

(3s.) **v. 33** 2 (2015): **31–57**. ISSN-00378712 in press doi:10.5269/bspm.v33i2.23272

An Orlicz extension of difference modular sequence spaces

Seema Jamwal and Kuldip Raj

ABSTRACT: In this paper we construct some new difference modular sequence spaces defined by a sequence of Orlicz functions over n-normed spaces. We also study several properties relevant to topological structures and interrelationship between these spaces.

Key Words: sequence space, difference sequence space, modular sequence space, paranormed space, Orlicz function, *n*-normed space, BK-space.

Contents

1	Introduction and Preliminaries	31

- 2 Some topological properties of the spaces $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ and $l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m}, p]$ 36
- **3** Dual spaces of $h(\mathcal{M}), l(\mathcal{M}, \lambda, p)$ and $l(\mathcal{N}, \lambda, p)$ **44**
- 4 Some new sequence spaces over *n*-normed space

1. Introduction and Preliminaries

Let X be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- 1. $p(x) \ge 0$ for all $x \in X$,
- 2. p(-x) = p(x) for all $x \in X$,
- 3. $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$,
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [32], Theorem 10.4.2, pp. 183).

The notion of difference sequence spaces was introduced by Kızmaz [16], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Çolak [7] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$. Later the concept have been studied by Bektaş et al. [3] and Et et al. [8]. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [29] who studied the spaces $l_{\infty}(\Delta_v)$, $c(\Delta_v)$ and $c_0(\Delta_v)$. Recently, Esi et

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 40A05, 46A45

al. [9] and Tripathy et al. [30] have introduced a new type of generalized difference operators and unified those as follows.

Let v, n be non-negative integers, then for Z a given sequence space, we have

$$Z(\Delta_v^n) = \{x = (x_k) \in w : (\Delta_v^n x_k) \in Z\}$$

for $Z = c, c_0$ and l_{∞} where $\Delta_v^n x = (\Delta_v^n x_k) = (\Delta_v^{n-1} x_k - \Delta_v^{n-1} x_{k+v})$ and $\Delta_v^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta_v^n x_k = \sum_{m=0}^n (-1)^m \begin{pmatrix} n \\ m \end{pmatrix} x_{k+vm}$$

Taking v = 1, we get the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$ studied by Et and Qolak [7]. Taking v = n = 1, we get the spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ introduced and studied by Kızmaz [16]. For more details about difference sequence spaces (see [1], [4], [5], [19], [20], [27]) and references therein.

Let ω be the family of all real or complex sequences, which is a vector space with the usual pointwise addition and scalar multiplication. We write $e^n (n \ge 1)$ for the n^{th} unit vector in ω , i.e $e^n = \{\delta_{nj}\}_{j=1}^{\infty}$ where δ_{nj} is the Kronecker delta, and φ for the subspace of ω generated by e^n 's, $n \ge 1$, i.e, $\varphi = \operatorname{span}\{e^n : n \ge 1\}$. A sequence space η is subspace of ω containing φ . The sequence space η is said to be solid if $(\alpha_k x_k) \in \eta$ whenever $(x_k) \in \eta$ for all sequences (α_k) of scalars such that $|\alpha_k| \le 1$ for all $k \in \mathbb{N}$. A sequence space η is said to be monotone if η contains the canonical pre images of all its step spaces. A Banach sequence space (η, S) is called a BKspace if the topology S of η is finer than the co-ordinatewise convergence topology, or equivalently, the projection maps $P_i : \eta \to K$, $P_i(x) = x_i$, $i \ge 1$ are continuous, where K is the scalar field \mathbb{R} or \mathbb{C} . For $x = (x_1, ..., x_n, ...)$ and $n \in \mathbb{N}$, we write the n^{th} section of x as $x^{(n)} = (x_1, ..., x_n, 0, 0, ...)$. If $x^{(n)} \to x$ in (η, S) for each $x \in \eta$, we say that (η, S) is an AK-space. The norm $\|.\|_{\eta}$ generating the topology S of η is said to be monotone if $\|x\|_{\eta} \le \|y\|_{\eta}$ for $x = \{x_i\}, y = \{y_i\} \in \eta$ with $|x_i| \le |y_i|$, for all $i \ge 1$ (see [14]).

An Orlicz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the following sequence space:

$$\ell_M = \left\{ x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is called as an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [15] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p (p \ge 1)$. In the later stage different Orlicz sequence spaces were

introduced and studied by Parashar and Choudhary [25], Esi and Et [6], Tripathy and Mahanta [31], Mursaleen [21] and many others. The Δ_2 -condition is equivalent to $M(Lx) \leq kLM(x)$ for all values of $x \geq 0$ and for L > 1.

A sequence $\mathcal{M} = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function (see [22], [23]). A sequence $\mathcal{N} = (N_k)$ defined by

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, \ k = 1, 2, \cdots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows;

$$t_{\mathcal{M}} = \Big\{ x \in \omega : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \Big\},$$
$$h_{\mathcal{M}} = \Big\{ x \in \omega : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), \ x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^{0} = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

Any Orlicz function M_k can always be represented in the following integral form

$$M_k(x) = \int_0^x \eta_k(t) dt,$$

where η_k is known as the kernel of M_k , is a right differentiable for $t \ge 0$, $\eta_k(0) = 0$, $\eta_k(t) > 0$, η_k is non-decreasing and $\eta_k(t) \to \infty$ as $t \to \infty$. Given an Orlicz function M_k with kernel $\eta_k(t)$, define

$$\nu_k(s) = \sup\{t : \eta_k(t) \le s, s \ge 0\}.$$

Then $\nu_k(s)$ possesses the same properties as $\eta_k(t)$ and the function N_k defined as

$$N_k(x) = \int_0^x \nu_k(s) ds$$

is an Orlicz function. The functions M_k and N_k are called mutually complementary Orlicz functions.

For a sequence $\mathcal{M} = (M_k)$ of Orlicz functions, the modular sequence class $\tilde{l}(\mathcal{M})$ is defined by

$$\tilde{l}(\mathcal{M}) = \{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} M_k(|x_k|) < \infty \}.$$

Using the sequence $\mathcal{N} = (N_k)$ of Orlicz functions, similarly we define $\tilde{l}(\mathcal{N})$. The class $l(\mathcal{M})$ is defined by

$$l(\mathfrak{M}) = \{x = (x_k) \in \omega : \sum_{k=1}^{\infty} x_k y_k \text{ converges, for all } y \in \tilde{l}(\mathfrak{N})\}.$$

For a sequence $\mathcal{M} = (M_k)$ of Orlicz functions, the modular sequence space $l(\mathcal{M})$ is also defined as

$$l(\mathfrak{M}) = \{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} M_k \left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \}.$$

The space $l(\mathcal{M})$ is a Banach space with respect to the norm $||x||_{\mathcal{M}}$ defined as

$$||x||_{\mathcal{M}} = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) \le 1\}.$$

These spaces were introduced by Woo [33] around the year 1973 and generalizes the Orlicz sequence space l_M and the modulared sequence spaces considered earlier by Nakano [24]. For more details about modular sequence spaces (see [15], [28]) and references therein.

An important subspace of $l(\mathcal{M})$, which is an AK-space, is the space $h(\mathcal{M})$ defined as

$$h(\mathcal{M}) = \{ x \in l(\mathcal{M}) : \sum_{k=1}^{\infty} M_k \left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \}.$$

A sequence (M_k) of Orlicz functions is said to satisfy uniform Δ_2- condition at '0' if there exist p > 0 and $k_0 \in \mathbb{N}$ such that for all $x \in (0, 1)$ and $k > k_0$, we have $\frac{xM'_k(x)}{M_k(x)} \leq p$, or equivalently, there exists a constant K > 1 and $k_0 \in \mathbb{N}$ such that $\frac{M_k(2x)}{M_k(x)} \leq K$ for all $x \in (0, \frac{1}{2}]$. If the sequence (M_k) satisfy uniform Δ_2- condition, then $h(\mathcal{M}) = l(\mathcal{M})$ and vice-versa (see [33]).

