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abstract: In this paper, we are going to study the subconstituents of the sub-
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1. Introduction

Let Fq be a finite field and ν ≥ 1 an integer. Let

F
(2ν)
q = {(a1, . . . , a2ν) : a1, . . . , a2ν ∈ Fq},

be the 2ν-dimensional row vector space over Fq. If 0 6= α ∈ F
(2ν)
q , then [α] denotes

an one dimensional subspace of F
(2ν)
q . So obviously, for k ∈ F

×
q , [α] = [kα]. When

α = (a1, . . . , a2ν), we also write [α] = [a1, . . . , a2ν ]. Denote by tA, the transpose of
the matrix A. Let

K =

(
0 I(ν)

−I(ν) 0

)

. (1.1)

The symplectic graph Sp(2ν, q) relative to K over Fq is the graph with the

set of one dimensional subspaces of F
(2ν)
q as its vertex set and with the adjacency

defined by

[α] ∼ [β] if and only if αKtβ 6= 0, for any 1−dimensional subspaces [α], [β].
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The symplectic graphs have been studied in [3,4,7,8,9], as one of strongly regular
graphs constructed by Chevally groups.

Note that the diameter of Sp(2ν, q) is 2 when ν ≥ 2. For any [α] ∈ V (Sp(2ν, q)),
the i-th subconstituent Γi([α]) with respect to [α] is the induced subgraph of
Sp(2ν, q) with vertices at distance i from [α], where i = 1, 2. In [6], authors
show that the subconstituents of the symplectic graph Sp(2ν, q) are strictly Deza
graphs except the case when ν = 2.

In this paper, we are going to study the subconstituents of the subconstituents
of the symplectic graph and their chromatic numbers in the case that they are
regular.

2. Notations and preliminary results

Let G and H be two graphs. The lexicographic product G[H ] of G and H is a
graph with the vertex set V (G) × V (H) and with the adjacency defined by

(u1, u2) ∼ (v1, v2) if and only if u1 ∼ v1 or u1 = v1 and u2 ∼ v2,

for any u1, v1 ∈ V (G) and u2, v2 ∈ V (H). A graph G is said to be n-partite if there
are subsets X1, X2, . . . , Xn of the vertex set V (G) such that there is no edge of G
joining two vertices of the same subset and, V (G) = X1 ∪ X2 ∪ . . . ∪ Xn and for
all i 6= j, Xi ∩Xj = ∅. The chromatic number χ(G) of G is the minimal number
n such that G is n-partite. For a graph G and x ∈ G, let NG(x) denote the set of
neighbors of x in G. A simple connected graph G is called strongly regular graph
with parameters (ν, k, λ, µ) if it consists ν vertices such that for every x, y ∈ V (G),

|NG(x) ∩NG(y)| =







k if x = y
λ if x ∼ y
µ if x 6∼ y

.

In [9], the authors prove that:

Lemma 2.1. The symplectic graph Sp(2ν, q) is strongly regular with parameters

((q2ν − 1)/(q − 1), q2ν−1, q2ν−2(q − 1), q2ν−2(q − 1))

and the chromatic number qν + 1.

Let 0 ≤ a ≤ b ≤ k ≤ n. A (n, k, b, a)-Deza graph G, which is introduced
by Antoine and Michel Deza [1], is a graph with |V (G)| = n such that for any
x, y ∈ V (G),

|NG(x) ∩NG(y)| =

{
a or b if x 6= y
k if x = y

.

Clearly, strongly regular graphs are Deza graphs. A strictly Deza graph is a Deza
graph that is not strongly regular and has two diameters (see [2]). In [6], authors
proved that the subconstituents of the symplectic graph Sp(2ν, q) are strictly Deza
graph except in the case that ν = 2. Recall that the symplectic group of degree
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2ν over Fq with respect to K, which K is defined as in (1.1), denoted by Sp2ν(Fq)
consists of all 2ν × 2ν matrices T over Fq satisfying TKtT = K. The proof of the
following lemma is straightforward:

Lemma 2.2. (i) Sp2ν(Fq) ≤ Aut(Sp(2ν, q)).

(ii) If [v] ∈ V (Sp(2ν, q)) and T ∈ Aut(Sp(2ν, q)) such that ([v])T = [v], then

T ∈ Aut(Γi[v]).

