)pk

≤ 1 then
|∆m

n xl
k−∆m

n xk|

λk‖x‖
M

λ

≤ 1 for all k. Therefore, we also

obtain
|∆m

n xl
k −∆m

n xk| ≤ λk‖x
l − x‖Mλ .

Since ‖xl − x‖Mλ → 0, then |∆m
n xl

k −∆m
n xk| → 0 and

∣

∣

∣

m
∑

v=0

(−1)v
(

m
v

)

(xl
k+nv − xk+nv)

∣

∣

∣
→ 0

as l → ∞ for all k ∈ N. On the other hand, since we may write

|xl
k+nv − xk+nv| ≤

∣

∣

∣

m
∑

v=0

(−1)v
(

m
v

)

(xl
k+nv − xk+nv)

∣

∣

∣
+
∣

∣

∣

(

m
0

)

(xl
k − xk)

∣

∣

∣

+.......+
∣

∣

∣

(

m
m− 1

)

(xl
k+n(m+1) − xk+n(m+1))

∣

∣

∣
.

Then |xl
k − xk| → 0 as l → ∞ for each k ∈ N. Hence,

(

lMλ
[

∆m
n , p

]

, ‖.‖Mλ

)

is a BK-space. Similarly we can prove
(

lλN
[

∆m
n , p

]

, ‖.‖λN

)

is a BK-space. This

completes the proof. ✷
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Theorem 2.12. If Z is a normal sequence space containing λ, then lMλ
[

∆m
n , p

]

is a proper subspace of Z. In addition, if Z is equipped with the monotone norm
(quasi-norm) ‖.‖Z. The inclusion R : lMλ

[

∆m
n , p

]

→ Z
[

∆m
n , p

]

is continuous with
‖R‖ ≤ ‖{λk}‖Z.

Proof: Let x ∈ lMλ
[

∆m
n , p

]

, then

∞
∑

k=1

[

Mk

( |∆m
n xk|

λkρ

)]pk

< ∞, for some ρ > 0.

So there exists a constant K > 0 such that

|∆m
n xk|

λkρ
≤ K for all k ∈ N.

Since Z is a normal sequence space containing λ, we have
[

∆m
n xk

]pk ∈ Z and so

that x ∈ Z
[

∆m
n , p

]

. Hence, lMλ
[

∆m
n , p

]

⊆ Z
[

∆m
n , p

]

. Further, since Mk(1) = 1 for
all k ∈ N then

∑

k≥1

[

Mk

( |∆m
n xk|

λk‖x‖Mλ

)]pk

≤ 1

so that |∆m
n xk| ≤ λk‖x‖

M
λ . As ‖.‖Z is monotone, ‖Rx‖Z = ‖∆m

n xk‖Z ≤
‖{λk}‖Z‖x‖

M
λ and hence, ‖R‖ ≤ ‖{λk}‖Z. This completes the proof. ✷

Theorem 2.13. If Y is a normal sequence space containing λ−1 ≡ { 1
λk

}, then

lλN
[

∆m
n , p

]

is a proper subspace of Y. In addition, if Y is equipped with the monotone

norm (quasi-norm) ‖.‖Y. The inclusion S : lλN
[

∆m
n , p

]

→ Y
[

∆m
n , p

]

is continuous

with ‖S‖ ≤ ‖{λ−1
k }‖Y.

Proof: The proof of the theorem is similar to that of Theorem 2.12 and so is
omitted. ✷

Theorem 2.14. If λ = (λk) is a bounded sequence such that inf λk > 0 (i.e both
λ and λ−1 are in l∞). Then lλM

[

∆m
n , p

]

= lMλ
[

∆m
n , p

]

= lM
[

∆m
n , p

]

.

Proof: Let x = (xk) ∈ lM
[

∆m
n , p

]

, then

∑

k≥1

[

Mk

( |∆m
n xk|

ρ

)]pk

< ∞, for some ρ > 0.

Since λ = (λk) is bounded, we can write a ≤ λk ≤ b for some b > a ≥ 0. Define
ρ1 = ρb. Also since M ′

ks are increasing, it follows that

∑

k≥1

[

Mk

(λk|∆
m
n xk|

ρ1

)]pk

≤
∑

k≥1

[

Mk

( |∆m
n xk|

ρ

)]pk

< ∞.
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Hence, lM
[

∆m
n , p

]

⊆ lλM
[

∆m
n , p

]

. The other inclusion lλM
[

∆m
n , p

]

⊆ lM
[

∆m
n , p

]

fol-
lows from the inequality

∑

k≥1

[

Mk

( |∆m
n xk|
ρ
a

)]pk

≤
∑

k≥1

[

Mk

(λk|∆
m
n xk|

ρ

)]pk

< ∞.

