An Orlicz extension of difference modular sequence spaces

Seema Jamwal and Kuldip Raj

ABSTRACT: In this paper we construct some new difference modular sequence spaces defined by a sequence of Orlicz functions over \(n\)-normed spaces. We also study several properties relevant to topological structures and interrelationship between these spaces.

Key Words: sequence space, difference sequence space, modular sequence space, paranormed space, Orlicz function, \(n\)-normed space, BK-space.

Contents

1 Introduction and Preliminaries 31
2 Some topological properties of the spaces \(l_\infty^N[\Delta^m_n, p]\) and \(l_\lambda^N[\Delta^m_n, p]\) 36
3 Dual spaces of \(h(M), l(M, \lambda, p)\) and \(l(N, \lambda, p)\) 44
4 Some new sequence spaces over \(n\)-normed space 46

1. Introduction and Preliminaries

Let \(X\) be a linear metric space. A function \(p : X \to \mathbb{R}\) is called paranorm, if

1. \(p(x) \geq 0\) for all \(x \in X\),
2. \(p(-x) = p(x)\) for all \(x \in X\),
3. \(p(x + y) \leq p(x) + p(y)\) for all \(x, y \in X\),
4. if \((\lambda_n)\) is a sequence of scalars with \(\lambda_n \to \lambda\) as \(n \to \infty\) and \((x_n)\) is a sequence of vectors with \(p(x_n - x) \to 0\) as \(n \to \infty\), then \(p(\lambda_n x_n - \lambda x) \to 0\) as \(n \to \infty\).

A paranorm \(p\) for which \(p(x) = 0\) implies \(x = 0\) is called total paranorm and the pair \((X, p)\) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [32], Theorem 10.4.2, pp. 183).

The notion of difference sequence spaces was introduced by Kizmaz [16], who studied the difference sequence spaces \(l_\infty(\Delta), c(\Delta)\) and \(c_0(\Delta)\). The notion was further generalized by Et and Çolak [7] by introducing the spaces \(l_\infty(\Delta^n), c(\Delta^n)\) and \(c_0(\Delta^n)\). Later the concept have been studied by Bektaş et al. [3] and Et et al. [8]. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [29] who studied the spaces \(l_\infty(\Delta_v), c(\Delta_v)\) and \(c_0(\Delta_v)\). Recently, Esi et
al. [9] and Tripathy et al. [30] have introduced a new type of generalized difference operators and unified those as follows. Let \(v \), \(n \) be non-negative integers, then for \(Z \) a given sequence space, we have

\[
Z(\Delta^n_v) = \{ x = (x_k) \in w : (\Delta^n_v x_k) \in Z \}
\]

for \(Z = c, c_0 \) and \(l_\infty \) where \(\Delta^n_v x = (\Delta^n_v x_k) = (\Delta^{n-1}_v x_k - \Delta^{n-1}_v x_{k+n}) \) and \(\Delta^n_v x_k = x_k \) for all \(k \in \mathbb{N} \), which is equivalent to the following binomial representation

\[
\Delta^n_v x_k = \sum_{m=0}^{n} (-1)^m \binom{n}{m} x_{k+vm}.
\]

Taking \(v = 1 \), we get the spaces \(l_\infty(\Delta^n) \), \(c(\Delta^n) \) and \(c_0(\Delta^n) \) studied by Et and Çolak [7]. Taking \(v = n = 1 \), we get the spaces \(l_\infty(\Delta) \), \(c(\Delta) \) and \(c_0(\Delta) \) introduced and studied by Kizmaz [16]. For more details about difference sequence spaces (see [1], [4], [5], [19], [20], [27]) and references therein.

Let \(\omega \) be the family of all real or complex sequences, which is a vector space with the usual pointwise addition and scalar multiplication. We write \(e^n(n \geq 1) \) for the \(n^{th} \) unit vector in \(\omega \), i.e \(e^n = \{ \delta_{nj} \}_{j=1}^\infty \) where \(\delta_{nj} \) is the Kronecker delta, and \(\varphi \) for the subspace of \(\omega \) generated by \(e^n \)’s, \(n \geq 1 \), i.e \(\varphi = \text{span}\{e^n : n \geq 1 \} \). A sequence space \(\eta \) is a subspace of \(\omega \) containing \(\varphi \). The sequence space \(\eta \) is said to be solid if \((\alpha_k x_k) \in \eta \) whenever \((x_k) \in \eta \) for all sequences \((\alpha_k) \) of scalars such that \(|\alpha_k| \leq 1 \) for all \(k \in \mathbb{N} \). A sequence space \(\eta \) is said to be monotone if \(\eta \) contains the canonical pre images of all its step spaces. A Banach sequence space \((\eta, S) \) is called a BK-space if the topology \(S \) of \(\eta \) is finer than the coordinatewise convergence topology, or equivalently, the projection maps \(P_i : \eta \to K \), \(P_i(x) = x_i \), \(i \geq 1 \) are continuous, where \(K \) is the scalar field \(\mathbb{R} \) or \(\mathbb{C} \). For \(x = (x_1, ..., x_n, ...) \) and \(n \in \mathbb{N} \), we write the \(n^{th} \) section of \(x \) as \(x^{(n)} = (x_1, ..., x_n, 0, 0, ...) \). If \(x^{(n)} \to x \) in \((\eta, S) \) for each \(x \in \eta \), we say that \((\eta, S) \) is an AK-space. The norm \(\|\|_\eta \) generating the topology \(S \) of \(\eta \) is said to be monotone if \(\|x\|_\eta \leq \|y\|_\eta \) for \(x = \{x_i\}, \ y = \{y_i\} \in \eta \) with \(|x_i| \leq |y_i| \), for all \(i \geq 1 \) (see [14]).

An Orlicz function \(M \) is a function, which is continuous, non-decreasing and convex with \(M(0) = 0 \), \(M(x) > 0 \) for \(x > 0 \) and \(M(x) \to \infty \) as \(x \to \infty \). Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the following sequence space:

\[
\ell_M = \{ x \in \omega : \sum_{k=1}^\infty M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \}
\]

which is called as an Orlicz sequence space. The space \(\ell_M \) is a Banach space with the norm

\[
\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^\infty M\left(\frac{|x_k|}{\rho}\right) \leq 1 \right\}.
\]

It is shown in [15] that every Orlicz sequence space \(\ell_M \) contains a subspace isomorphic to \(\ell_p(p \geq 1) \). In the later stage different Orlicz sequence spaces were
introduced and studied by Parashar and Choudhary [25], Esi and Et [6], Tripathy and Mahanta [31], Mursaleen [21] and many others. The Δ_2--condition is equivalent to $M(Lx) \leq kLM(x)$ for all values of $x \geq 0$ and for $L > 1$.

A sequence $M = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function (see [22], [23]). A sequence $N = (N_k)$ defined by

$$N_k(v) = \sup \{|v|u - M_k(u) : u \geq 0\}, \quad k = 1, 2, \ldots$$

is called the complementary function of a Musielak-Orlicz function M. For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space t_M and its subspace h_M are defined as follows;

$$t_M = \{x \in \omega : I_M(cx) < \infty \text{ for some } c > 0\},$$
$$h_M = \{x \in \omega : I_M(cx) < \infty \text{ for all } c > 0\},$$

where I_M is a convex modular defined by

$$I_M(x) = \sum_{k=1}^{\infty} M_k(x_k), \quad x = (x_k) \in t_M.$$ We consider t_M equipped with the Luxemburg norm

$$||x|| = \inf \left\{ k > 0 : I_M\left(\frac{x}{k}\right) \leq 1 \right\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_M(kx)\right) : k > 0 \right\}.$$ Any Orlicz function M_k can always be represented in the following integral form

$$M_k(x) = \int_0^x \eta_k(t) dt,$$

where η_k is known as the kernel of M_k, is a right differentiable for $t \geq 0$, $\eta_k(0) = 0$, $\eta_k(t) > 0$, η_k is non-decreasing and $\eta_k(t) \to \infty$ as $t \to \infty$.

Given an Orlicz function M_k with kernel $\eta_k(t)$, define

$$\nu_k(s) = \sup \{t : \eta_k(t) \leq s, s \geq 0\}.$$ Then $\nu_k(s)$ possesses the same properties as $\eta_k(t)$ and the function N_k defined as

$$N_k(x) = \int_0^x \nu_k(s) ds$$

is an Orlicz function. The functions M_k and N_k are called mutually complementary Orlicz functions.
For a sequence $M = (M_k)$ of Orlicz functions, the modular sequence class $\tilde{l}(M)$ is defined by

$$\tilde{l}(M) = \{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} M_k(|x_k|) < \infty \}.$$

Using the sequence $N = (N_k)$ of Orlicz functions, similarly we define $\tilde{l}(N)$. The class $l(M)$ is defined by

$$l(M) = \{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} x_k y_k \text{ converges, for all } y \in \tilde{l}(N) \}.$$

For a sequence $M = (M_k)$ of Orlicz functions, the modular sequence space $l(M)$ is also defined as

$$l(M) = \{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) \leq 1 \}.$$

These spaces were introduced by Woo [33] around the year 1973 and generalizes the Orlicz sequence space l^M and the modulared sequence spaces considered earlier by Nakano [24]. For more details about modular sequence spaces (see [15], [28]) and references therein.