For 1 ≤ i ≤ 2ν, let ei denote 2ν-dimensional row vector whose i-th entry is
1 and all other entries are zero. Since Sp2ν(Fq) acts transitively on V (Sp(2ν, q))
(see [10]), we deduce by Lemma 2.2(i) that Aut(Sp(2ν, q)) acts transitively on
V (Sp(2ν, q)). Also, the diameter of Sp(2ν, q) is 2 when ν ≥ 2. Thus for studying
the subconstituents of the symplectic graph, it is enough to study Γi[e1], where
i ∈ {1, 2}. From [10], we obtain the following lemma:

Lemma 2.3. For any two distinct [α], [β] ∈ V (Sp(2ν, q)), we have the following:

(i) If [α] 6∼ [β], then there exists T ∈ Sp2ν(Fq) such that [αT ] = [e1] and [βT ] =
[e2];

(ii) if [α] ∼ [β], then there exists T ∈ Sp2ν(Fq) such that [αT ] = [e1] and [βT ] =
[eν+1].

Let i ∈ {1, 2} and ν ≥ 2. By Lemma 2.3, we can see at once that the sta-
bilizer subgroup of Sp2ν(Fq) of [e1] acts transitively on V (Γi[e1]). Thus Lemma
2.2(i) shows that Aut(Γi[e1]) acts transitively on V (Γi[e1]). Also, the diameter of
V (Γi[e1]) is 2, [eν+1] ∈ Γ1[e1] and [e2] ∈ Γ2[e1]. Thus for studying the subcon-
stituents of Γi[e1], it is enough to study (Γ1[e1])j [eν+1] and (Γ2[e1])j [e2], where
j ∈ {1, 2} (the j-th subconstituent (Γi[e1])j [α] with respect to [α] is the induced
subgraph of Γi[e1] with vertices in V (Γi[e1]) at distance j from [α], where j = 1, 2.).
For simplicity of notation, we write Γ(1,j) and Γ(2,j) instead of (Γ1[e1])j [eν+1] and
(Γ2[e1])j [e2], respectively.

A trivial verification shows that Sp(2, q) is a complete graph, so Γ1[e1] is a
clique and V (Γ2[e1]) = ∅. Therefore, in this paper we just consider the case when
ν ≥ 2.

We collect here some basic properties of the natural action of the symplectic
group Sp2ν(Fq) on the symplectic graph Sp(2ν, q):

Lemma 2.4. If [v], [w] ∈ V (Sp(2ν, q)) and T ∈ Aut(Sp(2ν, q)) such that [w] ∈
Γi([v]), ([v])T = [v] and ([w])T = [w], then T ∈ Aut(Γ(i,j)).

Proof: The proof is straightforward. ✷

Lemma 2.5. [6, Propositions 2.2-2.5] For any [α], [β], [γ] ∈ V (Sp(2ν, q)), we have

the following:
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(i) If [α], [β] and [γ] are adjacent to each other, then there exists an element

T ∈ Sp2ν(Fq) such that [αT ] = [e1], [βT ] = [eν+1], and [γT ] is one of the

following forms

[e1 + aν+1eν+1], [e1 + e2 + aν+1eν+1], [e1 + aν+1eν+1 + eν+2], (2.1)

where aν+1 ∈ F
×
q ;

(ii) if [α] ∼ [β], [α] ∼ [γ] and [β] 6∼ [γ], then there exists an element T ∈ Sp2ν(Fq)
such that [αT ] = [e1], [βT ] = [eν+1], and [γT ] is [e2 + eν+1] or [eν+1 + eν+2];

(iii) if [α] 6∼ [β], [α] 6∼ [γ] and [β] ∼ [γ], then there exists an element T ∈ Sp2ν(Fq)
such that [αT ] = [e1], [βT ] = [e2], and [γT ] is [eν+2];

(iv) if [α], [β] and [γ] are nonadjacent to each other, then there exists an element

T ∈ Sp2ν(Fq) such that [αT ] = [e1], [βT ] = [e2], and [γT ] is one of the

following forms

[e1 + e2], [e3], [eν+3], (2.2)

in which the latter two cases occur only when ν ≥ 3.

3. The subconstituent Γ(1,1)

Let [θ] = [θ1, . . . , θ2ν ]. If [θ] ∈ V (Γ(1,1)), then [θ] ∼ [e1] and [θ] ∼ [eν+1]. Thus
θKte1 6= 0 and θKteν+1 6= 0. This shows that θν+1 6= 0 and θ1 6= 0. Therefore, we
can assume that [θ] = [1, θ2, . . . , θ2ν ] such that θν+1 ∈ F

×
q .

Theorem 3.1. Γ(1,1) is not regular.