Let M_k and N_k be mutually complementary Orlicz functions for each k and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Bektaş and Atici [2] define the following sequence spaces:

$$l_{\lambda}^{\mathcal{M}}(\Delta^{m}) = \left\{ x = (x_{k}) : \sum_{k \ge 1} M_{k} \left(\frac{|\Delta^{m} x_{k}|}{\lambda_{k} \rho} \right) < \infty, \text{ for some } \rho > 0 \right\}$$

and

$$l_{\mathcal{N}}^{\lambda}(\Delta^{m}) = \bigg\{ x = (x_{k}) : \sum_{k \ge 1} N_{k} \Big(\frac{\lambda_{k} |\Delta^{m} x_{k}|}{\rho} \Big) < \infty, \text{ for some } \rho > 0 \bigg\}.$$

Let $\mathcal{M} = (M_k)$ and $\mathcal{N} = (N_k)$ be two sequences of Orlicz functions, $p = (p_k)$ be any bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. In this paper we define the following sequence spaces:

$$l_{\lambda}^{\mathcal{M}}\left[\Delta_{n}^{m}, p\right] = \left\{ x = (x_{k}) \in \omega : \sum_{k \ge 1} \left[M_{k} \left(\frac{|\Delta_{n}^{m} x_{k}|}{\lambda_{k} \rho} \right) \right]^{p_{k}} < \infty, \text{ for some } \rho > 0 \right\}$$

and $l_{\mathcal{N}}^{\lambda} \left[\Delta_{n}^{m}, p \right] = \left\{ x = (x_{k}) \in \omega : \sum_{k \ge 1} \left[N_{k} \left(\frac{\lambda_{k} |\Delta_{n}^{m} x_{k}|}{\rho} \right) \right]^{p_{k}} < \infty, \text{ for some } \rho > 0 \right\}.$ If we take $(p_k) = 1$, for all k then

$$l_{\lambda}^{\mathcal{M}}\left[\Delta_{n}^{m}\right] = \left\{ x = (x_{k}) \in \omega : \sum_{k \ge 1} \left\lfloor M_{k}\left(\frac{|\Delta_{n} x_{k}|}{\lambda_{k}\rho}\right) \right\rfloor < \infty, \text{ for some } \rho > 0 \right\}$$

and

$$l_{\mathcal{N}}^{\lambda} \left[\Delta_{n}^{m} \right] = \left\{ x = (x_{k}) \in \omega : \sum_{k \ge 1} \left[N_{k} \left(\frac{\lambda_{k} |\Delta_{n}^{m} x_{k}|}{\rho} \right) \right] < \infty, \text{ for some } \rho > 0 \right\}.$$

If $(\lambda_{k}) = 1$ for all $k \in \mathbb{N}$, then

$$l^{\mathcal{M}}\left[\Delta_{n}^{m}, p\right] = \left\{ x = (x_{k}) \in \omega : \sum_{k \ge 1} \left[M_{k} \left(\frac{|\Delta_{n}^{m} x_{k}|}{\rho} \right) \right]^{p_{k}} < \infty, \text{ for some } \rho > 0 \right\}$$

and

$$l_{\mathcal{N}}\left[\Delta_{n}^{m}, p\right] = \left\{ x = (x_{k}) \in \omega : \sum_{k \ge 1} \left[N_{k} \left(\frac{|\Delta_{n}^{m} x_{k}|}{\rho} \right) \right]^{p_{k}} < \infty, \text{ for some } \rho > 0 \right\}.$$

If we take $(p_k) = 1$, for all k and n=1 we get the spaces defined by Bektaş and Atici [2].

The following inequality will be used throughout the paper. Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k \leq \sup_k p_k = H$, and let D = $\max\{1, 2^{H-1}\}$. Then, for the factorable sequences (a_k) and (b_k) in the complex plane, we have

$$|a_k + b_k|^{p_k} \le D(|a_k|^{p_k} + |b_k|^{p_k}).$$
(1.1)

Throughout the paper we write $M_k(1) = 1$ and $N_k(1) = 1$ for all $k \in \mathbb{N}$.

The main purpose of this paper is to study some difference new modular sequence spaces defined by a sequence of Orlicz functions over n-normed spaces. We shall study some topological, algebraic properties of the sequence spaces $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ and $l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m},p]$ in the second section of the paper. In the third section we shall determine the dual spaces of $h(\mathcal{M})$, $l(\mathcal{M}, \lambda, p)$ and $l(\mathcal{N}, \lambda, p)$. Finally, we shall study some sequence spaces over n- normed spaces in the fourth section of the paper. We have also made an attempt to study some topological, algebraic properties and inclusion relations between the sequence spaces $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|, \dots, \|]$ and $l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|].$

2. Some topological properties of the spaces $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m},p]$ and $l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m},p]$

The purpose of this section is to study the properties like linearity, paranorm, solidity and relevant inclusion relations in the spaces $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ and $l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m}, p]$.

Theorem 2.1. Let $\mathcal{M} = (M_k)$ and $\mathcal{N} = (N_k)$ be two sequences of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Then the sequence spaces $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$ and $l_{\lambda}^{\mathcal{N}}[\Delta_n^m, p]$ are linear spaces over the complex field \mathbb{C} .

Proof: Let $x = (x_k)$ and $y = (y_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive real numbers ρ_1 and ρ_2 such that

$$\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^{p_k} < \infty$$

and

$$\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m y_k|}{\lambda_k \rho_2} \right) \right]^{p_k} < \infty.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $M'_k s$ are non-decreasing and convex function so by using inequality (1.1), we have

$$\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m(\alpha x_k + \beta y_k)|}{\lambda_k \rho_3} \right) \right]^{p_k} \leq \sum_{k\geq 1} \left[M_k \left(\frac{|\alpha \Delta_n^m x_k|}{\lambda_k \rho_3} + \frac{|\beta \Delta_n^m y_k|}{\lambda_k \rho_3} \right) \right]^{p_k}$$
$$\leq D \sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^{p_k}$$
$$+ D \sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m y_k|}{\lambda_k \rho_2} \right) \right]^{p_k}$$
$$< \infty.$$

Therefore, $\alpha x + \beta y \in l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ and hence, $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ is a linear space. Similarly, we can prove that $l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m}, p]$ is a linear space. This completes the proof. \Box

Theorem 2.2. Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Then the sequence space $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$ is a paranormed space with paranorm defined by

$$g(x) = \inf\left\{ \left(\rho\right)^{\frac{p_k}{H}} : \left(\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho}\right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}$$

where $H = \max(1, G), \ 0 < p_k \le \sup_k p_k = G.$

Proof: Clearly $g(x) \ge 0$, for $x = (x_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$. Since $M_k(0) = 0$, we get g(0) = 0. Again, if g(x) = 0, then

$$g(x) = \inf\left\{ \left(\rho\right)^{\frac{p_k}{H}} : \left(\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho}\right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1 \right\} = 0,$$

this implies that for a given $\epsilon>0,$ there exist some $\rho_\epsilon~(0<\rho_\epsilon<\epsilon)$ such that

$$\left(\sum_{k\geq 1} \left[M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_\epsilon}\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1.$$

Thus,

$$\left(\sum_{k\geq 1} \left[M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \epsilon}\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq \left(\sum_{k\geq 1} \left[M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_\epsilon}\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1.$$

Suppose that $x_k \neq 0$ for each $k \in \mathbb{N}$. This implies that $\Delta_n^m x_k \neq 0$ for each $k \in \mathbb{N}$. Let $\epsilon \to 0$, then $\frac{|\Delta_n^m x_k|}{\lambda_k \epsilon} \to \infty$. It follows that

$$\left(\sum_{k\geq 1} \left[M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_\epsilon}\right)\right]^{p_k}\right)^{\frac{1}{H}} \to \infty,$$

which is a contradiction. Therefore, $\Delta_n^m x_k = 0$ for each k and thus $x_k = 0$ for each $k \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\sum_{k\geq 1} \left[M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1}\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1$$

and

$$\left(\sum_{k\geq 1} \left[M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_2}\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1.$$

Let $\rho=\rho_1+\rho_2.$ Then by Minkowski's inequality, we have

$$\left(\sum_{k\geq 1} \left[M_{k}\left(\frac{|\Delta_{n}^{m}x_{k}|}{\lambda_{k}\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq \left(\sum_{k\geq 1} \left[M_{k}\left(\frac{|\Delta_{n}^{m}x_{k}|}{\lambda_{k}(\rho_{1}+\rho_{2})}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\ \leq \left(\sum_{k\geq 1} \left[\frac{\rho_{1}}{\rho_{1}+\rho_{2}}M_{k}\left(\frac{|\Delta_{n}^{m}x_{k}|}{\lambda_{k}\rho_{1}}\right)\right. + \frac{\rho_{2}}{\rho_{1}+\rho_{2}}M_{k}\left(\frac{|\Delta_{n}^{m}x_{k}|}{\lambda_{k}\rho_{2}}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\ \leq \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right)\left(\sum_{k\geq 1} \left[M_{k}\left(\frac{|\Delta_{n}^{m}x_{k}|}{\lambda_{k}\rho_{1}}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\ + \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right)\left(\sum_{k\geq 1} \left[M_{k}\left(\frac{|\Delta_{n}^{m}x_{k}|}{\lambda_{k}\rho_{2}}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\ \leq 1.$$