An important subspace of $l(M)$, which is an AK-space, is the space $h(M)$ defined as

$$h(M) = \{ x \in l(M) : \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \}.$$

A sequence (M_k) of Orlicz functions is said to satisfy uniform Δ_2-condition at $0'$ if there exist $p > 0$ and $k_0 \in \mathbb{N}$ such that for all $x \in (0, 1)$ and $k > k_0$, we have $M_k(x) \leq p$, or equivalently, there exists a constant $K > 1$ and $k_0 \in \mathbb{N}$ such that $\frac{M_k(x)}{M_k(y)} \leq K$ for all $x, y \in (0, \frac{1}{2}]$. If the sequence (M_k) satisfy uniform Δ_2-condition, then $h(M) = l(M)$ and vice-versa (see [33]).

Let M_k and N_k be mutually complementary Orlicz functions for each k and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Bektaş and Atici [2] define the following sequence spaces:

$$l^M_N(\Delta^m) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} M_k\left(\frac{|\Delta^m x_k|}{\lambda_k \rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

and

$$l^N_N(\Delta^m) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} N_k\left(\frac{\lambda_k |\Delta^m x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$
Let $M = (M_k)$ and $N = (N_k)$ be two sequences of Orlicz functions, $p = (p_k)$ be any bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. In this paper we define the following sequence spaces:

$$l^M_n[\Delta_n^m, p] = \left\{ x = (x_k) \in \omega : \sum_{k \geq 1} M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho}\right)^{p_k} < \infty, \text{ for some } \rho > 0 \right\}$$

and

$$l^N_n[\Delta_n^m, p] = \left\{ x = (x_k) \in \omega : \sum_{k \geq 1} N_k\left(\frac{|\Delta_n^m x_k|}{\rho}\right)^{p_k} < \infty, \text{ for some } \rho > 0 \right\}.$$

If we take $(p_k) = 1$, for all k then

$$l^M_n[\Delta_n^m, 1] = \left\{ x = (x_k) \in \omega : \sum_{k \geq 1} M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

and

$$l^N_n[\Delta_n^m, 1] = \left\{ x = (x_k) \in \omega : \sum_{k \geq 1} N_k\left(\frac{|\Delta_n^m x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

If $(\lambda_k) = 1$ for all $k \in \mathbb{N}$, then

$$l^M_n[\Delta_n^m, p] = \left\{ x = (x_k) \in \omega : \sum_{k \geq 1} M_k\left(\frac{|\Delta_n^m x_k|}{\rho}\right)^{p_k} < \infty, \text{ for some } \rho > 0 \right\}$$

and

$$l^N_n[\Delta_n^m, p] = \left\{ x = (x_k) \in \omega : \sum_{k \geq 1} N_k\left(\frac{|\Delta_n^m x_k|}{\rho}\right)^{p_k} < \infty, \text{ for some } \rho > 0 \right\}.$$

If we take $(p_k) = 1$, for all k and $n=1$ we get the spaces defined by Bektaş and Atıcı [2].

The following inequality will be used throughout the paper. Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k \leq \sup_k p_k = H$, and let $D = \max\{1, 2^{H-1}\}$. Then, for the factorable sequences (a_k) and (b_k) in the complex plane, we have

$$|a_k + b_k|^{p_k} \leq D(|a_k|^{p_k} + |b_k|^{p_k}). \quad (1.1)$$

Throughout the paper we write $M_k(1) = 1$ and $N_k(1) = 1$ for all $k \in \mathbb{N}$.

The main purpose of this paper is to study some difference new modular sequence spaces defined by a sequence of Orlicz functions over $n-$normed spaces. We shall study some topological, algebraic properties of the sequence spaces $l^M_n[\Delta_n^m, p]$ and $l^N_n[\Delta_n^m, p]$ in the second section of the paper. In the third section we shall determine the dual spaces of $h(M)$, $l(M, \lambda, p)$ and $l(N, \lambda, p)$. Finally, we shall study some sequence spaces over $n-$normed spaces in the fourth section of the paper. We have also made an attempt to study some topological, algebraic properties and inclusion relations between the sequence spaces $l^M_n[\Delta_n^m, p, ||\cdot\cdot\cdot||]$ and $l^N_n[\Delta_n^m, p, ||\cdot\cdot\cdot||]$.
2. Some topological properties of the spaces $l^{M}_{\lambda} [\Delta_{n}, p]$ and $l^{N}_{\lambda} [\Delta_{m}, p]$

The purpose of this section is to study the properties like linearity, paranorm, solidity and relevant inclusion relations in the spaces $l^{M}_{\lambda} [\Delta_{n}, p]$ and $l^{N}_{\lambda} [\Delta_{m}, p]$.

Theorem 2.1. Let $\mathcal{M} = (M_k)$ and $\mathcal{N} = (N_k)$ be two sequences of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Then the sequence spaces $l^{M}_{\lambda} [\Delta_{n}, p]$ and $l^{N}_{\lambda} [\Delta_{m}, p]$ are linear spaces over the complex field \mathbb{C}.

Proof: Let $x = (x_k)$ and $y = (y_k) \in l^{M}_{\lambda} [\Delta_{n}, p]$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive real numbers ρ_1 and ρ_2 such that

$$\sum_{k \geq 1} \left[M_k \left(\frac{\Delta_{m} x_k}{\lambda_k \rho_1} \right) \right]^{p_k} < \infty$$

and

$$\sum_{k \geq 1} \left[M_k \left(\frac{\Delta_{m} y_k}{\lambda_k \rho_2} \right) \right]^{p_k} < \infty.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M_k's are non-decreasing and convex function so by using inequality (1.1), we have

$$\sum_{k \geq 1} \left[M_k \left(\frac{\Delta_{m}(\alpha x_k + \beta y_k)}{\lambda_k \rho_3} \right) \right]^{p_k} \leq \sum_{k \geq 1} \left[M_k \left(\frac{\alpha \Delta_{m} x_k}{\lambda_k \rho_3} + \frac{\beta \Delta_{m} y_k}{\lambda_k \rho_3} \right) \right]^{p_k}$$

$$\leq D \sum_{k \geq 1} \left[M_k \left(\frac{\Delta_{m} x_k}{\lambda_k \rho_1} \right) \right]^{p_k} + D \sum_{k \geq 1} \left[M_k \left(\frac{\Delta_{m} y_k}{\lambda_k \rho_2} \right) \right]^{p_k}$$

$$< \infty.$$

Therefore, $\alpha x + \beta y \in l^{M}_{\lambda} [\Delta_{n}, p]$ and hence, $l^{M}_{\lambda} [\Delta_{n}, p]$ is a linear space. Similarly, we can prove that $l^{N}_{\lambda} [\Delta_{m}, p]$ is a linear space. This completes the proof. \square

Theorem 2.2. Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Then the sequence space $l^{M}_{\lambda} [\Delta_{n}, p]$ is a paranormed space with paranorm defined by

$$g(x) = \inf \left\{ \varphi \in \mathbb{P} : \left(\sum_{k \geq 1} \left[M_k \left(\frac{\Delta_{m} x_k}{\lambda_k \rho} \right) \right]^{p_k} \right)^{\frac{1}{p_k}} \leq 1 \right\}$$

where $H = \max(1, G)$, $0 < p_k \leq \sup_{k} p_k = G$.