Proof: Let [γ] ∈ V (Γ(1,1)). Then [γ] ∼ [e1] and [γ] ∼ [eν+1]. Since [e1] ∼
[eν+1], Lemma 2.5(i) shows that there exists T ∈ Sp2ν(Fq) such that [e1]T = [e1],
[eν+1]T = [eν+1] and [γ]T is one of the forms in (2.1). Thus by Lemma 2.4,
T ∈ Aut(Γ(1,1)) and hence, degΓ(1,1)([γ]) = degΓ(1,1)([γT ]). We are going to consider
the different forms in (2.1), in the following cases:

(i) Let [γT ] = [e1 + aν+1eν+1], where aν+1 ∈ F
×
q . Then since

NΓ(1,1)([e1 + aν+1eν+1]) = {[θ] ∈ Γ(1,1) : [θ] ∼ [e1 + aν+1eν+1]}

= {[θ] ∈ Γ(1,1) : θKt(e1 + aν+1eν+1) 6= 0}

= {[1, θ2, . . . , θ2ν ] : θν+1 ∈ F
×
q , θν+1 − aν+1 6= 0},

degΓ(1,1)([γ]) = q2(ν−1)(q − 2).

(ii) Let [γT ] = [e1 + e2 + aν+1eν+1], where aν+1 ∈ F
×
q . Then since

NΓ(1,1)([e1 + e2 + aν+1eν+1]) = {[θ] ∈ Γ(1,1) : [θ] ∼ [e1 + e2 + aν+1eν+1]}

= {[θ] ∈ Γ(1,1) : θKt(e1 + e2 + aν+1eν+1) 6= 0}

= {[1, θ2, . . . , θ2ν ] :

θν+1 ∈ F
×
q , θν+1 + θν+2 − aν+1 6= 0},
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degΓ(1,1)([γ]) = q2ν−3(q − 1)2.

(iii) Let [γT ] = [e1 + aν+1eν+1 + eν+2], where aν+1 ∈ Fq
×. Then since

NΓ(1,1)([γT ]) = {[1, θ2, . . . , θ2ν ] : θν+1 ∈ Fq
×, θν+1 − aν+1 − θ2 6= 0},

degΓ(1,1)([γ]) = q2ν−3(q − 1)2.

This shows that Γ(1,1) is not a regular graph. ✷

4. The subconstituent Γ(1,2)

Let [θ] = [θ1, . . . , θ2ν ]. If [θ] ∈ V (Γ(1,2)), then [θ] ∼ [e1] and [θ] 6∼ [eν+1].
Thus θKte1 6= 0 and θKteν+1 = 0. This shows that θν+1 6= 0 and θ1 = 0. Also,
eν+1 6∈ V (Γ(1,2)). Therefore,

V (Γ(1,2)) = {[0, θ2, . . . , θν , 1, θν+2, . . . , θ2ν ] : [θ2, . . . , θν , θν+2, . . . , θ2ν ] 6= 0}. (4.1)

Proposition 4.1. |V (Γ(1,2))| = q2(ν−1) − 1.

Proof: It follows immediately from (4.1). ✷

Proposition 4.2. Γ(1,2) is a q2ν−3(q − 1)-regular graph.

Proof: Let [γ] ∈ V (Γ(1,2)). By (4.1), [γ] = [0, γ2, . . . , γν , 1, γν+1, . . . , γ2ν ] and

NΓ(1,2)([γ]) = {[θ] ∈ Γ(1,2) : [θ] ∼ [γ]}

= {[θ] = [0, θ2, . . . , θν , 1, θν+2, . . . , θ2ν ] : θKtγ 6= 0}

= {[0, θ2, . . . , θν , 1, θν+2, . . . , θ2ν ] :

(θ2, . . . , θν , θν+2, . . . , θ2ν)K
′tγ′ 6= 0}

= {[0, θ2, . . . , θν , 1, θν+2, . . . , θ2ν ] :

[θ2, . . . , θν , θν+2, . . . , θ2ν ] ∈ NSp(2(ν−1),q)([γ
′])},

where γ′ = (γ2, . . . , γν , γν+2, . . . , γ2ν) and K ′ =
(

0 I(ν−1)

−I(ν−1) 0

)

. Thus by

Lemma 2.1,

degΓ(1,2)([γ]) = (q − 1)degSp(2(ν−1),q)([γ2, . . . , γν , γν+2, . . . , γ2ν ]) = (q − 1)q2ν−3.

✷

Proposition 4.3. If [α], [β] ∈ V (Γ(1,2)) such that [α] ∼ [β], then

|NΓ(1,2)([α]) ∩NΓ(1,2)([β])| = (q − 1)2q2(ν−2).