Therefore, lλM
[

∆m
n , p

]

= lM
[

∆m
n , p

]

. Similarly one can prove that lMλ
[

∆m
n , p

]

=

lM
[

∆m
n , p

]

. This completes the proof. ✷

Theorem 2.15. If {λk} ∈ l∞ with c = sup
k≥1

λk ≥ 1 and {λ−1
k } is unbounded,

then lMλ
[

∆m
n , p

]

is properly contained in lλM
[

∆m
n , p

]

and the inclusion map U :

lMλ
[

∆m
n , p

]

→ lλM
[

∆m
n , p

]

is continuous with ‖U‖ ≤ c2.

Proof: For any ρ > 0 and ρ′ = ρc2, we have

∑

k≥1

[

Mk

(λk|∆
m
n xk|

ρ′

)]pk

≤
∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]pk

< ∞.

for x = {xk}. Hence, lMλ
[

∆m
n , p

]

⊂ lλM
[

∆m
n , p

]

. We now show that the containment

lMλ
[

∆m
n , p

]

⊂ lλM
[

∆m
n , p

]

is proper. From the unboundedness of the sequence {λ−1
k },

choose a sequence {kl} of positive integers such that λ−1
kl

≥ l. Now define

∆m
n xk =

{

1
l
, k = kl, l = 1, 2, ...;

0, otherwise.

Then x ∈ lλM
[

∆m
n , p

]

, but x /∈ lMλ
[

∆m
n , p

]

. To prove the continuity of the inclusion

map U, let us first consider the case obtained for c = 1. For x ∈ lMλ
[

∆m
n , p

]

, we
write

AM
λ

[

∆m
n , p

]

=

{

ρ > 0 :
∑

k≥1

[

Mk

( |∆m
n xk|

λkρ

)]pk

≤ 1

}

and

Bλ
M

[

∆m
n , p

]

=

{

ρ > 0 :
∑

k≥1

[

Mk

(λk|∆
m
n xk|

ρ

)]pk

≤ 1

}

.

Since M ′
ks are increasing and c = 1, we get AM

λ

[

∆m
n , p

]

⊂ Bλ
M

[

∆m
n , p

]

. Hence,

‖x‖λM = inf Bλ
M

[

∆m
n , p

]

≤ inf Aλ
M

[

∆m
n , p

]

= ‖x‖Mλ (2.1)

i.e ‖U(x)‖λM ≤ ‖x‖Mλ . Thus, U is continuous with ‖U‖ ≤ 1 = c2. If c 6= 1, define
δk = λk

c
, k ∈ N. Then δk ≤ 1 and from (2.1), it follows that

‖x‖δM ≤ ‖x‖Mδ for x ∈ lMλ
[

∆m
n , p

]

. (2.2)
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Hence, from (2.2)
‖U(x)‖λM = ‖x‖λM ≤ c2‖x‖Mλ

i.e. U is continuous with ‖U‖ ≤ c2. This completes the proof. ✷

Theorem 2.16. If {λk} is unbounded with sup
k≥1

λ−1
k = d ≥ 1, λk > 0 for all

k, then lλM
[

∆m
n , p

]

is properly contained in lMλ
[

∆m
n , p

]

and the inclusion map V :

lλM
[

∆m
n , p

]

→ lMλ
[

∆m
n , p

]

is continuous with ‖V ‖ ≤ d2.

Proof: The proof of the theorem is similar to that of Theorem 2.15 and so is
omitted. ✷

3. Dual spaces of h(M), l(M, λ, p) and l(N, λ, p)

Let η be a sequence space and defined

ηα =
{

a = (ak) :

∞
∑

k=1

|akxk| < ∞, for all x ∈ η
}

,

ηβ =
{

a = (ak) :

∞
∑

k=1

akxk converges for all x ∈ η
}

,

ηγ =
{

a = (ak) : sup
∣

∣

∣

∞
∑

k=1

akxk

∣

∣

∣
< ∞, for all x ∈ η

}

(see [13]).