Proof: Clearly $g(x) \geq 0$, for $x = (x_k) \in l^\infty_\lambda[\Delta_n^m, p]$. Since $M_k(0) = 0$, we get $g(0) = 0$. Again, if $g(x) = 0$, then

$$g(x) = \inf \left\{ (\rho)^{\frac{1}{p}} : \left(\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^p \right)^{\frac{1}{p}} \leq 1 \right\} = 0,$$

this implies that for a given $\epsilon > 0$, there exist some ρ_ϵ ($0 < \rho_\epsilon < \epsilon$) such that

$$\left(\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_\epsilon} \right) \right]^p \right)^{\frac{1}{p}} \leq 1.$$

Thus,

$$\left(\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_\epsilon} \right) \right]^p \right)^{\frac{1}{p}} \leq \left(\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_\epsilon} \right) \right]^p \right)^{\frac{1}{p}} \leq 1.$$

Suppose that $x_k \neq 0$ for each $k \in \mathbb{N}$. This implies that $\Delta_n^m x_k \neq 0$ for each $k \in \mathbb{N}$. Let $\epsilon \to 0$, then $\frac{|\Delta_n^m x_k|}{\lambda_k \epsilon} \to \infty$. It follows that

$$\left(\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_\epsilon} \right) \right]^p \right)^{\frac{1}{p}} \to \infty,$$

which is a contradiction. Therefore, $\Delta_n^m x_k = 0$ for each k and thus $x_k = 0$ for each $k \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^p \right)^{\frac{1}{p}} \leq 1$$

and

$$\left(\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_2} \right) \right]^p \right)^{\frac{1}{p}} \leq 1.$$

Let $\rho = \rho_1 + \rho_2$. Then by Minkowski’s inequality, we have
\[
\left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k \rho} \right)^p \right] \right)^{\frac{1}{p}} \leq \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k (\rho_1 + \rho_2)} \right)^p \right] \right)^{\frac{1}{p}} \\
\leq \left(\sum_{k \geq 1} \left[\frac{\rho_1}{\rho_1 + \rho_2} M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k \rho_1} \right)^p \right] \right)^{\frac{1}{p}} + \left(\frac{\rho_2}{\rho_1 + \rho_2} M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k \rho_2} \right)^p \right)^{\frac{1}{p}} \\
\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k \rho_1} \right)^p \right] \right)^{\frac{1}{p}} + \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k \rho_2} \right)^p \right] \right)^{\frac{1}{p}} \\
\leq 1.
\]

Since \(\rho \)'s are non-negative, so we have
\[
g(x + y) = \inf \left\{ (\rho_1 + \rho_2) \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n (x_k + y_k) \|}{\lambda_k (\rho_1 + \rho_2)} \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \right\}
\leq \inf \left\{ \rho_1 \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k \rho_1} \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \right\}
+ \inf \left\{ \rho_2 \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n y_k \|}{\lambda_k \rho_2} \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \right\}.
\]

Therefore, \(g(x + y) \leq g(x) + g(y) \). Finally, we prove that the scalar multiplication is continuous. Let \(\mu \) be any complex number, therefore, by definition
\[
g(\mu x) = \inf \left\{ (\rho) \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n \mu x_k \|}{\lambda_k \rho} \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \right\}
\]
thus,
\[
g(\mu x) = \inf \left\{ (|\mu| t) \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k t} \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \right\}
\]
where \(t = \frac{\rho}{|\mu|} \). Since \(|\mu|^p \leq \max(1, |\mu| \sup p_k) \). Hence,
\[
g(\mu x) = \max(1, |\mu| \sup p_k) \inf \left\{ (t) \left(\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n x_k \|}{\lambda_k t} \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \right\}.
\]
So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof. □

Theorem 2.3. Suppose \(M = (M_k) \) be a sequence of Orlicz functions, \(p = (p_k) \) be a bounded sequence of positive real numbers and \(\lambda = (\lambda_k) \) be a sequence of strictly positive real numbers. If \(0 < p_k \leq q_k < \infty \), for each \(k \in \mathbb{N} \), then \(l^M_\lambda[\Delta^m_n, p] \subseteq l^M_\lambda[\Delta^m_n, q] \).

Proof: Suppose that \(x = (x_k) \in l^M_\lambda[\Delta^m_n, p] \). This implies that

\[
\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta^m_n x_k|}{\lambda_k \rho} \right) \right]^{p_k} \leq 1
\]

for sufficiently large value of \(k \) say \(k \geq k_0 \), for some fixed \(k_0 \in \mathbb{N} \). Since \(M = (M_k) \) is non decreasing, we have

\[
\sum_{k=k_0}^{\infty} \left[M_k \left(\frac{|\Delta^m_n x_k|}{\lambda_k \rho} \right) \right]^{p_k} \leq \sum_{k=k_0}^{\infty} \left[M_k \left(\frac{|\Delta^m_n x_k|}{\lambda_k \rho} \right) \right]^{p_k} < \infty.
\]

Hence, \(x = (x_k) \in l^M_\lambda[\Delta^m_n, q] \). This completes the proof. □

Theorem 2.4. (i) If \(0 < \inf p_k \leq p_k < 1 \) for each \(k \), then \(l^M_\lambda[\Delta^m_n, p] \subseteq l^M_\lambda[\Delta^m_n] \).
(ii) If \(1 \leq p_k \leq \sup p_k < \infty \) for each \(k \), then \(l^M_\lambda[\Delta^m_n] \subseteq l^M_\lambda[\Delta^m_n, p] \).

Proof: (i) Let \(x = (x_k) \in l^M_\lambda[\Delta^m_n, p] \). Since \(0 < \inf p_k < 1 \), we have

\[
\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta^m_n x_k|}{\lambda_k \rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta^m_n x_k|}{\lambda_k \rho} \right) \right]^{p_k}
\]

and hence, \(x = (x_k) \in l^M_\lambda[\Delta^m_n] \).

(ii) Suppose \(p_k \) for each \(k \) \(\sup p_k < \infty \) and let \(x = (x_k) \in l^M_\lambda[\Delta^m_n] \). Then for each \(0 < \epsilon < 1 \), there exists a positive integer \(N \) such that

\[
\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta^m_n x_k|}{\lambda_k \rho} \right) \right]^{p_k} \leq \epsilon < 1, \text{ for all } k \in \mathbb{N},
\]

this implies that

\[
\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta^m_n x_k|}{\lambda_k \rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta^m_n x_k|}{\lambda_k \rho} \right) \right].
\]

Thus, \(x = (x_k) \in l^M_\lambda[\Delta^m_n, p] \). This completes the proof. □
Theorem 2.5. The sequence space $l^N_X\left[\Delta_n^m, p\right]$ is solid.

Proof: Let $x = (x_k) \in l^N_X\left[\Delta_n^m, p\right]$. Then

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho} \right) \right]^{p_k} < \infty.$$

Let (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Then the result follows from the following inequality

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{\left| \Delta_n^m \alpha_k x_k \right|}{\lambda_k \rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho} \right) \right]^{p_k}.$$

This completes the proof. \qed

Corollary 2.6. The sequence space $l^N_X\left[\Delta_n^m, p\right]$ is monotone.

Proof: It is obvious so we omit the proof. \qed

Theorem 2.7. Let $\mathcal{M} = (M_k)$ and $\mathcal{M}' = (M'_k)$ be two sequences of Orlicz functions. Then, we have

$$l^N_X\left[\Delta_n^m, p\right] \cap l^N_X^M\left[\Delta_n^m, p\right] \subseteq l^N_X^{\mathcal{M} + \mathcal{M}'}\left[\Delta_n^m, p\right].$$

Proof: Let $x = (x_k) \in l^N_X\left[\Delta_n^m, p\right] \cap l^{N'}_X\left[\Delta_n^m, p\right]$. Then

$$\sum_{k \geq 1} \left[M_k \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho_1} \right) \right]^{p_k} < \infty, \text{ for some } \rho_1 > 0$$

and

$$\sum_{k \geq 1} \left[M'_k \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho_2} \right) \right]^{p_k} < \infty, \text{ for some } \rho_2 > 0.$$

Let $\rho = \max(\rho_1, \rho_2)$. The result follows from the inequality

$$\sum_{k \geq 1} \left[(M_k + M'_k) \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho} \right) \right]^{p_k} = \sum_{k \geq 1} \left[M_k \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho_1} \right) \right]^{p_k} + M'_k \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho_2} \right) \leq D \sum_{k \geq 1} \left[M_k \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho_1} \right) \right]^{p_k} + D \sum_{k \geq 1} \left[M'_k \left(\frac{\left| \Delta_n^m x_k \right|}{\lambda_k \rho_2} \right) \right]^{p_k}.$$

This completes the proof. \qed

The proof of the following theorems are easy so omitted.
Theorem 2.8. The sequence space \(l^M_\lambda [\Delta^m_n, p] \) is a normed space with norm
\[
\|x\|_M^\lambda = \sum_{i=1}^m |x_i| + \inf \left\{ \rho > 0 : \sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho} \right)^p \right] \leq 1 \right\}.
\]

Theorem 2.9. The sequence space \(l^\lambda_N [\Delta^m_n, p] \) is a normed space with norm
\[
\|x\|_N^\lambda = \sum_{i=1}^m |x_i| + \inf \left\{ \rho > 0 : \sum_{k \geq 1} \left[N_k \left(\frac{\lambda_k |\Delta^m_n x_k|}{\rho} \right)^p \right] \leq 1 \right\}.
\]

Theorem 2.10. The spaces \((l^M_\lambda [\Delta^m_n, p], \|\cdot\|_M^\lambda) \) and \((l^\lambda_N [\Delta^m_n, p], \|\cdot\|_N^\lambda) \) are Banach spaces.