Proof: By (4.1), [α] = [0, α2, . . . , αν , 1, αν+2, . . . , α2ν ] and [β] = [0, β2, . . . , βν , 1,
βν+2, . . . , β2ν ]. Put [α′] = [α2, . . . , αν , αν+2, . . . , α2ν ] and [β′] = [β2, . . . , βν , βν+2,
. . . , β2ν ]. Obviously [α] ∼ [β] if and only if [α′] and [β′] are adjacent in Sp(2(ν −
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1), q). Thus by Lemma 2.3(ii), there exists T ′ ∈ Sp2(ν−1)(Fq) such that [α′T ′] =

[1, 0, . . . , 0] and [β′T ′] = [0, . . . , 0, 1
︸︷︷︸

entry ν

, 0, . . . , 0]. Let T ′ =
(

A B

C D

)
, where

A,B,C,D ∈ Mν−1(Fq), the set of (ν − 1)× (ν − 1) matrices over Fq. Then

T =

(
1 0 0 0
0 A 0 B

0 0 1 0
0 C 0 D

)

∈ Sp2ν(Fq)

and, [e1]T = [e1], [eν+1]T = [eν+1], [α]T = [λeν+1 + e2] and [β]T = [λ′eν+1 +
eν+2], where λ, λ′ ∈ F

×
q . Thus |NΓ(1,2)([α])∩NΓ(1,2)([β])| = |NΓ(1,2)([λeν+1 + e2])∩

NΓ(1,2)([λ′eν+1 + eν+2])|. Also, by (4.1), NΓ(1,2)([λeν+1 + e2]) ∩ NΓ(1,2)([λ′eν+1 +
eν+2]) is

{[θ] ∈ Γ(1,2) : [θ] ∼ [λeν+1 + e2], [θ] ∼ [λ′eν+1 + eν+2]} =

{[θ] ∈ Γ(1,2) : θKt(λeν+1 + e2) 6= 0, θKt(λ′eν+1 + eν+2) 6= 0} =

{[0, θ2, . . . , θν , 1, θν+2, . . . , θ2ν ] : θν+2 6= 0, θ2 6= 0}.

This gives that |NΓ(1,2)([α]) ∩NΓ(1,2)([β])| = (q − 1)2q2(ν−2). ✷

Proposition 4.4. If (q, ν) 6= (2, 2) and [α], [β] ∈ V (Γ(1,2)) such that [α] 6∼ [β],
then

|NΓ(1,2)([α]) ∩NΓ(1,2)([β])| = (q − 1)2q2(ν−2) or (q − 1)q2(ν−3).

In particular, if ν = 2, then |NΓ(1,2)([α])∩NΓ(1,2)([β])| = (q−1)q2(ν−3) and if q = 2,
then |NΓ(1,2)([α]) ∩NΓ(1,2)([β])| = 22(ν−2).

Proof: By (4.1), [α] = [0, α2, . . . , αν , 1, αν+2, . . . , α2ν ] and [β] = [0, β2, . . . , βν , 1,
βν+2, . . . , β2ν ]. Put α′ = (α2, . . . , αν , αν+2, . . . , α2ν) and β′ = (β2, . . . , βν , βν+2,
. . . , β2ν). Obviously [α] 6∼ [β] if and only if either ν ≥ 3 and [α′] and [β′] are not
adjacent in Sp(2(ν − 1), q) or q 6= 2 and [α′] = [β′] such that α′ 6= β′. We continue
the proof in the following cases:

(i) If ν ≥ 3 and [α′] and [β′] are not adjacent in Sp(2(ν− 1), q), then by Lemma
2.3(i), there exists T ′ ∈ Sp2(ν−1)(Fq) such that [α′T ′] = [1, . . . , 0] and [β′T ′] =

[0, 1, 0, . . . , 0]. Let T ′ =
(

A B

C D

)
, where A,B,C,D ∈ Mν−1(Fq). Then

T =

(
1 0 0 0
0 A 0 B

0 0 1 0
0 C 0 D

)

∈ Sp2ν(Fq) and, [e1]T = [e1], [eν+1]T = [eν+1], [α]T =

[λe2 + eν+1] and [β]T = [λ′e3 + eν+1], where λ, λ′ ∈ F
×
q . Thus |NΓ(1,2)([α]) ∩

NΓ(1,2)([β])| = |NΓ(1,2)([λe2 + eν+1]) ∩NΓ(1,2)([λ′e3 + eν+1])|. Also

NΓ(1,2)([λe2 + eν+1]) ∩NΓ(1,2)([λ′e3 + eν+1]) =

{[θ] ∈ Γ(1,2) : [θ] ∼ [λe2 + eν+1], [θ] ∼ [λ′e3 + eν+1]} =

{[0, θ2, . . . , θν , 1, θν+2, . . . , θ2ν ] : θν+2 6= 0, θν+3 6= 0}.