Then ηα, ηβ , ηγ are called α−, β−, γ− dual spaces of η respectively. It is easy
to show that φ ⊂ ηα ⊂ ηβ ⊂ ηγ . If η ⊂ ν, then νσ ⊂ ησ for σ = α, β, γ. We shall
write ηαα = (ηα)α.
Let η be a sequence space. Then η is called perfect if η = ηαα (see [15]).
For m = n = 0 we write l(M, λ, p) and l(N, λ, p) instead of lMλ

[

∆m
n , p

]

and

lλN
[

∆m
n , p

]

repectively which we define as:

l(M, λ, p) =
{

x = (xk) ∈ ω :
∑

k≥1

[

Mk

( |xk|

λkρ

)]pk

< ∞, for some ρ > 0
}

l(N, λ, p) =
{

x = (xk) ∈ ω :
∑

k≥1

[

Nk

(λk|xk|

ρ

)]pk

< ∞, for some ρ > 0
}

.

In this section we shall obtain α−, β− and γ− duals of the sequence space h(M)
and α− duals of l(M, λ, p) and l(N, λ, p).

Proposition 3.1. η is perfect ⇒ η is normal ⇒ η is monotone (see [15]).

Proposition 3.2. Let η be a sequence space. If η is monotone, then ηα = ηβ and
if η is normal, then ηα = ηγ .
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Proposition 3.3. The sequence space h(M) is normal for any sequence (Mk) of
Orlicz functions.

Proof: Let x ∈ h(M) and |yk| ≤ |xk|, for each k ∈ N. Since M ′
ks are non-decreasing

we have
∞
∑

k=1

Mk

( |yk|

ρ

)

≤

∞
∑

k=1

Mk

( |xk|

ρ

)

< ∞.

Hence, y ∈ h(M). Thus, h(M) is normal. ✷

Theorem 3.1. Let (Mk) and (Nk) for each k be mutually complementary Orlicz
functions. Then

[h(M)]β = [h(M)]α = [h(M)]γ = l(N).

The proof is seen from Proposition 3.1, Proposition 3.2 and Proposition 3.3.

Theorem 3.2. If the sequence (Mk) satisfies uniform ∆2− condition, then
[l(M, λ, p)]α = l(N, λ, p)

Proof: Let the sequence (Mk) satisfies uniform ∆2− condition, Then for any x ∈
l(M, λ, p) and a ∈ l(N, λ, p), we have

∞
∑

k=1

|akxk| ≤

∞
∑

k=1

[

Mk

( |xk|

λkρ

)]pk

+

∞
∑

k=1

[

Nk

(λk|ak|

ρ′

)]pk

< ∞

where ρ′ = 1
ρ

and ρ > 0. Thus, a ∈ [l(M, λ, p)]α. Hence, l(N, λ, p) ⊂ [l(M, λ, p)]α.

To prove the inclusion [l(M, λ, p)]α ⊂ l(N, λ, p), let a ∈ [l(M, λ, p)]α. Then for all

{xk} with
(

xk

λk

)

∈ l(M) we have

∞
∑

k=1

|akxk| < ∞. (3.1)

Since the sequence satisfies uniform ∆2−condition, then l(M) = h(M) and so for

(yk) ∈ h(M) we have

∞
∑

k=1

|λkykak| < ∞ by (3.1). Thus, (λkak) ∈ [h(M)]α = l(N)

and hence, (ak) ∈ l(N, λ, p). Therefore, [l(M, λ, p)]α = l(N, λ, p). ✷

Theorem 3.3. If the sequence (Mk) satisfies uniform ∆2− condition, then
[l(N, λ, p)]α = l(M, λ, p).

Proof: Immediate from Theorem 3.5. ✷
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4. Some new sequence spaces over n-normed space

The concept of 2-normed spaces was initially developed by Gähler [10] in the mid
of 1960’s, while that of n-normed spaces one can see in Misiak [18]. Since then,
many others have studied this concept and obtained various results, see Gunawan
([11], [12]) and Gunawan and Mashadi [13]. Let n ∈ N and X be a linear space
over the field K, where K is field of real or complex numbers of dimension d, where
d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on Xn satisfying the following four
conditions:

1. ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent in
X ,

2. ||x1, x2, · · · , xn|| is invariant under permutation,

3. ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ K, and

4. ||x+ x′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x′, x2, · · · , xn||

is called an n-norm on X , and the pair (X, ||·, · · · , ·||) is called a n-normed space
over the field K.
For example, we may take X = Rn being equipped with the n-norm
||x1, x2, · · · , xn||E = the volume of the n-dimensional parallelopiped spanned by
the vectors x1, x2, · · · , xn which may be given explicitly by the formula

||x1, x2, · · · , xn||E = | det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n. Let (X, ||·, · · · , ·||)
be an n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, · · · , an} be linearly
independent set in X . Then the following function ||·, · · · , ·||∞ on Xn−1 defined
by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, · · · , an}.
A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to converge to some
L ∈ X if

lim
k→∞

||xk − L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to be Cauchy if

lim
k,p→∞

||xk − xp, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X , then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to be
n-Banach space. For more details about n− normed space (see [26]) and references
therein.
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Let (X, ||·, · · · , ·||) be a n-normed space and W (n − X) denotes the space of X-
valued sequences. Let p = (pk) be a bounded sequence of positive real numbers,
λ = (λk) be a sequence of strictly positive real numbers. Let M = (Mk) be a
sequence of Orlicz functions and N = (Nk) is a complementary function of Orlicz
function M = (Mk). In this section of the paper we define the following sequences:

lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

=
{

x = (xk) ∈ W (n−X) :

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, for some ρ > 0
}

and

lλN
[

∆m
n , p, ‖·, · · · , ·‖

]

=
{

x = (xk) ∈ W (n−X) :

∑

k≥1

[

Nk

(
∥

∥

∥

λk∆
m
n xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, for some ρ > 0
}

.

If we take (pk) = 1 for all k then

lMλ
[

∆m
n , ‖·, · · · , ·‖

]

=
{

x = (xk) ∈ W (n−X) :

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]

< ∞, for some ρ > 0
}

and

lλN
[

∆m
n , ‖·, · · · , ·‖

]

=
{

x = (xk) ∈ W (n−X) :

∑

k≥1

[

Nk

(∥

∥

∥

λk∆
m
n xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]

< ∞, for some ρ > 0
}

.

If (λk) = 1 for all k ∈ N, then

lM
[

∆m
n , p, ‖·, · · · , ·‖

]

=
{

x = (xk) ∈ W (n−X) :

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, for some ρ > 0
}

and

lN
[

∆m
n , p, ‖·, · · · , ·‖

]

=
{

x = (xk) ∈ W (n−X) :

∑

k≥1

[

Nk

(
∥

∥

∥

∆m
n xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, for some ρ > 0
}
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respectively.

The main aim of this section is to study some topological properties and inclu-
sion relations between the spaces lMλ

[

∆m
n , p, ‖·, · · · , ·‖

]

and lλN
[

∆m
n , p, ‖·, · · · , ·‖

]

.

Theorem 4.1. Let M = (Mk) and N = (Nk) be two sequences of Orlicz functions,
p = (pk) be a bounded sequence of positive real numbers and λ = (λk) be a sequence
of strictly positive real numbers. Then the sequence spaces lMλ

[

∆m
n , p, ‖·, · · · , ·‖

]

and lλN
[

∆m
n , p, ‖·, · · · , ·‖

]

are linear spaces over the field C of complex numbers.

Proof: Let x = (xk) and y = (yk) ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

and α, β ∈ C. Then
there exist positive real numbers ρ1 and ρ2 such that

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞

and
∑

k≥1

[

Mk

(∥

∥

∥

∆m
n yk

λkρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞.

Define ρ3 = max(2|α|ρ1, 2|β|ρ2). Since ‖·, · · · , ·‖ is a n-norm on X and Mk’s are
non-decreasing and convex function so by using inequality (1.1), we have
∑

k≥1

[

Mk

(∥

∥

∥

∆m
n (αxk + βyk)

λkρ3
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤
∑

k≥1

[

Mk

(∥

∥

∥

α∆m
n xk

λkρ3
, z1, · · · , zn−1

∥

∥

∥
+
∥

∥

∥

β∆m
n yk

λkρ3
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ D
∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

+D
∑

k≥1

[

Mk

(∥

∥

∥

∆m
n yk

λkρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞.