Theorem 2.11. The space \(l^M_\lambda [\Delta^m_n, p] \) equipped with the norm \(\|\cdot\|_M^\lambda \) and the space \(l^\lambda_N [\Delta^m_n, p] \) equipped with the norm \(\|\cdot\|_N^\lambda \) are BK-spaces.

Proof: The space \((l^M_\lambda [\Delta^m_n, p], \|\cdot\|_M^\lambda) \) is a Banach space by the Theorem 2.10. Now let \(\|x^l - x\|_M^\lambda \to 0 \) as \(l \to \infty \). Then
\[
|x^l_k - x_k| \to 0 \text{ as } l \to \infty, \text{ for each } k \leq m
\]
and
\[
\inf \left\{ \rho > 0 : \sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x^l_k - \Delta^m_n x_k}{\lambda_k \rho} \right)^p \right] \leq 1 \right\} \to 0
\]
as \(l \to \infty \) for all \(k \in \mathbb{N} \). If \(M_k \left(\frac{\Delta^m_n x^l_k - \Delta^m_n x_k}{\lambda_k \|x\|_M^\lambda} \right)^p \leq 1 \) then \(\frac{|\Delta^m_n x^l_k - \Delta^m_n x_k|}{\lambda_k \|x\|_M^\lambda} \leq 1 \) for all \(k \). Therefore, we also obtain
\[
|\Delta^m_n x^l_k - \Delta^m_n x_k| \leq \lambda_k \|x^l - x\|_M^\lambda.
\]
Since \(\|x^l - x\|_M^\lambda \to 0 \), then \(|\Delta^m_n x^l_k - \Delta^m_n x_k| \to 0 \) and
\[
\left| \sum_{v=0}^m (-1)^v \binom{m}{v} (x^l_{k+nv} - x_{k+nv}) \right| \to 0
\]
as \(l \to \infty \) for all \(k \in \mathbb{N} \). On the other hand, since we may write
\[
|x^l_{k+nv} - x_{k+nv}| \leq \left| \sum_{v=0}^m (-1)^v \binom{m}{v} (x^l_{k+nv} - x_{k+nv}) + \left(\binom{m}{0} (x^l_k - x_k) \right. \right.
\]

\[
+ \ldots + \left. \left(\binom{m}{m-1} (x^l_{k+n(m+1)} - x_{k+n(m+1)}) \right) \right|
\]
Then \(|x^l_k - x_k| \to 0 \) as \(l \to \infty \) for each \(k \in \mathbb{N} \). Hence, \((l^M_\lambda [\Delta^m_n, p], \|\cdot\|_M^\lambda) \) is a BK-space. Similarly we can prove \((l^\lambda_N [\Delta^m_n, p], \|\cdot\|_N^\lambda) \) is a BK-space. This completes the proof. \(\square \)
Theorem 2.12. If \(Z \) is a normal sequence space containing \(\lambda \), then \(l_\lambda^M [\Delta_n^m, p] \) is a proper subspace of \(Z \). In addition, if \(Z \) is equipped with the monotone norm (quasi-norm) \(\| \cdot \|_z \). The inclusion \(R : l_\lambda^M [\Delta_n^m, p] \to Z[\Delta_n^m, p] \) is continuous with \(\| R \| \leq \| \{ \lambda_k \} \|_z \).

Proof: Let \(x \in l_\lambda^M [\Delta_n^m, p] \), then
\[
\sum_{k=1}^{\infty} \left[M_k \left(\frac{\| \Delta_n^m x_k \|}{\lambda_k^p} \right) \right]^{p_k} < \infty, \quad \text{for some } \rho > 0.
\]
So there exists a constant \(K > 0 \) such that
\[
\frac{\| \Delta_n^m x_k \|}{\lambda_k^p} \leq K \quad \text{for all } k \in \mathbb{N}.
\]
Since \(Z \) is a normal sequence space containing \(\lambda \), we have \([\Delta_n^m x_k]^{p_k} \in Z \) and so that \(x \in Z[\Delta_n^m, p] \). Hence, \(l_\lambda^M [\Delta_n^m, p] \subseteq Z[\Delta_n^m, p] \). Further, since \(M_k(1) = 1 \) for all \(k \in \mathbb{N} \) then
\[
\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n^m x_k \|}{\lambda_k^p} \right) \right]^{p_k} \leq 1
\]
so that \(\| \Delta_n^m x_k \| \leq \lambda_k^p \| x \|^M_\lambda \). As \(\| \cdot \|_z \) is monotone, \(\| Rx \|_z = \| \Delta_n^m x_k \|_z \leq \| \{ \lambda_k \} \|_z \| x \|^M_\lambda \) and hence, \(\| R \| \leq \| \{ \lambda_k \} \|_z \). This completes the proof.

Theorem 2.13. If \(Y \) is a normal sequence space containing \(\lambda^{-1} = \{ \frac{1}{\lambda} \} \), then \(l_\lambda^M [\Delta_n^m, p] \) is a proper subspace of \(Y \). In addition, if \(Y \) is equipped with the monotone norm (quasi-norm) \(\| \cdot \|_y \). The inclusion \(S : l_\lambda^M [\Delta_n^m, p] \to Y[\Delta_n^m, p] \) is continuous with \(\| S \| \leq \| \{ \lambda_k^{-1} \} \|_y \).

Proof: The proof of the theorem is similar to that of Theorem 2.12 and so is omitted.

Theorem 2.14. If \(\lambda = (\lambda_k) \) is a bounded sequence such that \(\inf \lambda_k > 0 \) (i.e both \(\lambda \) and \(\lambda^{-1} \) are in \(l_\infty \)). Then \(l_\lambda^M [\Delta_n^m, p] = l_\lambda^M [\Delta_n^m, p] = l_\lambda^M [\Delta_n^m, p] \).

Proof: Let \(x = (x_k) \in l_\lambda^M [\Delta_n^m, p] \), then
\[
\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n^m x_k \|}{\rho} \right) \right]^{p_k} < \infty, \quad \text{for some } \rho > 0.
\]
Since \(\lambda = (\lambda_k) \) is bounded, we can write \(a \leq \lambda_k \leq b \) for some \(b > a \geq 0 \). Define \(\rho_1 = \rho b \). Also since \(M_k \)'s are increasing, it follows that
\[
\sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n^m x_k \|}{\rho_1} \right) \right]^{p_k} \leq \sum_{k \geq 1} \left[M_k \left(\frac{\| \Delta_n^m x_k \|}{\rho} \right) \right]^{p_k} < \infty.
\]
Hence, \(l_M[\Delta_n^m,p] \subseteq l_M^\lambda[\Delta_n^m,p] \). The other inclusion \(l_M^\lambda[\Delta_n^m,p] \subseteq l_M[\Delta_n^m,p] \) follows from the inequality
\[
\sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\rho} \right)^p \right] \leq \sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right)^p \right] < \infty.
\]
Therefore, \(l_M^\lambda[\Delta_n^m,p] = l_M[\Delta_n^m,p] \). Similarly one can prove that \(l_M^\lambda[\Delta_n^m,p] = l_M[\Delta_n^m,p] \). This completes the proof. \(\square \)

Theorem 2.15. If \(\{\lambda_k\} \in l_\infty \) with \(c = \sup_{k \geq 1} \lambda_k \geq 1 \) and \(\{\lambda_k^{-1}\} \) is unbounded, then \(l_M^\lambda[\Delta_n^m,p] \) is properly contained in \(l_M^\lambda[\Delta_n^m,p] \) and the inclusion map \(U : l_M^\lambda[\Delta_n^m,p] \to l_M^\lambda[\Delta_n^m,p] \) is continuous with \(\|U\| \leq c^2 \).