Thus |NΓ(1,2)([α]) ∩NΓ(1,2)([β])| = (q − 1)2q2(ν−2).
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(ii) If q 6= 2 and [α′] = [β′] such that α′ 6= β′, then it is easy to see that
NΓ(1,2)([α])∩NΓ(1,2) ([β]) = NΓ(1,2)([α]) and hence NΓ(1,2)([α])∩NΓ(1,2) ([β]) =
(q − 1)q2ν−3.

✷

Theorem 4.5. (i) If ν ≥ 3 and q 6= 2, then Γ(1,2) is a strictly Deza graph with

parameters

(q2(ν−1) − 1, q2ν−3(q − 1), q2ν−3(q − 1), q2(ν−2)(q − 1)2).

(ii) If ν = 2 and q 6= 2, then Γ(1,2) is a strongly regular graph with parameters

(q2 − 1, q(q − 1), (q − 1)2, q(q − 1)).

(iii) If ν ≥ 3 and q = 2, then Γ(1,2) is a strongly regular graph with parameters

(22(ν−1) − 1, 22ν−3, 22(ν−2), 22(ν−2)).

More precisely, in this case, Γ(1,2) is isomorphic to Sp2(ν−1)(2).

(iii) If ν = 2 and q = 2, then Γ(1,2) is a complete graph with 3 vertices.

Proof: It follows immediately from Propositions 4.1, 4.2, 4.3 and 4.4. ✷

For a natural number m define the function

fm : (Fq)
2m − {0} −→ F

×
q (4.2)

which maps (a1, . . . , a2m) to aj, where 1 ≤ j ≤ 2m, aj 6= 0 and for every natural
number i < j, ai = 0. Note that F

×
q is a clique with F

×
q as its vertex set and the

adjacency defined by x ∼ y if and only if x 6= y. Then the complement F
×
q of F×

q

is a coclique.

Theorem 4.6. Γ(1,2) is isomorphic to Sp(2(ν − 1), q)[F×
q ].

Proof: Define

φ : Γ(1,2) −→ Sp(2(ν − 1), q)[F×
q ]

[0, α2, . . . , αν , 1, αν+2, . . . , α2ν ] 7−→ ([α2, . . . , αν , αν+2, . . . , α2ν ],

f2(ν−1)(α2, . . . , αν , αν+2, . . . , α2ν)).

We can check at once that φ is a graph isomorphism, so theorem follows. ✷

Theorem 4.7. χ(Γ(1,2)) = qν−1 + 1 .

Proof: Theorem 4.6 shows that χ(Γ(1,2)) = χ(Sp(2(ν − 1), q)), so Lemma 2.1
completes the proof. ✷
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5. The subconstituent Γ(2,1)

Let [θ] = [θ1, . . . , θ2ν ]. If [θ] ∈ V (Γ(2,1)), then [θ] 6∼ [e1] and [θ] ∼ [e2]. Thus
θKte1 = 0 and θKte2 6= 0. This forces θν+1 = 0 and θν+2 6= 0 and hence,

V (Γ(2,1))={[θ1, θ2, . . . , θν , 0, 1, θν+3, . . . , θ2ν ] : θ1, θ2, . . . , θν , θν+3, . . . , θ2ν ∈ Fq}.

(5.1)

Proposition 5.1. |V (Γ(2,1))| = q2(ν−1).

Proof: It follows immediately from (5.1). ✷

Proposition 5.2. Γ(2,1) is a q2ν−3(q − 1)-regular graph.

Proof: Let [γ] ∈ V (Γ(2,1)). By (5.1), [γ] = [γ1, γ2, . . . , γν , 0, 1, γν+3, . . . , γ2ν ].
Put [γ′] = [γ2, . . . , γν , 1, γν+3, . . . , γ2ν ]. It is obvious that [γ′] and [1, 0, . . . , 0] are
adjacent in Sp(2(ν − 1), q). Thus Lemma 2.3(ii) shows that there exists T ′ ∈
Sp2(ν−1)(Fq) such that [1, 0, . . . , 0]T ′ = [1, 0, . . . , 0] and [γ′]T ′ = [0, . . . , 0, 1

︸︷︷︸

entry ν

,

0, . . . , 0]. Let T ′ =
(

A B

C D

)
, where A,B,C,D ∈ Mν−1(Fq). Then

T =

(
1 0 0 0
0 A 0 B

0 0 1 0
0 C 0 D

)

∈ Sp2ν(Fq) and, [e1]T = [e1], [e2]T = [e2] and [γ]T = [λe1 +

eν+2], for some λ ∈ Fq. Thus T ∈ Aut(Γ(2,1)), so degΓ(2,1)([γ]) = degΓ(2,1)([λe1 +
eν+2]). But

NΓ(2,1)([λe1 + eν+2]) = {[θ] ∈ Γ(2,1) : [θ] ∼ [λe1 + eν+2]}

= {[θ] = [θ1, . . . , θν , 0, 1, θν+2, . . . , θ2ν ] :

θKt(λe1 + eν+2) 6= 0}

= {[θ1, . . . , θν , 0, 1, θν+3, . . . , θ2ν ] : θ2 6= 0}.