Therefore, αx + βy ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

and hence, lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

is a

linear space. Similarly, we can prove lλN
[

∆m
n , p, ‖·, · · · , ·‖

]

is a linear space. This
completes the proof. ✷

Theorem 4.2. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a
bounded sequence of positive real numbers and λ = (λk) be a sequence of strictly pos-
itive real numbers. Then the sequence space lMλ

[

∆m
n , p, ‖·, · · · , ·‖

]

is a paranormed
space with paranorm defined by

g(x) = inf

{

(ρ)
pk
H :

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

}

where H = max(1, G), 0 < pk ≤ sup
k

pk = G.
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Proof: Clearly g(x) ≥ 0, for x = (xk) ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

. Since Mk(0) = 0,
we get g(0) = 0. Again, if g(x) = 0, then

g(x) = inf

{

(ρ)
pk
H :

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

}

= 0,

this implies that for a given ǫ > 0, there exist some ρǫ (0 < ρǫ < ǫ) such that

(

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρǫ
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1.

Thus,

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkǫ
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρǫ
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1.

Suppose that xk 6= 0 for each k ∈ N. This implies that ∆m
n xk 6= 0 for each k ∈ N.

Let ǫ → 0, then
∥

∥

∥

∆m
n xk

λkǫ
, z1, · · · , zn−1

∥

∥

∥
→ ∞. It follows that

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρǫ
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

→ ∞

which is a contradiction. Therefore, ∆m
n xk = 0 for each k and thus xk = 0 for each

k ∈ N. Let ρ1 > 0 and ρ2 > 0 be such that

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

and

(

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1.
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Let ρ = ρ1 + ρ2. Then by Minkowski’s inequality, we have
(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λk(ρ1 + ρ2)
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤

(

∑

k≥1

[

ρ1
ρ1 + ρ2

Mk

(
∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)

+
ρ2

ρ1 + ρ2
Mk

(∥

∥

∥

∆m
n xk

λkρ2
, z1, · · · , zn−1

∥

∥

∥

)

]pk
)

1

H

≤

(

ρ1
ρ1 + ρ2

)(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)

]pk
)

1

H

+

(

ρ1
ρ1 + ρ2

)(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ2
, z1, · · · , zn−1

∥

∥

∥

)

]pk
)

1

H

≤ 1.

Since ρ’s are non-negative, so we have

g(x+ y) = inf

{

(ρ1 + ρ2)
pk
H :

(

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n (xk + yk)

λk(ρ1 + ρ2)
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

}

≤ inf

{

(ρ1)
pk
H :

(

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

}

+ inf

{

(ρ2)
pk
H :

(

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n yk

λkρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

}

.

Therefore, g(x+ y) ≤ g(x) + g(y). Finally, we prove that the scalar multiplication
is continuous. Let µ be any complex number, therefore, by definition

g(µx) = inf

{

(ρ)
pk
H :

(

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n µxk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

}

and
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thus,

g(µx) = inf

{

(|µ|t)
pk
H :

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkt
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

}

where t = ρ
|µ| . Since |µ|pk ≤ max(1, |µ| sup pk). Hence,

g(µx) = max(1, |µ| sup pk) inf

{

(t)
pk
H :

(

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkt
, z1, · · · , zn−1

∥

∥

∥

)]pk

)
1

H

≤ 1

}

.

So, the fact that scalar multiplication is continuous follows from the above inequal-
ity. This completes the proof. ✷

Theorem 4.3. Suppose M = (Mk) be a sequence of Orlicz functions, p = (pk)
be a bounded sequence of positive real numbers and λ = (λk) be a sequence of
strictly positive real numbers. If 0 < pk ≤ qk < ∞, for each k ∈ N, then
lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

⊆ lMλ
[

∆m
n , q, ‖·, · · · , ·‖

]

.

Proof: Suppose that x = (xk) ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

, this implies that

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ 1

for sufficiently large value of k say k ≥ k0, for some fixed k0 ∈ N. Since M = (Mk)
is non decreasing, we have

∞
∑

k=k0

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]qk
≤

∞
∑

k=k0

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞.

Hence, x = (xk) ∈ lMλ
[

∆m
n , q, ‖·, · · · , ·‖

]

. This completes the proof. ✷

Theorem 4.4. (i) If 0 < inf pk ≤ pk < 1 for each k, then lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

⊆

lMλ
[

∆m
n , ‖·, · · · , ·‖

]

.

(ii) If 1 ≤ pk ≤ sup pk < ∞ for each k, then lMλ
[

∆m
n , ‖·, · · · , ·‖

]

⊆ lMλ
[

∆m
n , p, ‖·,

· · · , ·‖
]

.
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Proof: (i) Let x = (xk) ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

. Since 0 < inf pk < 1, we have

∞
∑

k=1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]

≤

∞
∑

k=1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

and hence, x = (xk) ∈ lMλ
[

∆m
n , ‖·, · · · , ·‖

]

.