Proof: For any \(\rho > 0 \) and \(\rho' = \rho c^2 \), we have
\[
\sum_{k \geq 1} \left[M_k \left(\frac{C_{n,M} |\Delta_n^m x_k|}{\rho'} \right)^p \right] \leq \sum_{k \geq 1} \left[M_k \left(\frac{C_{n,M} |\Delta_n^m x_k|}{\lambda_k \rho} \right)^p \right] < \infty.
\]
for \(x = \{x_k\} \). Hence, \(l_M^\lambda[\Delta_n^m,p] \subset l_M^\lambda[\Delta_n^m,p] \). We now show that the containment \(l_M^\lambda[\Delta_n^m,p] \subset l_M^\lambda[\Delta_n^m,p] \) is proper. From the unboundedness of the sequence \(\{\lambda_k^{-1}\} \), choose a sequence \(\{k_i\} \) of positive integers such that \(\lambda_k^{-1} \geq l \). Now define
\[
\Delta_n^m x_k = \begin{cases} \frac{1}{l}, & k = k_i, \quad l = 1, 2, \ldots; \\ 0, & \text{otherwise}. \end{cases}
\]
Then \(x \in l_M^\lambda[\Delta_n^m,p] \), but \(x \notin l_M^\lambda[\Delta_n^m,p] \). To prove the continuity of the inclusion map \(U \), let us first consider the case obtained for \(c = 1 \). For \(x \in l_M^\lambda[\Delta_n^m,p] \), we write
\[
A_M^\lambda[\Delta_n^m,p] = \left\{ \rho > 0 : \sum_{k \geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right)^p \right] \leq 1 \right\}
\]
and
\[
B_M^\lambda[\Delta_n^m,p] = \left\{ \rho > 0 : \sum_{k \geq 1} \left[M_k \left(\frac{\lambda_k |\Delta_n^m x_k|}{\rho} \right)^p \right] \leq 1 \right\}.
\]
Since \(M_k \)'s are increasing and \(c = 1 \), we get \(A_M^\lambda[\Delta_n^m,p] \subset B_M^\lambda[\Delta_n^m,p] \). Hence,
\[
\|x\|_{l_M}^\lambda = \inf B_M^\lambda[\Delta_n^m,p] \leq \inf A_M^\lambda[\Delta_n^m,p] = \|x\|_{l_M}^\lambda
\]
\((2.1) \)
i.e. \(\|U(x)\|_{l_M}^\lambda \leq \|x\|_{l_M}^\lambda \). Thus, \(U \) is continuous with \(\|U\| \leq 1 = c^2 \). If \(c \neq 1 \), define \(\delta_k = \frac{1}{\lambda_k}, \quad k \in \mathbb{N} \). Then \(\delta_k \leq 1 \) and from (2.1), it follows that
\[
\|x\|_{l_M}^\delta \leq \|x\|_{l_M}^\delta \quad \text{for} \quad x \in l_M^\lambda[\Delta_n^m,p].
\]
\((2.2) \)
Proposition 3.1. \(\eta \)

Proposition 3.2. Let \(\eta \) if \(\alpha \) and \(\eta \) is monotone (see [13]).

Hence, from (2.2)

\[
\|U(x)\|_M^\lambda = \|x\|_M^\lambda \leq c^2\|x\|_\lambda^M
\]

i.e. \(U \) is continuous with \(\|U\| \leq c^2 \). This completes the proof.

Theorem 2.16. If \(\{\lambda_k\} \) is unbounded with \(\sup_{k \geq 1} \lambda_k^{-1} = d \geq 1, \lambda_k > 0 \) for all \(k \), then \(l_\lambda^M[\Delta_n^m, p] \) is properly contained in \(l_\lambda^M[\Delta_n^m, p] \) and the inclusion map \(V : l_\lambda^M[\Delta_n^m, p] \rightarrow l_\lambda^M[\Delta_n^m, p] \) is continuous with \(\|V\| \leq d^2 \).

Proof: The proof of the theorem is similar to that of Theorem 2.15 and so is omitted.

3. Dual spaces of \(h(M), \ l(M, \lambda, p) \text{ and } l(N, \lambda, p) \)

Let \(\eta \) be a sequence space and defined

\[
\eta^\alpha = \{ a = (a_k) : \sum_{k=1}^{\infty} |a_kx_k| < \infty, \text{ for all } x \in \eta \},
\]

\[
\eta^\beta = \{ a = (a_k) : \sum_{k=1}^{\infty} a_kx_k \text{ converges for all } x \in \eta \},
\]

\[
\eta^\gamma = \{ a = (a_k) : \sup_{n \geq 1} \sum_{k=1}^{\infty} a_kx_k | < \infty, \text{ for all } x \in \eta \} \text{ (see [13]).}
\]

Then \(\eta^\alpha, \eta^\beta, \eta^\gamma \) are called \(\alpha-, \beta-, \gamma- \) dual spaces of \(\eta \) respectively. It is easy to show that \(\phi \subset \eta^\alpha \subset \eta^\beta \subset \eta^\gamma \). If \(\eta \subset \nu \), then \(\nu^\sigma \subset \eta^\sigma \) for \(\sigma = \alpha, \beta, \gamma \). We shall write \(\eta^\alpha = (\eta^\alpha)^\alpha \).

Let \(\eta \) be a sequence space. Then \(\eta \) is called perfect if \(\eta = \eta^\alpha \) (see [15]).

For \(m = n = 0 \) we write \(l(M, \lambda, p) \) and \(l(N, \lambda, p) \) instead of \(l_\lambda^M[\Delta_n^m, p] \) and \(l_\lambda^N[\Delta_n^m, p] \) respectively which we define as:

\[
l(M, \lambda, p) = \left\{ x = (x_k) \in \omega : \sum_{k \geq 1} \left[M_k \left(\frac{|x_k|}{\lambda_k \rho} \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}
\]

\[
l(N, \lambda, p) = \left\{ x = (x_k) \in \omega : \sum_{k \geq 1} N_k \left(\frac{\lambda_k |x_k|}{\rho} \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}.
\]

In this section we shall obtain \(\alpha-, \beta-, \gamma- \) duals of the sequence space \(h(M) \) and \(\alpha-, \beta-, \gamma- \) duals of \(l(M, \lambda, p) \) and \(l(N, \lambda, p) \).

Proposition 3.1. \(\eta \) is perfect \(\Rightarrow \) \(\eta \) is normal \(\Rightarrow \) \(\eta \) is monotone (see [15]).

Proposition 3.2. Let \(\eta \) be a sequence space. If \(\eta \) is monotone, then \(\eta^\alpha = \eta^\beta \) and if \(\eta \) is normal, then \(\eta^\alpha = \eta^\gamma \).
Proposition 3.3. The sequence space \(h(M) \) is normal for any sequence \((M_k) \) of Orlicz functions.

Proof: Let \(x \in h(M) \) and \(|y_k| \leq |x_k| \), for each \(k \in \mathbb{N} \). Since \(M'_k \)'s are non-decreasing we have
\[
\sum_{k=1}^{\infty} M_k \left(\frac{|y_k|}{\rho} \right) \leq \sum_{k=1}^{\infty} M_k \left(\frac{|x_k|}{\rho} \right) < \infty.
\]
Hence, \(y \in h(M) \). Thus, \(h(M) \) is normal. \(\square \)

Theorem 3.1. Let \((M_k) \) and \((N_k) \) for each \(k \) be mutually complementary Orlicz functions. Then
\[
[h(M)]^\beta = [h(M)]^\alpha = [h(M)]^\gamma = l(N).
\]
The proof is seen from Proposition 3.1, Proposition 3.2 and Proposition 3.3.

Theorem 3.2. If the sequence \((M_k) \) satisfies uniform \(\Delta_2 \)-condition, then
\[
[l(M, \lambda, p)]^\alpha = l(N, \lambda, p)
\]
Proof: Let the sequence \((M_k) \) satisfies uniform \(\Delta_2 \)-condition. Then for any \(x \in l(M, \lambda, p) \) and \(a \in l(N, \lambda, p) \), we have
\[
\sum_{k=1}^{\infty} |a_k x_k| \leq \sum_{k=1}^{\infty} \left(M_k \left(\frac{|x_k|}{\lambda_k \rho} \right) \right)^p_k + \sum_{k=1}^{\infty} \left(N_k \left(\frac{\lambda_k |a_k|}{\rho'} \right) \right)^p_k < \infty
\]
where \(\rho' = \frac{1}{\rho} \) and \(\rho > 0 \). Thus, \(a \in [l(M, \lambda, p)]^\alpha \). Hence, \(l(N, \lambda, p) \subset [l(M, \lambda, p)]^\alpha \). To prove the inclusion \([l(M, \lambda, p)]^\alpha \subset l(N, \lambda, p) \), let \(a \in [l(M, \lambda, p)]^\alpha \). Then for all \(\{x_k\} \) with \(\left(\frac{x_k}{\lambda_k} \right) \in l(M) \) we have
\[
\sum_{k=1}^{\infty} |a_k x_k| < \infty. \tag{3.1}
\]
Since the sequence satisfies uniform \(\Delta_2 \)-condition, then \(l(M) = h(M) \) and so for \((y_k) \in h(M) \) we have
\[
\sum_{k=1}^{\infty} |\lambda_k y_k a_k| < \infty \text{ by } (3.1). \]
Thus, \((\lambda_k a_k) \in [h(M)]^\alpha = l(N) \) and hence, \((a_k) \in l(N, \lambda, p) \). Therefore, \([l(M, \lambda, p)]^\alpha = l(N, \lambda, p) \). \(\square \)