Thus degΓ(2,1)([γ]) = q2ν−3(q − 1). ✷

Proposition 5.3. If [α], [β] ∈ V (Γ(2,1)) such that [α] ∼ [β], then

|NΓ(2,1)([α]) ∩NΓ(2,1)([β])| = (q − 1)2q2(ν−2) or (q − 2)q2ν−3.

In particular, if ν = 2, then |NΓ(2,1)([α]) ∩NΓ(2,1)([β])| = q(q − 2).

Proof: By (5.1), [α] = [α1 . . . , αν , 0, 1, αν+3, . . . , α2ν ] and [β] = [β1, . . . , βν , 0, 1,
βν+3, . . . , β2ν ]. Put [α′] = [α2, . . . , αν , 1, αν+3, . . . , α2ν ] and [β′] = [β2, . . . , βν , 1,
βν+3, . . . , β2ν ]. Obviously [α] ∼ [β] if and only if [α′] and [β′] are adjacent in
Sp(2(ν − 1), q). Thus since [α′] ∼ [1, 0, . . . , 0] and [β′] ∼ [1, 0, . . . , 0], Lemma 2.5(i)
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shows that there exists T ′ ∈ Sp2(ν−1)(Fq) such that [1, 0, . . . , 0]T ′ = [1, 0, . . . , 0],
[α′]T ′ = [0, . . . , 0, 1

︸︷︷︸

entry ν

, 0, . . . , 0] and

[β′]T ′ = [1, 0, . . . , 0, a
︸︷︷︸

entry ν

, 0, . . . , 0],

[1, 1, 0 . . . , 0, a
︸︷︷︸

entry ν

, 0, . . . , 0] or [1, 0 . . . , 0, a
︸︷︷︸

entry ν

, 1, 0, . . . , 0],

where a ∈ F
×
q and the latter two cases occur only when ν ≥ 3. Let T ′ =

(
A B

C D

)
,

where A,B,C,D ∈ Mν−1(Fq). Then T =

(
1 0 0 0
0 A 0 B

0 0 1 0
0 C 0 D

)

∈ Sp2ν(Fq) and,

[e1]T = [e1], [e2]T = [e2], [α]T = [λe1 + eν+2] and

[β]T = [λ′e1 + e2 + aeν+2], [λ′e1 + e2 + e3 + aeν+2] or [λ
′e1 + e2 + aeν+2 + eν+3],

where λ, λ′ ∈ Fq. Thus T ∈ Aut(Γ(2,1)), so |NΓ(2,1)([α]) ∩NΓ(2,1)([β])| =
|NΓ(2,1)([λe1 + eν+2]) ∩NΓ(2,1)([λ′e1 + e2 + aeν+2])|, |NΓ(2,1)([λe1 + eν+2])∩
NΓ(2,1)([λ′e1+e2+e3+aeν+2])| or |NΓ(2,1)([λe1+eν+2])∩NΓ(2,1)([λ′e1+e2+aeν+2+
eν+3])|. But

NΓ(2,1)([λe1 + eν+2]) ∩NΓ(2,1)([λ′e1 + e2 + aeν+2]) =

{[γ] ∈ Γ(2,1) : [γ] ∼ [λe1 + eν+2], [γ] ∼ [λ′e1 + e2 + aeν+2]} =

{[γ1, . . . , γν , 0, 1, γν+3, . . . , v2ν ] : γ2 6= 0, aγ2 − 1 6= 0},

NΓ(2,1)([λe1 + eν+2]) ∩NΓ(2,1)([λ′e1 + e2 + e3 + aeν+2]) =

{[γ] ∈ Γ(2,1) : [γ] ∼ [λe1 + eν+2], [γ] ∼ [λ′e1 + e2 + e3 + aeν+2]} =

{[γ1, . . . , γν , 0, 1, γν+3, . . . , v2ν ] : γ2 6= 0, aγ2 − 1− γν+3 6= 0}

and

NΓ(2,1)([λe1 + eν+2]) ∩NΓ(2,1)([λ′e1 + e2 + aeν+2 + eν+3]) =

{[γ] ∈ Γ(2,1) : [γ] ∼ [λe1 + eν+2], [γ] ∼ [λ′e1 + e2 + aeν+2 + eν+3]} =

{[γ1, . . . , γν , 0, 1, γν+3, . . . , v2ν ] : γ2 6= 0, aγ2 + γ3 − 1 6= 0}.