Since $\rho {\rm 's}$ are non-negative, so we have

$$g(x+y) = \inf \left\{ (\rho_1 + \rho_2)^{\frac{p_k}{H}} : \left(\sum_{k \ge 1} \left[M_k \left(\frac{|\Delta_n^m(x_k + y_k)|}{\lambda_k(\rho_1 + \rho_2)} \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}$$

$$\leq \inf \left\{ (\rho_1)^{\frac{p_k}{H}} : \left(\sum_{k \ge 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}$$

$$+ \inf \left\{ (\rho_2)^{\frac{p_k}{H}} : \left(\sum_{k \ge 1} \left[M_k \left(\frac{|\Delta_n^m y_k|}{\lambda_k \rho_2} \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}.$$

Therefore, $g(x + y) \le g(x) + g(y)$. Finally, we prove that the scalar multiplication is continuous. Let μ be any complex number, therefore, by definition

$$g(\mu x) = \inf\left\{ \left(\rho\right)^{\frac{p_k}{H}} : \left(\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m \mu x_k|}{\lambda_k \rho}\right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1 \right\} \text{ and }$$

thus,

$$g(\mu x) = \inf\left\{ \left(|\mu|t\right)^{\frac{p_k}{H}} : \left(\sum_{k\geq 1} \left[M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k t}\right)\right]^{p_k}\right)^{\frac{1}{H}} \le 1\right\}$$

where $t = \frac{\rho}{|\mu|}$. Since $|\mu|^{p_k} \le \max(1, |\mu| \sup p_k)$. Hence,

$$g(\mu x) = \max(1, |\mu| \sup p_k) \inf \left\{ (t)^{\frac{p_k}{H}} : \left(\sum_{k \ge 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k t} \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}.$$

So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof. $\hfill \Box$

Theorem 2.3. Suppose $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. If $0 < p_k \leq q_k < \infty$, for each $k \in \mathbb{N}$, then $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p] \subseteq l_{\lambda}^{\mathcal{M}}[\Delta_n^m, q]$.

Proof: Suppose that $x = (x_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$. This implies that

$$\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{p_k} \le 1$$

for sufficiently large value of k say $k \ge k_0$, for some fixed $k_0 \in \mathbb{N}$. Since $M = (M_k)$ is non decreasing, we have

$$\sum_{k=k_0}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{q_k} \leq \sum_{k=k_0}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{p_k} < \infty.$$

Hence, $x = (x_k) \in l^{\mathcal{M}}_{\lambda}[\Delta^m_n, q]$. This completes the proof.

Theorem 2.4. (i) If $0 < \inf p_k \le p_k < 1$ for each k, then $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p] \subseteq l_{\lambda}^{\mathcal{M}}[\Delta_n^m]$. (ii) If $1 \le p_k \le \sup p_k < \infty$ for each k, then $l_{\lambda}^{\mathcal{M}}[\Delta_n^m] \subseteq l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$.

Proof: (i) Let $x = (x_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$. Since $0 < \inf p_k < 1$, we have

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right] \le \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{p_k}$$

and hence, $x = (x_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m].$

(*ii*) Suppose p_k for each $k \sup p_k < \infty$ and let $x = (x_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m]$. Then for each $0 < \epsilon < 1$, there exists a positive integer \mathbb{N} such that

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right] \le \epsilon < 1, \text{ for all } k \in \mathbb{N},$$

this implies that

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{p_k} \le \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right].$$

Thus, $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, p]$. This completes the proof.

39

Theorem 2.5. The sequence space $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ is solid.

Proof: Let $x = (x_k) \in l^{\mathcal{M}}_{\lambda} [\Delta^m_n, p]$. Then

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{p_k} < \infty.$$

Let (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Then the result follows from the following inequality

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m \alpha_k x_k|}{\lambda_k \rho} \right) \right]^{p_k} \le \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{p_k}.$$

This completes the proof.

Corollary 2.6. The sequence space $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ is monotone.

Proof: It is obvious so we omit the proof.

Theorem 2.7. Let $\mathcal{M} = (M_k)$ and $\mathcal{M}' = (M'_k)$ be two sequences of Orlicz functions. Then, we have

$$l_{\lambda}^{\mathcal{M}}\left[\Delta_{n}^{m},p\right]\cap l_{\lambda}^{\mathcal{M}'}\left[\Delta_{n}^{m},p\right]\subseteq l_{\lambda}^{\mathcal{M}+\mathcal{M}'}\left[\Delta_{n}^{m},p\right].$$

Proof: Let $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, p] \cap l_{\lambda}^{\mathcal{M}'} [\Delta_n^m, p]$. Then

$$\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^{p_k} < \infty, \text{ for some } \rho_1 > 0$$

and

$$\sum_{k\geq 1} \left[M'_k \Big(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_2} \Big) \right]^{p_k} < \infty, \text{ for some } \rho_2 > 0.$$

Let $\rho = \max(\rho_1, \rho_2)$. The result follows from the inequality

$$\sum_{k\geq 1} \left[(M_k + M'_k) \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^{p_k} = \sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) + M'_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^{p_k}$$
$$\leq D \sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^{p_k}$$
$$+ D \sum_{k\geq 1} \left[M'_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho_1} \right) \right]^{p_k}.$$

This completes the proof.

The proof of the following theorems are easy so omitted.

40

Theorem 2.8. The sequence space $l^{\mathcal{M}}_{\lambda}[\Delta^m_n, p]$ is a normed space with norm

$$\|x\|_{\lambda}^{\mathcal{M}} = \sum_{i=1}^{m} |x_i| + \inf\left\{\rho > 0 : \sum_{k \ge 1} \left[M_k\left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho}\right)\right]^{p_k} \le 1\right\}$$

Theorem 2.9. The sequence space $l^{\lambda}_{\mathcal{N}}[\Delta^m_n, p]$ is a normed space with norm

$$\|x\|_{\mathcal{N}}^{\lambda} = \sum_{i=1}^{m} |x_i| + \inf\left\{\rho > 0 : \sum_{k \ge 1} \left[N_k\left(\frac{\lambda_k |\Delta_n^m x_k|}{\rho}\right)\right]^{p_k} \le 1\right\}$$

Theorem 2.10. The spaces $\left(l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m},p], \|.\|_{\lambda}^{\mathcal{M}}\right)$ and $\left(l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m},p], \|.\|_{\mathcal{N}}^{\lambda}\right)$ are Banach spaces.

Theorem 2.11. The space $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ equipped with the norm $\|.\|_{\lambda}^{\mathcal{M}}$ and the space $l_{\lambda}^{\lambda}[\Delta_{n}^{m}, p]$ equipped with the norm $\|.\|_{\lambda}^{\lambda}$ are BK-spaces.

Proof: The space $\left(l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p], \|.\|_{\lambda}^{\mathcal{M}}\right)$ is a Banach space by the Theorem 2.10. Now let $\|x^{l} - x\|_{\lambda}^{\mathcal{M}} \to 0$ as $l \to \infty$. Then

$$|x_k^l - x_k| \to 0$$
 as $l \to \infty$, for each $k \le m$

and

$$\inf\left\{\rho > 0: \sum_{k \ge 1} \left[M_k \left(\frac{|\Delta_n^m x_k^l - \Delta_n^m x_k|}{\lambda_k \rho}\right)\right]^{p_k} \le 1\right\} \to 0$$

as $l \to \infty$ for all $k \in \mathbb{N}$. If $M_k \left(\frac{|\Delta_n^m x_k^l - \Delta_n^m x_k|}{\lambda_k \|x\|_{\lambda}^M}\right)^{p_k} \leq 1$ then $\frac{|\Delta_n^m x_k^l - \Delta_n^m x_k|}{\lambda_k \|x\|_{\lambda}^M} \leq 1$ for all k. Therefore, we also obtain

$$|\Delta_n^m x_k^l - \Delta_n^m x_k| \le \lambda_k \|x^l - x\|_{\lambda}^{\mathcal{M}}$$

Since $||x^l - x||_{\lambda}^{\mathcal{M}} \to 0$, then $|\Delta_n^m x_k^l - \Delta_n^m x_k| \to 0$ and

$$\left|\sum_{v=0}^{m} (-1)^{v} \begin{pmatrix} m \\ v \end{pmatrix} (x_{k+nv}^{l} - x_{k+nv})\right| \to 0$$

as $l \to \infty$ for all $k \in \mathbb{N}.$ On the other hand, since we may write

$$|x_{k+nv}^{l} - x_{k+nv}| \le \left|\sum_{v=0}^{m} (-1)^{v} \binom{m}{v} (x_{k+nv}^{l} - x_{k+nv})\right| + \left|\binom{m}{0} (x_{k}^{l} - x_{k})\right| + \dots + \left|\binom{m}{m-1} (x_{k+n(m+1)}^{l} - x_{k+n(m+1)})\right|.$$

Then $|x_k^l - x_k| \to 0$ as $l \to \infty$ for each $k \in \mathbb{N}$. Hence, $\left(l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p], \|.\|_{\lambda}^{\mathcal{M}}\right)$ is a BK-space. Similarly we can prove $\left(l_{\mathcal{N}}^{\lambda}[\Delta_n^m, p], \|.\|_{\mathcal{N}}^{\lambda}\right)$ is a BK-space. This completes the proof.