Theorem 3.3. If the sequence \((M_k) \) satisfies uniform \(\Delta_2 \)-condition, then
\[
[l(N, \lambda, p)]^\alpha = l(M, \lambda, p)
\]
Proof: Immediate from Theorem 3.5. \(\square \)
4. Some new sequence spaces over \(n \)-normed space

The concept of 2-normed spaces was initially developed by Gähler \([10]\) in the mid of 1960’s, while that of \(n \)-normed spaces one can see in Misiak \([18]\). Since then, many others have studied this concept and obtained various results, see Gunawan \([11], [12]\) and Gunawan and Mashadi \([13]\). Let \(n \in \mathbb{N} \) and \(X \) be a linear space over the field \(\mathbb{K} \), where \(\mathbb{K} \) is field of real or complex numbers of dimension \(d \), where \(d \geq n \geq 2 \). A real valued function \(||\cdot, \cdots, || \) on \(X^n \) satisfying the following four conditions:

1. \(||x_1, x_2, \cdots, x_n|| = 0 \) if and only if \(x_1, x_2, \cdots, x_n \) are linearly dependent in \(X \),

2. \(||x_1, x_2, \cdots, x_n|| \) is invariant under permutation,

3. \(||\alpha x_1, x_2, \cdots, x_n|| = |\alpha| \cdot ||x_1, x_2, \cdots, x_n|| \) for any \(\alpha \in \mathbb{K} \), and

4. \(||x + x', x_2, \cdots, x_n|| \leq ||x, x_2, \cdots, x_n|| + ||x', x_2, \cdots, x_n|| \)

is called an \(n \)-norm on \(X \), and the pair \((X, ||\cdot, \cdots, ||) \) is called a \(n \)-normed space over the field \(\mathbb{K} \).

For example, we may take \(X = \mathbb{R}^n \) being equipped with the \(n \)-norm

\[
||x_1, x_2, \cdots, x_n||_E = \text{the volume of the } n \text{-dimensional parallelopiped spanned by the vectors } x_1, x_2, \cdots, x_n \text{ which may be given explicitly by the formula} \\
||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|, \\
\]

where \(x_i = (x_{i1}, x_{i2}, \cdots, x_{in}) \in \mathbb{R}^n \) for each \(i = 1, 2, \cdots, n \). Let \((X, ||\cdot, \cdots, ||) \) be an \(n \)-normed space of dimension \(d \geq n \geq 2 \) and \(\{a_1, a_2, \cdots, a_n\} \) be linearly independent set in \(X \). Then the following function \(||\cdot, \cdots, || \) on \(X^{n-1} \) defined by

\[
||x_1, x_2, \cdots, x_{n-1}||_\infty = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}
\]

defines an \((n-1)\)-norm on \(X \) with respect to \(\{a_1, a_2, \cdots, a_n\} \).

A sequence \((x_k)\) in a \(n \)-normed space \((X, ||\cdot, \cdots, ||)\) is said to converge to some \(L \in X \) if

\[
\lim_{k \to \infty} ||x_k - L, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.
\]

A sequence \((x_k)\) in a \(n \)-normed space \((X, ||\cdot, \cdots, ||)\) is said to be Cauchy if

\[
\lim_{k,p \to \infty} ||x_k - x_p, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.
\]

If every Cauchy sequence in \(X \) converges to some \(L \in X \), then \(X \) is said to be complete with respect to the \(n \)-norm. Any complete \(n \)-normed space is said to be \(n \)-Banach space. For more details about \(n \)-normed space (see [26]) and references therein.
Let \((X, ||·||, \cdots, ||·||)\) be a \(n\)-normed space and \(W(n - X)\) denotes the space of \(X\)-valued sequences. Let \(p = (p_k)\) be a bounded sequence of positive real numbers, \(\lambda = (\lambda_k)\) be a sequence of strictly positive real numbers. Let \(M = (M_k)\) be a sequence of Orlicz functions and \(N = (N_k)\) is a complementary function of Orlicz function \(M = (M_k)\). In this section of the paper we define the following sequences:

\[
l^M_\lambda \left[\Delta^m_n, p, ||·||, \cdots, ||·|| \right] = \left\{ x = (x_k) \in W(n - X) : \sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}
\]

and

\[
l^N_\lambda \left[\Delta^m_n, p, ||·||, \cdots, ||·|| \right] = \left\{ x = (x_k) \in W(n - X) : \sum_{k \geq 1} \left[N_k \left(\left\| \frac{\lambda_k \Delta^m_n x_k}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}.
\]

If we take \((p_k) = 1\) for all \(k\) then

\[
l^M_\lambda \left[\Delta^m_n, ||·||, \cdots, ||·|| \right] = \left\{ x = (x_k) \in W(n - X) : \sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] < \infty, \text{ for some } \rho > 0 \right\}
\]

and

\[
l^N_\lambda \left[\Delta^m_n, ||·||, \cdots, ||·|| \right] = \left\{ x = (x_k) \in W(n - X) : \sum_{k \geq 1} \left[N_k \left(\left\| \frac{\lambda_k \Delta^m_n x_k}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] < \infty, \text{ for some } \rho > 0 \right\}.
\]

If \((\lambda_k) = 1\) for all \(k \in \mathbb{N}\), then

\[
l^M_\lambda \left[\Delta^m_n, p, ||·||, \cdots, ||·|| \right] = \left\{ x = (x_k) \in W(n - X) : \sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta^m_n x_k}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}
\]

and

\[
l^N_\lambda \left[\Delta^m_n, p, ||·||, \cdots, ||·|| \right] = \left\{ x = (x_k) \in W(n - X) : \sum_{k \geq 1} \left[N_k \left(\left\| \frac{\Delta^m_n x_k}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}
\]
Theorem 4.1. Let $M = (M_k)$ and $N = (N_k)$ be two sequences of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Then the sequence spaces $l_M^m[\Delta^m_n, p, ||\cdot||]$ and $l_N^m[\Delta^m_n, p, ||\cdot||]$ are linear spaces over the field \mathbb{C} of complex numbers.

Proof: Let $x = (x_k)$ and $y = (y_k) \in l_M^m[\Delta^m_n, p, ||\cdot||]$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive real numbers ρ_1 and ρ_2 such that

$$\sum_{k \geq 1} [M_k(\|\Delta^m_n x_k + \beta y_k\|) + \|\Delta^m_n y_k\|)]^{p_k} < \infty$$

and

$$\sum_{k \geq 1} [M_k(\|\Delta^m_n x_k + \beta y_k\|) + \|\Delta^m_n y_k\|)]^{p_k} < \infty.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $\|\cdot\|$ is a α-norm on X and M_k’s are non-decreasing and convex function so by using inequality (1.1), we have

$$\sum_{k \geq 1} [M_k(\|\Delta^m_n x_k + \beta y_k\|) + \|\Delta^m_n y_k\|)]^{p_k} < \infty.$$

Therefore, $ax + \beta y \in l_M^m[\Delta^m_n, p, ||\cdot||]$ and hence, $l_M^m[\Delta^m_n, p, ||\cdot||]$ is a linear space. Similarly, we can prove $l_N^m[\Delta^m_n, p, ||\cdot||]$ is a linear space. This completes the proof.