Thus |NΓ(2,1)([α]) ∩NΓ(2,1)([β])| = (q − 2)q2ν−3 or (q − 1)2q2(ν−2). Also, if ν = 2,
then |NΓ(2,1)([α]) ∩NΓ(2,1)([β])| = (q − 2)q. ✷

Proposition 5.4. If [α], [β] ∈ V (Γ(2,1)) such that [α] 6∼ [β], then

|NΓ(2,1)([α]) ∩NΓ(2,1)([β])| = (q − 1)2q2(ν−2) or (q − 1)q2ν−3.

In particular, if ν = 2, then |NΓ(2,1)([α]) ∩NΓ(2,1)([β])| = q(q − 1).



26 Milad Ahanjideh

Proof: By (5.1), [α] = [α1 . . . , αν , 0, 1, αν+3, . . . , α2ν ] and [β] = [β1, . . . , βν , 0, 1,
βν+3, . . . , β2ν ]. Put [α′] = [α2, . . . , αν , 1, αν+3, . . . , α2ν ] and [β′] = [β2, . . . , βν , 1,
βν+3, . . . , β2ν ]. Obviously [α] 6∼ [β] if and only if [α′] = [β′] or ν ≥ 3 and [α′] and
[β′] are not adjacent in Sp(2(ν − 1), q). We continue the proof in the following
cases:

(i) If [α′] = [β′], then NΓ(2,1)([α]) ∩NΓ(2,1)([β]) = NΓ(2,1)([α]). Therefore,
|NΓ(2,1)([α]) ∩NΓ(2,1)([β])| = (q − 1)q2ν−3.

(ii) If ν ≥ 3 and [α′] and [β′] are not adjacent in Sp(2(ν − 1), q), then since
[α′] ∼ [1, 0, . . . , 0] and [β′] ∼ [1, 0, . . . , 0], Lemma 2.5(ii) shows that there
exists T ′ ∈ Sp2(ν−1)(Fq) such that [1, 0, . . . , 0]T ′ = [1, 0, . . . , 0], [α′]T ′ =
[0, . . . , 0, 1

︸︷︷︸

entry ν

, 0, . . . , 0] and

[β′]T ′ = [0, 1, 0 . . . , 0, 1
︸︷︷︸

entry ν

, 0, . . . , 0] or [0 . . . , 0, 1
︸︷︷︸

entry ν

, 1, 0, . . . , 0].

Let T ′ =
(

A B

C D

)
, where A,B,C,D ∈ Mν−1(Fq). Then

T =

(
1 0 0 0
0 A 0 B

0 0 1 0
0 C 0 D

)

∈ Sp2ν(Fq) and, [e1]T = [e1], [e2]T = [e2], [α]T =

[λe1 + eν+2] and

[β]T = [λ′e1 + e3 + eν+2] or [λ
′e1 + eν+2 + eν+3],

where λ, λ′ ∈ Fq. Thus T ∈ Aut(Γ(2,1)), so |NΓ(2,1)([α]) ∩ NΓ(2,1)([β])| =
|NΓ(2,1)([λe1 + eν+2]) ∩NΓ(2,1)([λ′e1 + e3 + eν+2])| or |NΓ(2,1)([λe1 + eν+2]) ∩
NΓ(2,1)([λ′e1 + eν+2 + eν+3])|. But

NΓ(2,1)([λe1 + eν+2]) ∩NΓ(2,1)([λ′e1 + e3 + eν+2]) =

{[γ] ∈ Γ(2,1) : [γ] ∼ [λe1 + eν+2], [γ] ∼ [λ′e1 + e3 + eν+2]} =

{[γ] ∈ Γ(2,1) : γKt(λe1 + eν+2) 6= 0, γKt(λ′e1 + e3 + eν+2) 6= 0} =

{[γ1 . . . , γν , 0, 1, γν+3, . . . , v2ν ] : γ2 6= 0, γ2 − γν+3 6= 0}

and

NΓ(2,1)([λe1 + eν+2]) ∩NΓ(2,1)([λ′e1 + eν+2 + eν+3]) =

{[γ] ∈ Γ(2,1) : [γ] ∼ [λe1 + eν+2], [γ] ∼ [λ′e1 + eν+2 + eν+3]} =

{[γ] ∈ Γ(2,1) : γKt(λe1 + eν+2) 6= 0, γKt(λ′e1 + eν+2 + eν+3) 6= 0} =

{[γ1 . . . , γν , 0, 1, γν+3, . . . , v2ν ] : γ2 6= 0, γ2 + γ3 6= 0}.