Theorem 2.12. If \mathbb{Z} is a normal sequence space containing λ , then $l_{\lambda}^{\mathbb{M}}[\Delta_{n}^{m}, p]$ is a proper subspace of \mathbb{Z} . In addition, if \mathbb{Z} is equipped with the monotone norm (quasi-norm) $\|.\|_{\mathbb{Z}}$. The inclusion $R: l_{\lambda}^{\mathbb{M}}[\Delta_{n}^{m}, p] \to \mathbb{Z}[\Delta_{n}^{m}, p]$ is continuous with $\|R\| \leq \|\{\lambda_{k}\}\|_{\mathbb{Z}}$.

Proof: Let $x \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$, then

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0.$$

So there exists a constant K > 0 such that

$$\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \le K \text{ for all } k \in \mathbb{N}.$$

Since \mathcal{Z} is a normal sequence space containing λ , we have $\left[\Delta_n^m x_k\right]^{p_k} \in \mathcal{Z}$ and so that $x \in \mathcal{Z}[\Delta_n^m, p]$. Hence, $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p] \subseteq \mathcal{Z}[\Delta_n^m, p]$. Further, since $M_k(1) = 1$ for all $k \in \mathbb{N}$ then

$$\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k ||x||_{\lambda}^{\mathcal{M}}} \right) \right]^{p_k} \le 1$$

so that $|\Delta_n^m x_k| \leq \lambda_k ||x||_{\lambda}^M$. As $||.||_{\mathcal{Z}}$ is monotone, $||Rx||_{\mathcal{Z}} = ||\Delta_n^m x_k||_{\mathcal{Z}} \leq ||\{\lambda_k\}||_{\mathcal{Z}} ||x||_{\lambda}^M$ and hence, $||R|| \leq ||\{\lambda_k\}||_{\mathcal{Z}}$. This completes the proof.

Theorem 2.13. If \mathcal{Y} is a normal sequence space containing $\lambda^{-1} \equiv \{\frac{1}{\lambda_k}\}$, then $l_{\mathcal{N}}^{\lambda}[\Delta_n^m, p]$ is a proper subspace of \mathcal{Y} . In addition, if \mathcal{Y} is equipped with the monotone norm (quasi-norm) $\|.\|_{\mathcal{Y}}$. The inclusion $S : l_{\mathcal{N}}^{\lambda}[\Delta_n^m, p] \to \mathcal{Y}[\Delta_n^m, p]$ is continuous with $\|S\| \leq \|\{\lambda_k^{-1}\}\|_{\mathcal{Y}}$.

Proof: The proof of the theorem is similar to that of Theorem 2.12 and so is omitted. $\hfill \Box$

Theorem 2.14. If $\lambda = (\lambda_k)$ is a bounded sequence such that $\inf \lambda_k > 0$ (i.e both λ and λ^{-1} are in l_{∞}). Then $l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p] = l_{\mathcal{M}}^{\mathcal{M}}[\Delta_n^m, p] = l_{\mathcal{M}}[\Delta_n^m, p]$.

Proof: Let $x = (x_k) \in l_{\mathcal{M}}[\Delta_n^m, p]$, then

$$\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\rho} \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0.$$

Since $\lambda = (\lambda_k)$ is bounded, we can write $a \leq \lambda_k \leq b$ for some $b > a \geq 0$. Define $\rho_1 = \rho b$. Also since $M'_k s$ are increasing, it follows that

$$\sum_{k\geq 1} \left[M_k \left(\frac{\lambda_k |\Delta_n^m x_k|}{\rho_1} \right) \right]^{p_k} \leq \sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\rho} \right) \right]^{p_k} < \infty.$$

Hence, $l_{\mathcal{M}}[\Delta_n^m, p] \subseteq l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p]$. The other inclusion $l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p] \subseteq l_{\mathcal{M}}[\Delta_n^m, p]$ follows from the inequality

$$\sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\frac{\rho}{a}} \right) \right]^{p_k} \leq \sum_{k\geq 1} \left[M_k \left(\frac{\lambda_k |\Delta_n^m x_k|}{\rho} \right) \right]^{p_k} < \infty.$$

Therefore, $l_{\mathcal{M}}^{\lambda}[\Delta_{n}^{m}, p] = l_{\mathcal{M}}[\Delta_{n}^{m}, p]$. Similarly one can prove that $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p] = l_{\mathcal{M}}[\Delta_{n}^{m}, p]$. This completes the proof.

Theorem 2.15. If $\{\lambda_k\} \in l_{\infty}$ with $c = \sup_{k \ge 1} \lambda_k \ge 1$ and $\{\lambda_k^{-1}\}$ is unbounded, then $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p]$ is properly contained in $l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p]$ and the inclusion map U : $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p] \to l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p]$ is continuous with $\|U\| \le c^2$.

Proof: For any $\rho > 0$ and $\rho' = \rho c^2$, we have

$$\sum_{k\geq 1} \left[M_k \left(\frac{\lambda_k |\Delta_n^m x_k|}{\rho'} \right) \right]^{p_k} \leq \sum_{k\geq 1} \left[M_k \left(\frac{|\Delta_n^m x_k|}{\lambda_k \rho} \right) \right]^{p_k} < \infty.$$

for $x = \{x_k\}$. Hence, $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p] \subset l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p]$. We now show that the containment $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p] \subset l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p]$ is proper. From the unboundedness of the sequence $\{\lambda_k^{-1}\}$, choose a sequence $\{k_l\}$ of positive integers such that $\lambda_{k_l}^{-1} \geq l$. Now define

$$\Delta_n^m x_k = \begin{cases} \frac{1}{l}, & k = k_l, \ l = 1, 2, \dots; \\ 0, & otherwise. \end{cases}$$

Then $x \in l_{\mathcal{M}}^{\lambda}[\Delta_{n}^{m}, p]$, but $x \notin l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$. To prove the continuity of the inclusion map U, let us first consider the case obtained for c = 1. For $x \in l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$, we write

$$A_{\lambda}^{\mathfrak{M}}\left[\Delta_{n}^{m}, p\right] = \left\{\rho > 0 : \sum_{k \ge 1} \left[M_{k}\left(\frac{\left|\Delta_{n}^{m} x_{k}\right|}{\lambda_{k}\rho}\right)\right]^{p_{k}} \le 1\right\}$$

and

$$B_{\mathcal{M}}^{\lambda}\left[\Delta_{n}^{m}, p\right] = \left\{\rho > 0: \sum_{k \ge 1} \left[M_{k}\left(\frac{\lambda_{k}|\Delta_{n}^{m}x_{k}|}{\rho}\right)\right]^{p_{k}} \le 1\right\}.$$

Since $M'_k s$ are increasing and c = 1, we get $A^{\mathcal{M}}_{\lambda}[\Delta^m_n, p] \subset B^{\lambda}_{\mathcal{M}}[\Delta^m_n, p]$. Hence,

$$\|x\|_{\mathcal{M}}^{\lambda} = \inf B_{\mathcal{M}}^{\lambda} \left[\Delta_{n}^{m}, p\right] \leq \inf A_{\mathcal{M}}^{\lambda} \left[\Delta_{n}^{m}, p\right] = \|x\|_{\lambda}^{\mathcal{M}}$$
(2.1)

i.e $||U(x)||_{\mathcal{M}}^{\lambda} \leq ||x||_{\lambda}^{\mathcal{M}}$. Thus, U is continuous with $||U|| \leq 1 = c^2$. If $c \neq 1$, define $\delta_k = \frac{\lambda_k}{c}$, $k \in \mathbb{N}$. Then $\delta_k \leq 1$ and from (2.1), it follows that

$$\|x\|_{\mathcal{M}}^{\delta} \le \|x\|_{\delta}^{\mathcal{M}} \text{ for } x \in l_{\lambda}^{\mathcal{M}} [\Delta_{n}^{m}, p].$$

$$(2.2)$$

Hence, from (2.2)

$$||U(x)||_{\mathcal{M}}^{\lambda} = ||x||_{\mathcal{M}}^{\lambda} \le c^{2} ||x||_{\lambda}^{\mathcal{M}}$$

i.e. U is continuous with $||U|| \leq c^2$. This completes the proof.