Theorem 4.2. Let $M = (M_k)$ be a sequence of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Then the sequence space $l_M^m[\Delta^m_n, p, ||\cdot||]$ is a paranormed space with paranorm defined by

$$g(x) = \inf \left\{ (\rho)^{\frac{1}{p_k}} : \left(\sum_{k \geq 1} [M_k(\|\Delta^m_n x_k\|) + \|\Delta^m_n x_k\|)]^{p_k} \right)^{\frac{1}{p_k}} \leq 1 \right\},$$

where $H = \max(1, G)$, $0 < p_k \leq \sup_k p_k = G$.

respectively.
Proof: Clearly \(g(x) \geq 0 \), for \(x = (x_k) \in l^M_\lambda[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|] \). Since \(M_k(0) = 0 \), we get \(g(0) = 0 \). Again, if \(g(x) = 0 \), then

\[
g(x) = \inf \left\{ (\rho)^{\frac{p_k}{p}} : \left(\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} \right)^{\frac{1}{p_k}} \right\} = 0,
\]

this implies that for a given \(\epsilon > 0 \), there exist some \(\rho_\epsilon (0 < \rho_\epsilon < \epsilon) \) such that

\[
\left(\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} \right)^{\frac{1}{p_k}} \leq 1.
\]

Thus,

\[
\left(\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} \right)^{\frac{1}{p_k}} \leq \left(\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho_\epsilon}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} \right)^{\frac{1}{p_k}} \leq 1.
\]

Suppose that \(x_k \neq 0 \) for each \(k \in \mathbb{N} \). This implies that \(\Delta^m_n x_k \neq 0 \) for each \(k \in \mathbb{N} \). Let \(\epsilon \to 0 \), then \(\left\| \frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \right\| \to \infty \). It follows that

\[
\left(\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho_\epsilon}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} \right)^{\frac{1}{p_k}} \to \infty
\]

which is a contradiction. Therefore, \(\Delta^m_n x_k = 0 \) for each \(k \) and thus \(x_k = 0 \) for each

\[
\left(\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho_1}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} \right)^{\frac{1}{p_k}} \leq 1
\]

and

\[
\left(\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho_2}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} \right)^{\frac{1}{p_k}} \leq 1.
\]
Let \(\rho = \rho_1 + \rho_2 \). Then by Minkowski’s inequality, we have
\[
\left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \\
\leq \left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n x_k}{\lambda_k (\rho_1 + \rho_2)}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \\
\leq \left(\sum_{k \geq 1} \left[\frac{\rho_1}{\rho_1 + \rho_2} M_k \left(\left\| \frac{\Delta_n x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \\
+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n x_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \\
\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \\
+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n x_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \leq 1.
\]
Since \(\rho \)'s are non-negative, so we have
\[
g(x + y) = \inf \left\{ (\rho_1 + \rho_2)^p \right\} : \\
\left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n (x_k + y_k)}{\lambda_k (\rho_1 + \rho_2)}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \} \\
\leq \inf \left\{ (\rho_1)^p : \left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \} \\
+ \inf \left\{ (\rho_2)^p : \left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n x_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \}.
\]
Therefore, \(g(x + y) \leq g(x) + g(y) \). Finally, we prove that the scalar multiplication is continuous. Let \(\mu \) be any complex number, therefore, by definition
\[
g(\mu x) = \inf \left\{ (\rho)^p : \left(\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta_n \mu x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right)^p \right] \right)^{\frac{1}{p}} \leq 1 \} \quad \text{and}
\]
thus,
\[g(\mu x) = \inf \left\{ (|\mu| t)^{\frac{1}{p_k}} : \left(\sum_{k \geq 1} [M_k \left(\| \Delta^m x_k / \lambda_k \rho, z_1, \ldots, z_{n-1} \| \right)]^{p_k} \right)^{\frac{1}{p_k}} \leq 1 \right\} \]

where \(t = \frac{\mu}{|\mu|} \). Since \(|\mu|^{p_k} \leq \max(1, |\mu| \sup p_k) \). Hence,

\[g(\mu x) = \max(1, |\mu| \sup p_k) \inf \left\{ (t)^{\frac{1}{p_k}} : \left(\sum_{k \geq 1} [M_k \left(\| \Delta^m x_k / \lambda_k \rho, z_1, \ldots, z_{n-1} \| \right)]^{p_k} \right)^{\frac{1}{p_k}} \leq 1 \right\} \]

So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof. \(\blacksquare \)

Theorem 4.3. Suppose \(M = (M_k) \) be a sequence of Orlicz functions, \(p = (p_k) \) be a bounded sequence of positive real numbers and \(\lambda = (\lambda_k) \) be a sequence of strictly positive real numbers. If \(0 < p_k \leq q_k < \infty \), for each \(k \in \mathbb{N} \), then \(l_\lambda^M [\Delta^m_n, p, \|., \cdots, \|] \subseteq l_\lambda^M [\Delta^m_n, q, \|., \cdots, \|] \).

Proof: Suppose that \(x = (x_k) \in l_\lambda^M [\Delta^m_n, p, \|., \cdots, \|] \), this implies that

\[\sum_{k \geq 1} [M_k \left(\| \Delta^m x_k / \lambda_k \rho, z_1, \ldots, z_{n-1} \| \right)]^{p_k} \leq 1 \]

for sufficiently large value of \(k \) say \(k \geq k_0 \), for some fixed \(k_0 \in \mathbb{N} \). Since \(M = (M_k) \) is non decreasing, we have

\[\sum_{k=k_0}^{\infty} [M_k \left(\| \Delta^m x_k / \lambda_k \rho, z_1, \ldots, z_{n-1} \| \right)]^{q_k} \leq \sum_{k=k_0}^{\infty} [M_k \left(\| \Delta^m x_k / \lambda_k \rho, z_1, \ldots, z_{n-1} \| \right)]^{p_k} \leq \infty. \]

Hence, \(x = (x_k) \in l_\lambda^M [\Delta^m_n, q, \|., \cdots, \|] \). This completes the proof. \(\blacksquare \)

Theorem 4.4. (i) If \(0 < \inf p_k \leq p_k < 1 \) for each \(k \), then \(l_\lambda^M [\Delta^m_n, p, \|., \cdots, \|] \subset l_\lambda^M [\Delta^m_n, \|., \cdots, \|] \).

(ii) If \(1 \leq p_k \leq \sup p_k < \infty \) for each \(k \), then \(l_\lambda^M [\Delta^m_n, \|., \cdots, \|] \subseteq l_\lambda^M [\Delta^m_n, p, \|., \cdots, \|] \).
Proof: (i) Let \(x = (x_k) \in \ell^M_X[\Delta^m_n, p, ||\cdot||] \). Since \(0 < \inf p_k < 1 \), we have
\[
\sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k} \leq \sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k}
\]
and hence, \(x = (x_k) \in \ell^M_X[\Delta^m_n, ||\cdot||] \).

(ii) Suppose \(p_k \) for each \(k \) sup \(p_k < \infty \) and let \(x = (x_k) \in \ell^M_X[\Delta^m_n, ||\cdot||] \). Then for each \(0 < \epsilon < 1 \), there exists a positive integer \(N \) such that
\[
\sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k} \leq \sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k} < \epsilon, \text{ for all } k \in \mathbb{N}.
\]
This implies that
\[
\sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k} \leq \sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k}.
\]
Thus, \(x = (x_k) \in \ell^M_X[\Delta^m_n, p, ||\cdot||] \). This completes the proof. \(\square \)

Theorem 4.5. The sequence space \(\ell^M_X[\Delta^m_n, p, ||\cdot||] \) is solid.

Proof: Let \(x = (x_k) \in \ell^M_X[\Delta^m_n, p, ||\cdot||] \). Then
\[
\sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k} < \infty.
\]
Let \((\alpha_k) \) be a sequence of scalars such that \(|\alpha_k| \leq 1 \) for all \(k \in \mathbb{N} \). Then the result follows from the following inequality
\[
\sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n \alpha_k x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k} \leq \sum_{k=1}^{\infty} [M_k \left(\left\| \frac{\Delta^m_n x_k}{\lambda_k p} \right\|, z_1, \ldots, z_{n-1} \right)]^{p_k}.
\]
This completes the proof. \(\square \)

Corollary 4.6. The sequence space \(\ell^M_X[\Delta^m_n, p, ||\cdot||] \) is monotone.

Proof: It is obvious so we omit the proof. \(\square \)

Theorem 4.7. Let \(M = (M_k) \) and \(M' = (M'_k) \) be two sequences of Orlicz functions. Then, we have
\[
\ell^M_X[\Delta^m_n, p, ||\cdot||] \cap \ell^{M'}_X[\Delta^m_n, p, ||\cdot||] \subseteq \ell^{M+M'}_X[\Delta^m_n, p, ||\cdot||].
\]
Let $K > 0$, so there exists a constant $\rho_1 > 0$ for some $\rho_1 > 0$.

Proof: Let $x = (x_k) \in l^M_\lambda[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|] \cap l^M_\lambda[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|]$. Then

$$\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho_1}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} < \infty,$$

and

$$\sum_{k \geq 1} \left[M'_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho_2}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} < \infty,$$

for some $\rho_2 > 0$.

Let $\rho = \max(\rho_1, \rho_2)$. The result follows from the inequality

$$\sum_{k \geq 1} \left[(M_k + M'_k) \left(\frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \right) \right]^{p_k}.$$

This completes the proof.

Theorem 4.8. If \mathcal{Z} is a normal sequence space containing λ, then $l^M_\lambda[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|]$ is a proper subspace of \mathcal{Z}. In addition, if \mathcal{Z} is equipped with the monotone norm (quasi-norm) $\| \cdot \|_\mathcal{Z}$. The inclusion $R : l^M_\lambda[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|] \to \mathcal{Z}[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|]$ is continuous with $\| R \| \leq \| \lambda_k \|_\mathcal{Z}$.