(ii) Suppose pk for each k sup pk < ∞ and let x = (xk) ∈ lMλ
[

∆m
n , ‖·, · · · , ·‖

]

.
Then for each 0 < ǫ < 1, there exists a positive integer N such that

∞
∑

k=1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]

≤ ǫ < 1, for all k ∈ N.

This implies that

∞
∑

k=1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤

∞
∑

k=1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]

.

Thus, x = (xk) ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

. This completes the proof. ✷

Theorem 4.5. The sequence space lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

is solid.

Proof: Let x = (xk) ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

. Then

∞
∑

k=1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞.

Let (αk) be a sequence of scalars such that |αk| ≤ 1 for all k ∈ N. Then the result
follows from the following inequality

∞
∑

k=1

[

Mk

(
∥

∥

∥

∆m
n αkxk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤

∞
∑

k=1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

.

This completes the proof. ✷

Corollary 4.6. The sequence space lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

is monotone.

Proof: It is obvious so we omit the proof. ✷

Theorem 4.7. Let M = (Mk) and M
′

= (M
′

k) be two sequences of Orlicz functions.
Then, we have

lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

∩ lM
′

λ

[

∆m
n , p, ‖·, · · · , ·‖

]

⊆ lM+M
′

λ

[

∆m
n , p, ‖·, · · · , ·‖

]

.
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Proof: Let x = (xk) ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

∩ lM
′

λ

[

∆m
n , p, ‖·, · · · , ·‖

]

.
Then

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, for some ρ1 > 0

and

∑

k≥1

[

M
′

k

(∥

∥

∥

∆m
n xk

λkρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, for some ρ2 > 0.

Let ρ = max(ρ1, ρ2). The result follows from the inequality
∑

k≥1

[

(Mk +M
′

k)
(∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

=
∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)

+M
′

k

(∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ D
∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

+D
∑

k≥1

[

M
′

k

(∥

∥

∥

∆m
n xk

λkρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

.

This completes the proof. ✷

Theorem 4.8. If Z is a normal sequence space containing λ, then lMλ
[

∆m
n , p, ‖·,

· · · , ·‖
]

is a proper subspace of Z. In addition, if Z is equipped with the monotone

norm (quasi-norm) ‖.‖Z. The inclusion R : lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

→ Z
[

∆m
n , p, ‖·,

· · · , ·‖
]

is continuous with ‖R‖ ≤ ‖{λk}‖Z.

Proof: Let x ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

, then

∞
∑

k=1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, for some ρ > 0.

So there exists a constant K > 0 such that

∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥
≤ K for all k ∈ N.

Since Z is a normal sequence space containing λ, we have
[∥

∥∆m
n xk, z1, · · · ,

zn−1

∥

∥

]pk ∈ Z and so that x ∈ Z
[

∆m
n , p, ‖·, · · · , ·‖

]

. Hence, lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

⊆

Z
[

∆m
n , p, ‖·, · · · , ·‖

]

. Further, since Mk(1) = 1 for all k ∈ N then

∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n xk

λk‖x‖Mλ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ 1
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so that ‖∆m
n xk, z1, · · · , zn−1‖ ≤ λk‖x‖

M
λ . As ‖.‖Z is monotone, ‖Rx‖Z = ‖∆m

n xk,
z1, · · · , zn−1‖Z ≤ ‖{λk}‖Z‖x‖

M
λ and hence, ‖R‖ ≤ ‖{λk}‖Z. This completes the

proof. ✷

Theorem 4.9. If Y is a normal sequence space containing λ−1 ≡ { 1
λk

}, then

lλN
[

∆m
n , p, ‖·, · · · , ·‖

]

is a proper subspace of Y. In addition, if Y is equipped with

the monotone norm (quasi-norm) ‖.‖Y. The inclusion S : lλN
[

∆m
n , p, ‖·, · · · , ·‖

]

→

Y
[

∆m
n , p, ‖·, · · · , ·‖

]

is continuous with ‖S‖ ≤ ‖{λ−1
k }‖Y.

Proof: The proof of the theorem is similar to that of Theorem 4.8 and so is
omitted. ✷

Theorem 4.10. If λ = (λk) is a bounded sequence such that inf λk > 0 (i.e
both λ and λ−1 are in l∞). Then lλM

[

∆m
n , p, ‖·, · · · , ·‖

]

= lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

=

lM
[

∆m
n , p, ‖·, · · · , ·‖

]

.