Theorem 2.16. If $\{\lambda_k\}$ is unbounded with $\sup_{k\geq 1} \lambda_k^{-1} = d \geq 1$, $\lambda_k > 0$ for all k, then $l^{\lambda}_{\mathcal{M}}[\Delta_n^m, p]$ is properly contained in $l^{\mathcal{M}}_{\lambda}[\Delta_n^m, p]$ and the inclusion map $V : l^{\lambda}_{\mathcal{M}}[\Delta_n^m, p] \to l^{\mathcal{M}}_{\lambda}[\Delta_n^m, p]$ is continuous with $\|V\| \leq d^2$.

Proof: The proof of the theorem is similar to that of Theorem 2.15 and so is omitted. $\hfill \Box$

3. Dual spaces of $h(\mathcal{M})$, $l(\mathcal{M}, \lambda, p)$ and $l(\mathcal{N}, \lambda, p)$

Let η be a sequence space and defined

$$\eta^{\alpha} = \left\{ a = (a_k) : \sum_{k=1}^{\infty} |a_k x_k| < \infty, \text{ for all } x \in \eta \right\},$$
$$\eta^{\beta} = \left\{ a = (a_k) : \sum_{k=1}^{\infty} a_k x_k \text{ converges for all } x \in \eta \right\},$$
$$\eta^{\gamma} = \left\{ a = (a_k) : \sup \left| \sum_{k=1}^{\infty} a_k x_k \right| < \infty, \text{ for all } x \in \eta \right\} \text{ (see [13])}$$

Then η^{α} , η^{β} , η^{γ} are called α -, β -, γ - dual spaces of η respectively. It is easy to show that $\phi \subset \eta^{\alpha} \subset \eta^{\beta} \subset \eta^{\gamma}$. If $\eta \subset \nu$, then $\nu^{\sigma} \subset \eta^{\sigma}$ for $\sigma = \alpha, \beta, \gamma$. We shall write $\eta^{\alpha\alpha} = (\eta^{\alpha})^{\alpha}$.

Let η be a sequence space. Then η is called perfect if $\eta = \eta^{\alpha\alpha}$ (see [15]). For m = n = 0 we write $l(\mathcal{M}, \lambda, p)$ and $l(\mathcal{N}, \lambda, p)$ instead of $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p]$ and $l_{\lambda}^{\lambda}[\Delta_{n}^{m}, p]$ repectively which we define as:

$$l(\mathcal{M},\lambda,p) = \left\{ x = (x_k) \in \omega : \sum_{k \ge 1} \left[M_k \left(\frac{|x_k|}{\lambda_k \rho} \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}$$

$$l(\mathbb{N},\lambda,p) = \left\{ x = (x_k) \in \omega : \sum_{k \ge 1} \left[N_k \left(\frac{\lambda_k |x_k|}{\rho} \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}.$$

In this section we shall obtain $\alpha -$, $\beta -$ and $\gamma -$ duals of the sequence space $h(\mathcal{M})$ and $\alpha -$ duals of $l(\mathcal{M}, \lambda, p)$ and $l(\mathcal{N}, \lambda, p)$.

Proposition 3.1. η is perfect $\Rightarrow \eta$ is normal $\Rightarrow \eta$ is monotone (see [15]).

Proposition 3.2. Let η be a sequence space. If η is monotone, then $\eta^{\alpha} = \eta^{\beta}$ and if η is normal, then $\eta^{\alpha} = \eta^{\gamma}$.

Proposition 3.3. The sequence space $h(\mathcal{M})$ is normal for any sequence (M_k) of Orlicz functions.

Proof: Let $x \in h(\mathcal{M})$ and $|y_k| \leq |x_k|$, for each $k \in \mathbb{N}$. Since $M'_k s$ are non-decreasing we have

$$\sum_{k=1}^{\infty} M_k \left(\frac{|y_k|}{\rho} \right) \le \sum_{k=1}^{\infty} M_k \left(\frac{|x_k|}{\rho} \right) < \infty.$$

Hence, $y \in h(\mathcal{M})$. Thus, $h(\mathcal{M})$ is normal.

Theorem 3.1. Let (M_k) and (N_k) for each k be mutually complementary Orlicz functions. Then

$$[h(\mathcal{M})]^{\beta} = [h(\mathcal{M})]^{\alpha} = [h(\mathcal{M})]^{\gamma} = l(\mathcal{N}).$$

The proof is seen from Proposition 3.1, Proposition 3.2 and Proposition 3.3.

Theorem 3.2. If the sequence (M_k) satisfies uniform Δ_2 - condition, then $[l(\mathcal{M}, \lambda, p)]^{\alpha} = l(\mathcal{N}, \lambda, p)$

Proof: Let the sequence (M_k) satisfies uniform Δ_2 - condition, Then for any $x \in l(\mathcal{M}, \lambda, p)$ and $a \in l(\mathcal{N}, \lambda, p)$, we have

$$\sum_{k=1}^{\infty} |a_k x_k| \le \sum_{k=1}^{\infty} \left[M_k \left(\frac{|x_k|}{\lambda_k \rho} \right) \right]^{p_k} + \sum_{k=1}^{\infty} \left[N_k \left(\frac{\lambda_k |a_k|}{\rho'} \right) \right]^{p_k} < \infty$$

where $\rho' = \frac{1}{\rho}$ and $\rho > 0$. Thus, $a \in [l(\mathcal{M}, \lambda, p)]^{\alpha}$. Hence, $l(\mathcal{N}, \lambda, p) \subset [l(\mathcal{M}, \lambda, p)]^{\alpha}$. To prove the inclusion $[l(\mathcal{M}, \lambda, p)]^{\alpha} \subset l(\mathcal{N}, \lambda, p)$, let $a \in [l(\mathcal{M}, \lambda, p)]^{\alpha}$. Then for all $\{x_k\}$ with $\left(\frac{x_k}{\lambda_k}\right) \in l(\mathcal{M})$ we have

$$\sum_{k=1}^{\infty} |a_k x_k| < \infty. \tag{3.1}$$

Since the sequence satisfies uniform Δ_2 -condition, then $l(\mathcal{M}) = h(\mathcal{M})$ and so for $(y_k) \in h(\mathcal{M})$ we have $\sum_{k=1}^{\infty} |\lambda_k y_k a_k| < \infty$ by (3.1). Thus, $(\lambda_k a_k) \in [h(\mathcal{M})]^{\alpha} = l(\mathcal{N})$ and hence, $(a_k) \in l(\mathcal{N}, \lambda, p)$. Therefore, $[l(\mathcal{M}, \lambda, p)]^{\alpha} = l(\mathcal{N}, \lambda, p)$.

Theorem 3.3. If the sequence (M_k) satisfies uniform Δ_2 - condition, then $[l(\mathfrak{N}, \lambda, p)]^{\alpha} = l(\mathfrak{M}, \lambda, p).$

Proof: Immediate from Theorem 3.5.

4. Some new sequence spaces over *n*-normed space

The concept of 2-normed spaces was initially developed by Gähler [10] in the mid of 1960's, while that of *n*-normed spaces one can see in Misiak [18]. Since then, many others have studied this concept and obtained various results, see Gunawan ([11], [12]) and Gunawan and Mashadi [13]. Let $n \in \mathbb{N}$ and X be a linear space over the field K, where K is field of real or complex numbers of dimension d, where $d \geq n \geq 2$. A real valued function $||\cdot, \cdots, \cdot||$ on X^n satisfying the following four conditions:

- 1. $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X,
- 2. $||x_1, x_2, \cdots, x_n||$ is invariant under permutation,
- 3. $||\alpha x_1, x_2, \cdots, x_n|| = |\alpha| ||x_1, x_2, \cdots, x_n||$ for any $\alpha \in \mathbb{K}$, and
- 4. $||x + x', x_2, \cdots, x_n|| \le ||x, x_2, \cdots, x_n|| + ||x', x_2, \cdots, x_n||$

is called an *n*-norm on X, and the pair $(X, ||\cdot, \cdots, \cdot||)$ is called a *n*-normed space over the field \mathbb{K} .