Proof: Let $x \in l^M_\lambda[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|]$, then

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} < \infty,$$

for some $\rho > 0$.

So there exists a constant $K > 0$ such that

$$\frac{\Delta^m_n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \leq K$$

for all $k \in \mathbb{N}$.

Since \mathcal{Z} is a normal sequence space containing λ, we have $\| \Delta^m_n x_k, z_1, \ldots, z_{n-1} \|^{p_k} \in \mathcal{Z}$ and so that $x \in \mathcal{Z}[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|]$. Hence,

$$l^M_\lambda[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|] \subseteq \mathcal{Z}[\Delta^m_n, p, \| \cdot \|, \ldots, \| \cdot \|].$$

Further, since $M_k(1) = 1$ for all $k \in \mathbb{N}$ then

$$\sum_{k \geq 1} \left[M_k \left(\frac{\Delta^m_n x_k}{\lambda_k \| x \|_\lambda}, z_1, \ldots, z_{n-1} \right) \right]^{p_k} \leq 1.$$
Theorem 4.9. If \mathcal{Y} is a normal sequence space containing $\lambda^{-1} \equiv \{ \frac{1}{\lambda_k} \}$, then $l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$ is a proper subspace of \mathcal{Y}. In addition, if \mathcal{Y} is equipped with the monotone norm (quasi-norm) $\| \cdot \|$. The inclusion $S : l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|] \to \mathcal{Y}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$ is continuous with $\|S\| \leq \|\{\lambda_k\}\|$.

Proof: The proof of the theorem is similar to that of Theorem 4.8 and so is omitted.

Theorem 4.10. If $\lambda = (\lambda_k)$ is a bounded sequence such that inf $\lambda_k > 0$ (i.e. both λ and λ^{-1} are in l_∞). Then $l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|] = l^M[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$.

Proof: Let $x = (x_k) \in l^M[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$. Then

$$\sum_{k \geq 1} \left[M_k \left(\| \frac{\lambda_k \Delta_n^m x_k}{\rho} \|, z_1, \cdots, z_{n-1} \| \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0.$$

Since $\lambda = (\lambda_k)$ is bounded, we can write $a \leq \lambda_k \leq b$ for some $b > a \geq 0$. Define $\rho_1 = \rho b$. Also since M^ℓ_{λ}s are increasing, it follows that

$$\sum_{k \geq 1} \left[M_k \left(\| \frac{\lambda_k \Delta_n^m x_k}{\rho_1} \|, z_1, \cdots, z_{n-1} \| \right) \right]^{p_k} \leq \sum_{k \geq 1} \left[M_k \left(\| \frac{\lambda_k \Delta_n^m x_k}{\rho} \|, z_1, \cdots, z_{n-1} \| \right) \right]^{p_k} < \infty.$$

Hence, $l^M[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|] \subseteq l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$. The other inclusion $l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|] \subseteq l^M[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$ follows from the inequality

$$\sum_{k \geq 1} \left[M_k \left(\| \frac{\lambda_k \Delta_n^m x_k}{\rho} \|, z_1, \cdots, z_{n-1} \| \right) \right]^{p_k} \leq \sum_{k \geq 1} \left[M_k \left(\| \frac{\lambda_k \Delta_n^m x_k}{\rho} \|, z_1, \cdots, z_{n-1} \| \right) \right]^{p_k} < \infty.$$

Therefore, $l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|] = l^M[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$. Similarly one can prove that $l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|] = l^M[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$. This completes the proof.

Theorem 4.11. If $\{\lambda_k\} \in l_\infty$ with $c = \sup_{k \geq 1} \lambda_k \geq 1$ and $\{\lambda_k^{-1}\}$ is unbounded, then $l^M[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$ is properly contained in $l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$ and the inclusion map $U : l^M_{\lambda}[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|] \to l^M[\Delta_n^m, p, \| \cdot \|, \cdots, \| \cdot \|]$ is continuous with $\|U\| \leq c^2$.

Proof: For any $\rho > 0$ and $\rho' = \rho c^2$, we have
\[
\sum_{k \geq 1} \left[M_k \left(\left\| \frac{\lambda_k \Delta^n x_k}{\rho'}, z_1, \ldots, z_{n-1} \right\| \right) \right]^{p_k} \leq \sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta^n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \right\| \right) \right]^{p_k} \leq \infty,
\]
for $x = \{x_k\}$. Hence, $l^M_\lambda[\Delta^n_m, p, \|, \cdots, \|] \subset l^M_\lambda[\Delta^n_m, p, \|, \cdots, \|]$. We now show that the containment $l^M_\lambda[\Delta^n_m, p, \|, \cdots, \|] \subset l^M_\lambda[\Delta^n_m, p, \|, \cdots, \|]$ is proper. From the unboundedness of the sequence $\{\lambda_k^{-1}\}$, choose a sequence $\{k_l\}$ of positive integers such that $\lambda_k^{-1} \geq l$. Now define
\[
\Delta^n_m x_k = \begin{cases} \frac{1}{k}, & k = k_l, \ l = 1, 2, \ldots; \\ 0, & \text{otherwise}. \end{cases}
\]
Then $x \in l^M_\lambda[\Delta^n_m, p, \|, \cdots, \|]$ but $x \notin l^M_\lambda[\Delta^n_m, p, \|, \cdots, \|]$. To prove the continuity of the inclusion map U, let us first consider the case obtained for $c = 1$. For $x \in l^M_\lambda[\Delta^n_m, p, \|, \cdots, \|]$, we write
\[
A_\lambda^M[\Delta^n_m, p, \|, \cdots, \|] = \left\{ \rho > 0 : \sum_{k \geq 1} \left[M_k \left(\left\| \frac{\Delta^n x_k}{\lambda_k \rho}, z_1, \ldots, z_{n-1} \right\| \right) \right]^{p_k} \leq 1 \right\}
\]
and
\[
B_\lambda^M[\Delta^n_m, p, \|, \cdots, \|] = \left\{ \rho > 0 : \sum_{k \geq 1} \left[M_k \left(\left\| \frac{\lambda_k \Delta^n x_k}{\rho}, z_1, \ldots, z_{n-1} \right\| \right) \right]^{p_k} \leq 1 \right\}.
\]
Since M_k's are increasing and $c = 1$, we get $A_\lambda^M[\Delta^n_m, p, \|, \cdots, \|] \subset B_\lambda^M[\Delta^n_m, p, \|, \cdots, \|]$. Hence,
\[
\|x\|_M^\lambda = \inf B_\lambda^M[\Delta^n_m, p, \|, \cdots, \|] \leq \inf A_\lambda^M[\Delta^n_m, p, \|, \cdots, \|] = \|x\|_M^\lambda \quad (4.1)
\]
i.e. $\|U(x)\|_M^\lambda \leq \|x\|_M^\lambda$. Thus, U is continuous with $\|U\| \leq 1 = c^2$. If $c = 1$, define $\delta_k = \frac{1}{\lambda_k}$, $k \in \mathbb{N}$. Then $\delta_k \leq 1$ and from (4.1), it follows that
\[
\|x\|_{s\lambda}^\delta \leq \|x\|_M^\lambda \quad \text{for} \ \ x \in l^M_\lambda[\Delta^n_m, p, \|, \cdots, \|]. \quad (4.2)
\]
Hence, from (4.2)
\[
\|U(x)\|_{s\lambda}^\delta = \|x\|_{s\lambda}^\delta \leq c^2 \|x\|_M^\lambda,
\]
thus, U is continuous with $\|U\| \leq c^2$. This completes the proof.

Theorem 4.12. If $\{\lambda_k\}$ is unbounded with $\sup_{k \geq 1} \lambda_k^{-1} = d \geq 1$, $\lambda_k > 0$ for all k, then $l^M_{\lambda_n}[\Delta^n_m, p, \|, \cdots, \|]$ is properly contained in $l^M_{\lambda_n}[\Delta^n_m, p, \|, \cdots, \|]$ and the inclusion map $V : l^M_{\lambda_n}[\Delta^n_m, p, \|, \cdots, \|] \rightarrow l^M_{\lambda_n}[\Delta^n_m, p, \|, \cdots, \|]$ is continuous with $\|V\| \leq d^2$.

Proof: The proof of the theorem is similar to that of Theorem 4.11 and so is omitted.
References

19. E. Malkowsky, M. Mursaleen, Some matrix transformations between the difference sequence spaces Δc, Δc0, and Δc∞, Filomat, 15 (2001) 353-363.

Seema Jamwal and Kuldip Raj
School of Mathematics
Shri Mata Vaishno Devi University
KATRA-182320, J&K, INDIA.
E-mail address: seemajamwal8@gmail.com
E-mail address: kultripraj66@gmail.com