Proof: Let x = (xk) ∈ lM
[

∆m
n , p, ‖·, · · · , ·‖

]

. Then

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, for some ρ > 0.

Since λ = (λk) is bounded, we can write a ≤ λk ≤ b for some b > a ≥ 0. Define
ρ1 = ρb. Also since M ′

ks are increasing, it follows that

∑

k≥1

[

Mk

(∥

∥

∥

λk∆
m
n xk

ρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤
∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞.

Hence, lM
[

∆m
n , p, ‖·, · · · , ·‖

]

⊆ lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

. The other inclusion lλM
[

∆m
n , p,

‖·, · · · , ·‖
]

⊆ lM
[

∆m
n , p, ‖·, · · · , ·‖

]

follows from the inequality

∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk
ρ
a

, z1, · · · , zn−1

∥

∥

∥

)]pk

≤
∑

k≥1

[

Mk

(∥

∥

∥

λk∆
m
n xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞.

Therefore, lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

= lM
[

∆m
n , p, ‖·, · · · , ·‖

]

. Similarly one can prove
that
lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

= lM
[

∆m
n , p, ‖·, · · · , ·‖

]

. This completes the proof. ✷

Theorem 4.11. If {λk} ∈ l∞ with c = sup
k≥1

λk ≥ 1 and {λ−1
k } is unbounded,

then lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

is properly contained in lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

and the

inclusion map U : lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

→ lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

is continuous with
‖U‖ ≤ c2.
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Proof: For any ρ > 0 and ρ′ = ρc2, we have

∑

k≥1

[

Mk

(
∥

∥

∥

λk∆
m
n xk

ρ′
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤
∑

k≥1

[

Mk

(
∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞,

for x = {xk}. Hence, lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

⊂ lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

. We now show

that the containment lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

⊂ lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

is proper. From

the unboundedness of the sequence {λ−1
k }, choose a sequence {kl} of positive inte-

gers such that λ−1
kl

≥ l. Now define

∆m
n xk =

{

1
l
, k = kl, l = 1, 2, ...;

0, otherwise.

Then x ∈ lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

but x /∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

. To prove the conti-
nuity of the inclusion map U, let us first consider the case obtained for c = 1. For
x ∈ lMλ

[

∆m
n , p, ‖·, · · · , ·‖

]

, we write

AM
λ

[

∆m
n , p, ‖·, · · · , ·‖

]

=

{

ρ > 0 :
∑

k≥1

[

Mk

(∥

∥

∥

∆m
n xk

λkρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ 1

}

and

Bλ
M

[

∆m
n , p, ‖·, · · · , ·‖

]

=

{

ρ > 0 :
∑

k≥1

[

Mk

(
∥

∥

∥

λk∆
m
n xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ 1

}

.

Since M ′
ks are increasing and c = 1, we get AM

λ

[

∆m
n , p, ‖·, · · · , ·‖

]

⊂ Bλ
M

[

∆m
n , p, ‖·,

· · · , ·‖
]

. Hence,

‖x‖λM = inf Bλ
M

[

∆m
n , p, ‖·, · · · , ·‖

]

≤ inf Aλ
M

[

∆m
n , p, ‖·, · · · , ·‖

]

= ‖x‖Mλ (4.1)

i.e ‖U(x)‖λM ≤ ‖x‖Mλ . Thus, U is continuous with ‖U‖ ≤ 1 = c2. If c = 1, define
δk = λk

c
, k ∈ N. Then δk ≤ 1 and from (4.1), it follows that

‖x‖δM ≤ ‖x‖Mδ for x ∈ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

. (4.2)

Hence, from (4.2)
‖U(x)‖λM = ‖x‖λM ≤ e2‖x‖Mλ ,

thus, U is continuous with ‖U‖ ≤ c2. This completes the proof. ✷

Theorem 4.12. If {λk} is unbounded with sup
k≥1

λ−1
k = d ≥ 1, λk > 0 for all

k, then lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

is properly contained in lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

and the

inclusion map V : lλM
[

∆m
n , p, ‖·, · · · , ·‖

]

→ lMλ
[

∆m
n , p, ‖·, · · · , ·‖

]

is continuous with
‖V ‖ ≤ d2.

Proof: The proof of the theorem is similar to that of Theorem 4.11 and so is
omitted. ✷
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