For example, we may take $X = \mathbb{R}^n$ being equipped with the *n*-norm $||x_1, x_2, \dots, x_n||_E$ = the volume of the *n*-dimensional parallelopiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$. Let $(X, || \cdot, \dots, \cdot ||)$ be an *n*-normed space of dimension $d \ge n \ge 2$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $|| \cdot, \dots, \cdot ||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \dots, a_n\}$. A sequence (x_k) in a *n*-normed space $(X, || \cdot, \dots, \cdot ||)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, || \cdot, \cdots, \cdot ||)$ is said to be Cauchy if

$$\lim_{k,p \to \infty} ||x_k - x_p, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the *n*-norm. Any complete *n*-normed space is said to be *n*-Banach space. For more details about n- normed space (see [26]) and references therein. Let $(X, || \cdot, \dots, \cdot ||)$ be a *n*-normed space and W(n - X) denotes the space of X-valued sequences. Let $p = (p_k)$ be a bounded sequence of positive real numbers, $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions and $\mathcal{N} = (N_k)$ is a complementary function of Orlicz function $\mathcal{M} = (M_k)$. In this section of the paper we define the following sequences:

$$\begin{split} l_{\lambda}^{\mathcal{M}} \big[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\| \big] &= \left\{ x = (x_{k}) \in W(n - X) : \\ \sum_{k \ge 1} \left[M_{k} \Big(\Big\| \frac{\Delta_{n}^{m} x_{k}}{\lambda_{k} \rho}, z_{1}, \cdots, z_{n-1} \Big\| \Big) \right]^{p_{k}} < \infty, \text{ for some } \rho > 0 \Big\} \end{split}$$

and

$$l_{\mathcal{N}}^{\lambda} \left[\Delta_{n}^{m}, p, \| \cdot, \cdots, \cdot \| \right] = \left\{ x = (x_{k}) \in W(n - X) : \\ \sum_{k \geq 1} \left[N_{k} \left(\left\| \frac{\lambda_{k} \Delta_{n}^{m} x_{k}}{\rho}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{k}} < \infty, \text{ for some } \rho > 0 \right\}.$$

If we take $(p_k) = 1$ for all k then

$$l_{\lambda}^{\mathcal{M}} \left[\Delta_{n}^{m}, \left\| \cdot, \cdots, \cdot \right\| \right] = \left\{ x = (x_{k}) \in W(n - X) : \\ \sum_{k \ge 1} \left[M_{k} \left(\left\| \frac{\Delta_{n}^{m} x_{k}}{\lambda_{k} \rho}, z_{1}, \cdots, z_{n-1} \right\| \right) \right] < \infty, \text{ for some } \rho > 0 \right\}$$

and

$$l_{\mathcal{N}}^{\lambda} \left[\Delta_{n}^{m}, \left\| \cdot, \cdots, \cdot \right\| \right] = \left\{ x = (x_{k}) \in W(n - X) : \\ \sum_{k \ge 1} \left[N_{k} \left(\left\| \frac{\lambda_{k} \Delta_{n}^{m} x_{k}}{\rho}, z_{1}, \cdots, z_{n-1} \right\| \right) \right] < \infty, \text{ for some } \rho > 0 \right\}.$$

If $(\lambda_k) = 1$ for all $k \in \mathbb{N}$, then

$$l^{\mathcal{M}}\left[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|\right] = \left\{x = (x_{k}) \in W(n - X): \\ \sum_{k \geq 1} \left[M_{k}\left(\left\|\frac{\Delta_{n}^{m} x_{k}}{\rho}, z_{1}, \cdots, z_{n-1}\right\|\right)\right]^{p_{k}} < \infty, \text{ for some } \rho > 0\right\}$$

and

$$l_{\mathcal{N}}\left[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|\right] = \left\{x = (x_{k}) \in W(n - X): \\ \sum_{k \ge 1} \left[N_{k}\left(\left\|\frac{\Delta_{n}^{m} x_{k}}{\rho}, z_{1}, \cdots, z_{n-1}\right\|\right)\right]^{p_{k}} < \infty, \text{ for some } \rho > 0\right\}$$

respectively.

The main aim of this section is to study some topological properties and inclusion relations between the spaces $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$ and $l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$.

Theorem 4.1. Let $\mathcal{M} = (M_k)$ and $\mathcal{N} = (N_k)$ be two sequences of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Then the sequence spaces $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ and $l_{\mathcal{N}}^n[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ are linear spaces over the field \mathbb{C} of complex numbers.

Proof: Let $x = (x_k)$ and $y = (y_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive real numbers ρ_1 and ρ_2 such that

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty$$

and

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m y_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $\|\cdot, \cdots, \cdot\|$ is a *n*-norm on X and M_k 's are non-decreasing and convex function so by using inequality (1.1), we have

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n (\alpha x_k + \beta y_k)}{\lambda_k \rho_3}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \\ \leq \sum_{k\geq 1} \left[M_k \left(\left\| \frac{\alpha \Delta_n^m x_k}{\lambda_k \rho_3}, z_1, \cdots, z_{n-1} \right\| + \left\| \frac{\beta \Delta_n^m y_k}{\lambda_k \rho_3}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \\ \leq D \sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \\ + D \sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m y_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \\ < \infty.$$

Therefore, $\alpha x + \beta y \in l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$ and hence, $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$ is a linear space. Similarly, we can prove $l_{\mathcal{N}}^{\lambda}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$ is a linear space. This completes the proof.

Theorem 4.2. Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. Then the sequence space $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ is a paranormed space with paranorm defined by

$$g(x) = \inf\left\{\left(\rho\right)^{\frac{p_k}{H}} : \left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1\right\}$$

where $H = \max(1, G), \ 0 < p_k \le \sup_k p_k = G.$

Proof: Clearly $g(x) \ge 0$, for $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. Since $M_k(0) = 0$, we get g(0) = 0. Again, if g(x) = 0, then

$$g(x) = \inf\left\{\left(\rho\right)^{\frac{p_k}{H}} : \left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1\right\} = 0,$$

this implies that for a given $\epsilon>0,$ there exist some $\rho_\epsilon~(0<\rho_\epsilon<\epsilon)$ such that

$$\left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho_\epsilon}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1.$$

Thus,

$$\left(\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \epsilon}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq \left(\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_\epsilon}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1.$$

Suppose that $x_k \neq 0$ for each $k \in \mathbb{N}$. This implies that $\Delta_n^m x_k \neq 0$ for each $k \in \mathbb{N}$. Let $\epsilon \to 0$, then $\left\| \frac{\Delta_n^m x_k}{\lambda_k \epsilon}, z_1, \cdots, z_{n-1} \right\| \to \infty$. It follows that

$$\left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho_{\epsilon}}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \to \infty$$

which is a contradiction. Therefore, $\Delta_n^m x_k = 0$ for each k and thus $x_k = 0$ for each $k \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1$$

and

$$\left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1.$$

Let $\rho = \rho_1 + \rho_2$. Then by Minkowski's inequality, we have $\left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}\right)^{\frac{1}{H}}$ $\leq \left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k (\rho_1 + \rho_2)}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}$ $\leq \left(\sum_{k\geq 1} \left[\frac{\rho_1}{\rho_1 + \rho_2}M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}$ $\leq \left(\frac{\rho_1}{\rho_1 + \rho_2}M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}$ $\leq \left(\frac{\rho_1}{\rho_1 + \rho_2}\right)\left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}$ $+ \left(\frac{\rho_1}{\rho_1 + \rho_2}\right)\left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}$ $\leq 1.$

Since ρ 's are non-negative, so we have

$$g(x+y) = \inf \left\{ (\rho_1 + \rho_2)^{\frac{p_k}{H}} : \left(\sum_{k \ge 1} \left[M_k \left(\left\| \frac{\Delta_n^m(x_k + y_k)}{\lambda_k(\rho_1 + \rho_2)}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}$$

$$\leq \inf \left\{ (\rho_1)^{\frac{p_k}{H}} : \left(\sum_{k \ge 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}$$

$$+ \inf \left\{ (\rho_2)^{\frac{p_k}{H}} : \left(\sum_{k \ge 1} \left[M_k \left(\left\| \frac{\Delta_n^m y_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}.$$

Therefore, $g(x + y) \leq g(x) + g(y)$. Finally, we prove that the scalar multiplication is continuous. Let μ be any complex number, therefore, by definition

$$g(\mu x) = \inf\left\{ \left(\rho\right)^{\frac{p_k}{H}} : \left(\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m \mu x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1 \right\} \text{ and}$$

thus,

$$g(\mu x) = \inf\left\{ \left(|\mu|t\right)^{\frac{p_k}{H}} : \left(\sum_{k\geq 1} \left[M_k\left(\left\|\frac{\Delta_n^m x_k}{\lambda_k t}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \leq 1 \right\}$$

where $t = \frac{\rho}{|\mu|}$. Since $|\mu|^{p_k} \leq \max(1, |\mu| \sup p_k)$. Hence,

$$g(\mu x) = \max(1, |\mu| \sup p_k) \inf \left\{ (t)^{\frac{p_k}{H}} : \left(\sum_{k \ge 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k t}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1 \right\}.$$

So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof. $\hfill \Box$

Theorem 4.3. Suppose $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions, $p = (p_k)$ be a bounded sequence of positive real numbers and $\lambda = (\lambda_k)$ be a sequence of strictly positive real numbers. If $0 < p_k \leq q_k < \infty$, for each $k \in \mathbb{N}$, then $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|, \dots, \|] \subseteq l_{\lambda}^{\mathcal{M}}[\Delta_n^m, q, \|, \dots, \|].$

Proof: Suppose that $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$, this implies that

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \le 1$$

for sufficiently large value of k say $k \ge k_0$, for some fixed $k_0 \in \mathbb{N}$. Since $M = (M_k)$ is non decreasing, we have

$$\sum_{k=k_0}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{q_k} \le \sum_{k=k_0}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right]^{q_k}$$

Hence, $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, q, \|\cdot, \cdots, \cdot\|]$. This completes the proof.

 $< \infty$.

Theorem 4.4. (i) If $0 < \inf p_k \le p_k < 1$ for each k, then $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \subseteq l_{\lambda}^{\mathcal{M}}[\Delta_n^m, \|\cdot, \cdots, \cdot\|]$. (ii) If $1 \le p_k \le \sup p_k < \infty$ for each k, then $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, \|\cdot, \cdots, \cdot\|] \subseteq l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. **Proof:** (i) Let $x = (x_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. Since $0 < \inf p_k < 1$, we have

$$\sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] \le \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right]$$

and hence, $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, \|\cdot, \cdots, \cdot\|].$

(*ii*) Suppose p_k for each $k \sup p_k < \infty$ and let $x = (x_k) \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, \|\cdot, \cdots, \cdot\|]$. Then for each $0 < \epsilon < 1$, there exists a positive integer \mathbb{N} such that

$$\sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] \le \epsilon < 1, \text{ for all } k \in \mathbb{N}.$$

This implies that

$$\sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \le \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right].$$

Thus, $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, p, \|, \dots, \cdot\|]$. This completes the proof.

Theorem 4.5. The sequence space $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$ is solid.

Proof: Let $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. Then

$$\sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty.$$

Let (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Then the result follows from the following inequality

$$\sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m \alpha_k x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \le \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k}.$$

This completes the proof.

Corollary 4.6. The sequence space $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$ is monotone.

Proof: It is obvious so we omit the proof.

Theorem 4.7. Let $\mathcal{M} = (M_k)$ and $\mathcal{M}' = (M'_k)$ be two sequences of Orlicz functions. Then, we have

$$l_{\lambda}^{\mathcal{M}}\left[\Delta_{n}^{m}, p, \left\|\cdot, \cdots, \cdot\right\|\right] \cap l_{\lambda}^{\mathcal{M}'}\left[\Delta_{n}^{m}, p, \left\|\cdot, \cdots, \cdot\right\|\right] \subseteq l_{\lambda}^{\mathcal{M}+\mathcal{M}'}\left[\Delta_{n}^{m}, p, \left\|\cdot, \cdots, \cdot\right\|\right].$$

Proof: Let $x = (x_k) \in l_{\lambda}^{\mathcal{M}} [\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \cap l_{\lambda}^{\mathcal{M}'} [\Delta_n^m, p, \|\cdot, \cdots, \cdot\|].$ Then $\sum \left[M_{\lambda} \left(\left\| \frac{\Delta_n^m x_k}{2} x_{\lambda} x_{$

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n \, x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{r_k} < \infty, \text{ for some } \rho_1 > 0$$

and

$$\sum_{k\geq 1} \left[M'_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_2}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty, \text{ for some } \rho_2 > 0.$$

Let
$$\rho = \max(\rho_1, \rho_2)$$
. The result follows from the inequality

$$\sum_{k\geq 1} \left[(M_k + M'_k) \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} = \sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) + M'_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \\ \leq D \sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} + D \sum_{k\geq 1} \left[M'_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k}.$$

This completes the proof.

Theorem 4.8. If \mathcal{Z} is a normal sequence space containing λ , then $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \| \cdot, \cdots, \cdot \|]$ is a proper subspace of \mathcal{Z} . In addition, if \mathcal{Z} is equipped with the monotone norm (quasi-norm) $\| \cdot \|_{\mathcal{Z}}$. The inclusion $R : l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \| \cdot, \cdots, \cdot \|] \to \mathcal{Z}[\Delta_{n}^{m}, p, \| \cdot, \cdots, \cdot \|]$ is continuous with $\|R\| \leq \|\{\lambda_k\}\|_{\mathcal{Z}}$.

Proof: Let $x \in l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$, then

$$\sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0.$$

So there exists a constant K > 0 such that

$$\left\|\frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1}\right\| \le K \text{ for all } k \in \mathbb{N}.$$

Since \mathcal{Z} is a normal sequence space containing λ , we have $[\|\Delta_n^m x_k, z_1, \cdots, z_{n-1}\|]^{p_k} \in \mathcal{Z}$ and so that $x \in \mathcal{Z}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. Hence, $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \subseteq \mathcal{Z}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. Further, since $M_k(1) = 1$ for all $k \in \mathbb{N}$ then

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \|x\|_{\lambda}^{\mathcal{M}}}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \leq 1$$

so that $\|\Delta_n^m x_k, z_1, \cdots, z_{n-1}\| \leq \lambda_k \|x\|_{\lambda}^{\mathcal{M}}$. As $\|.\|_{\mathcal{Z}}$ is monotone, $\|Rx\|_{\mathcal{Z}} = \|\Delta_n^m x_k, z_1, \cdots, z_{n-1}\|_{\mathcal{Z}} \leq \|\{\lambda_k\}\|_{\mathcal{Z}} \|x\|_{\lambda}^{\mathcal{M}}$ and hence, $\|R\| \leq \|\{\lambda_k\}\|_{\mathcal{Z}}$. This completes the proof.

Theorem 4.9. If \mathcal{Y} is a normal sequence space containing $\lambda^{-1} \equiv \{\frac{1}{\lambda_k}\}$, then $l_{\mathcal{N}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ is a proper subspace of \mathcal{Y} . In addition, if \mathcal{Y} is equipped with the monotone norm (quasi-norm) $\|\cdot\|_{\mathcal{Y}}$. The inclusion $S: l_{\mathcal{N}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \to \mathcal{Y}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ is continuous with $\|S\| \leq \|\{\lambda_k^{-1}\}\|_{\mathcal{Y}}$.

Proof: The proof of the theorem is similar to that of Theorem 4.8 and so is omitted. $\hfill \Box$

Theorem 4.10. If $\lambda = (\lambda_k)$ is a bounded sequence such that $\inf \lambda_k > 0$ (i.e both λ and λ^{-1} are in l_{∞}). Then $l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] = l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] = l_{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$.

Proof: Let $x = (x_k) \in l_{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. Then

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0.$$

Since $\lambda = (\lambda_k)$ is bounded, we can write $a \leq \lambda_k \leq b$ for some $b > a \geq 0$. Define $\rho_1 = \rho b$. Also since $M'_k s$ are increasing, it follows that

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\lambda_k \Delta_n^m x_k}{\rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \leq \sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty.$$

Hence, $l_{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \subseteq l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. The other inclusion $l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \subseteq l_{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ follows from the inequality

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\underline{\rho}}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \leq \sum_{k\geq 1} \left[M_k \left(\left\| \frac{\lambda_k \Delta_n^m x_k}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty.$$

Therefore, $l_{\mathcal{M}}^{\lambda}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|] = l_{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$. Similarly one can prove that $l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|] = l_{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$. This completes the proof. \Box

Theorem 4.11. If $\{\lambda_k\} \in l_{\infty}$ with $c = \sup_{k \geq 1} \lambda_k \geq 1$ and $\{\lambda_k^{-1}\}$ is unbounded, then $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ is properly contained in $l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ and the inclusion map $U: l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \to l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ is continuous with $\|U\| \leq c^2$. **Proof:** For any $\rho > 0$ and $\rho' = \rho c^2$, we have

$$\sum_{k\geq 1} \left[M_k \left(\left\| \frac{\lambda_k \Delta_n^m x_k}{\rho'}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \leq \sum_{k\geq 1} \left[M_k \left(\left\| \frac{\Delta_n^m x_k}{\lambda_k \rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty,$$

for $x = \{x_k\}$. Hence, $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \subset l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$. We now show that the containment $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \subset l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ is proper. From the unboundedness of the sequence $\{\lambda_k^{-1}\}$, choose a sequence $\{k_l\}$ of positive integers such that $\lambda_{k_l}^{-1} \geq l$. Now define

$$\Delta_n^m x_k = \begin{cases} \frac{1}{l}, & k = k_l, \ l = 1, 2, \dots \\ 0, & otherwise. \end{cases}$$

Then $x \in l_{\mathcal{M}}^{\lambda}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$ but $x \notin l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$. To prove the continuity of the inclusion map U, let us first consider the case obtained for c = 1. For $x \in l_{\lambda}^{\mathcal{M}}[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|]$, we write

$$A_{\lambda}^{\mathcal{M}}\left[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|\right] = \left\{\rho > 0: \sum_{k \ge 1} \left[M_{k}\left(\left\|\frac{\Delta_{n}^{m} x_{k}}{\lambda_{k} \rho}, z_{1}, \cdots, z_{n-1}\right\|\right)\right]^{p_{k}} \le 1\right\}$$

and

$$B_{\mathcal{M}}^{\lambda}\left[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|\right] = \left\{\rho > 0 : \sum_{k \ge 1} \left[M_{k}\left(\left\|\frac{\lambda_{k}\Delta_{n}^{m}x_{k}}{\rho}, z_{1}, \cdots, z_{n-1}\right\|\right)\right]^{p_{k}} \le 1\right\}.$$

Since $M'_k s$ are increasing and c = 1, we get $A^{\mathcal{M}}_{\lambda} [\Delta^m_n, p, \|\cdot, \cdots, \cdot\|] \subset B^{\lambda}_{\mathcal{M}} [\Delta^m_n, p, \|\cdot, \cdots, \cdot\|]$. Hence,

$$\|x\|_{\mathcal{M}}^{\lambda} = \inf B_{\mathcal{M}}^{\lambda} \big[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|\big] \le \inf A_{\mathcal{M}}^{\lambda} \big[\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|\big] = \|x\|_{\lambda}^{\mathcal{M}}$$
(4.1)

i.e $||U(x)||_{\mathcal{M}}^{\lambda} \leq ||x||_{\lambda}^{\mathcal{M}}$. Thus, U is continuous with $||U|| \leq 1 = c^2$. If c = 1, define $\delta_k = \frac{\lambda_k}{c}$, $k \in \mathbb{N}$. Then $\delta_k \leq 1$ and from (4.1), it follows that

$$\|x\|_{\mathcal{M}}^{\delta} \le \|x\|_{\delta}^{\mathcal{M}} \text{ for } x \in l_{\lambda}^{\mathcal{M}} [\Delta_{n}^{m}, p, \|\cdot, \cdots, \cdot\|].$$

$$(4.2)$$

Hence, from (4.2)

$$\|U(x)\|_{\mathcal{M}}^{\lambda} = \|x\|_{\mathcal{M}}^{\lambda} \le e^2 \|x\|_{\lambda}^{\mathcal{M}},$$

thus, U is continuous with $||U|| \leq c^2$. This completes the proof.

Theorem 4.12. If $\{\lambda_k\}$ is unbounded with $\sup_{k\geq 1}\lambda_k^{-1} = d \geq 1, \lambda_k > 0$ for all k, then $l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ is properly contained in $l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ and the inclusion map $V : l_{\mathcal{M}}^{\lambda}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|] \to l_{\lambda}^{\mathcal{M}}[\Delta_n^m, p, \|\cdot, \cdots, \cdot\|]$ is continuous with $\|V\| \leq d^2$.

Proof: The proof of the theorem is similar to that of Theorem 4.11 and so is omitted. \Box

SEEMA JAMWAL AND KULDIP RAJ

References

- A. Alotaibi, M. Mursaleen, Generalized statistical convergence of difference sequences, Adv Difference Equ., (2013), 2013:212, doi: 10.1186/1687-1847-2013-212.
- Ç. A. Bektaş, G. Atici, On some new modular sequence spaces, Bol. Soc. Paran. Mat. 31 (2013), 55-65.
- Ç. A. Bektaş, M. Et, R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2004), 423-432.
- T. Bilgin, Some new difference sequences spaces defined by an Orlicz function, Filomat, 17 (2003), 1-8.
- R. Çolak, Y. Altin, M. Mursaleen, On some sets of diñerence sequences of fuzzy numbers, Soft Computing, 15 (2011) 787-793.
- A. Esi, M. Et, Some new sequence spaces defined by a sequence of Orlicz functions, Indian J. Pure Appl. Math. 31 (2000), 967-972.
- M. Et, R. Çolak, On generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377-386.
- M. Et, A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc. 23 (2000), 25-32.
- A. Esi, B. C. Tripathy, B. Sarma, On some new type generalized difference sequence spaces, Math. Slovaca. 57 (2007), 475-482.
- 10. S. Gähler, Linear 2-normietre Rume, Math. Nachr. 28 (1965), 1-43.
- H. Gunawan, On n-inner product, n-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jpn. 5 (2001), 47-54.
- H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc. 64 (2001), 137-147.
- 13. H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001), 631-639.
- M. Gupta, S. Pardhan, On certain type of modular sequence spaces, Turk J. Math. 32 (2008), 293-303.
- 15. P. K. Kamathan, M. Gupta, Sequence spaces and series, Marcel Dekker, Inc. Newyork 1981.
- 16. H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-176.
- 17. J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379-390.
- 18. A. Misiak, n-Inner product spaces, Math. Nachr. 140 (1989), 299-319.
- E.Malkowsky, M. Mursaleen, Some matrix transformations between the diñerence sequence spaces Δc, Δ₀c, and Δℓ_∞, Filomat, 15(2001) 353-363.
- M. Mursaleen, A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52 (2010) 603-617.
- M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl. 203 (1996), 738-745.
- L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- 23. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, 1983.
- H. Nakano, Modulared sequence spaces, Proc. Jap. Acad. 27 reprinted in semi ordered Linear spaces, Tokoyo 1955.
- S. D. Parasher, B. Choudhary, Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math. 25 (1994), 419-428.

- Kuldip Raj, Sunil K. Sharma, Ajay K. Sharma, Some difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function, Armen. J. Math. 3 (2010), 127-141.
- Kuldip Raj, Sunil K. Sharma, Ajay K. Sharma, Some new sequence spaces defined by a sequence of modulus functions in n-normed spaces, Int. J. Math. Sci. & Engg. Appl. 5 (2011), 395-403.
- Kuldip Raj, Amit Gupta, Sunil K. Sharma, Modular sequence spaces over n-normed spaces, J. Adv. Stud. Topol. 3 (2012), 43-51.
- B. C. Tripathy, A. Esi, A new type of difference sequence spaces, Int. J. Sci. Tech. 1 (2006), 11-14.
- B. C. Tripathy, A. Esi, B. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math. 31 (2005), 333-340.
- B. C. Tripathy, S. Mahanta, On a class of sequences related to the l_p space defined by Orlicz functions, Soochow J. Math. 29, (2003), 379-391.
- 32. A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. 85, 1984.
- 33. J. Y. T. Woo, On modular sequence spaces, Studia Math. 48 (1973), 271-289.

Seema Jamwal and Kuldip Raj School of Mathematics Shri Mata Vaishno Devi University KATRA-182320, J&K, INDIA. E-mail address: seemajamwal80gmail.com E-mail address: kuldipraj680gmail.com