Thus |NΓ(2,1)([α]) ∩NΓ(2,1)([β])| = (q − 1)2q2(ν−2).

✷

As a generalization of Deza graphs, the author in [5] gives the definition of
d-Deza graphs. A k-regular graph G on n vertices is called a d-Deza graph with
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parameters (n, k, {c1, . . . , cd}) if every two distinct vertices of G have c1, c2, . . . , cd
common adjacent vertices. In particular, the 2-Deza graph is just the ordinary
Deza graph.

Theorem 5.5. (i) If ν ≥ 3, then Γ(2,1) is a 3-Deza graph with parameters

(q2(ν−1), q2ν−3(q − 1), {q2ν−3(q − 1), q2ν−3(q − 2), (q − 1)2q2(ν−2)}).

(ii) If ν = 2, then Γ(2,1) is a strongly regular graph with parameters

(q2, q(q − 1), q(q − 2), q(q − 1)).

Proof: It follows immediately from Propositions 5.1, 5.2, 5.3 and 5.4. ✷

Theorem 5.6. Γ(2,1) is isomorphic to Γ′
1[Fq], where Γ′

1 denotes the first subcon-

stituent of Sp(2(ν − 1), q) with respect to [1, 0, . . . , 0].

Proof: Define

φ : Γ(2,1) −→ Γ′
1[Fq]

[α1, α2, . . . , αν , 0, 1, αν+3, . . . , α2ν ] 7−→ ([α2, . . . , αν , 1, αν+3, . . . , α2ν ], α1).

We can check at once that φ is a graph isomorphism, so theorem follows. ✷

Theorem 5.7. χ(Γ(2,1)) = qν−1 .

Proof: Theorem 5.6 shows that χ(Γ(2,1)) = χ(Γ′
1), where Γ′

1 denotes the first
subconstituent of Sp(2(ν − 1), q) with respect to [1, 0, . . . , 0] and [6, Theorem 3.7]
implies that χ(Γ′

1) = qν−1, so theorem follows. ✷

6. The subconstituent Γ(2,2)

Let [θ] = [θ1, . . . , θ2ν ]. If [θ] ∈ V (Γ(2,2)), then [θ] 6∼ [e1] and [θ] 6∼ [e2]. Thus
θKte1 = 0 and θKte2 = 0. This forces θν+1 = 0 and θν+2 = 0 and hence,

V (Γ(2,2)) = {[θ1, θ2, . . . , θν , 0, 0, θν+3, . . . , θ2ν ] : θ1, θ2, . . . , θν , θν+3, . . . , θ2ν ∈ Fq},

such that there exists i ∈ {1, . . . , ν, ν+3, . . . , 2ν} with θi 6= 0. For ν ≥ 3, let ∆(2,2)

denote the induced subgraph on

{[θ1, θ2, . . . , θν , 0, 0, θν+3, . . . , θ2ν ] : (θ3, . . . , θν , θν+3, . . . , θ2ν) 6= 0}. (6.1)

Proposition 6.1. |V (∆(2,2))| = q2(q2(ν−2) − 1)/(q − 1).

Proof: It follows immediately from (6.1). ✷

Proposition 6.2. ∆(2,2) is a q2ν−3-regular graph.
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Proof: Let [γ] ∈ V (∆(2,2)). By (6.1), [γ] = [γ1, γ2, . . . , γν , 0, 0, γν+3, . . . , γ2ν ] such
that

(γ3, . . . , γν , γν+3, . . . , γ2ν) 6= 0.

Put [γ′] = [γ3, . . . , γν , γν+3, . . . , γ2ν ]. We can check at once that N∆(2,2)([γ]) =

{[θ] ∈ V (∆(2,2)) : [θ] ∼ [γ]} = {[θ1, θ2, . . . , θν , 0, 0, θν+3, . . . , θ2ν ] : [θ3, . . . , θν ,
θν+3, . . . , θ2ν ] ∈ NSp(2(ν−2),q)([γ

′])}. Thus Lemma 2.1 shows that deg∆(2,2)([γ]) =
q2q2ν−5 = q2ν−3. ✷

Proposition 6.3. If [α], [β] ∈ V (∆(2,2)) such that [α] ∼ [β], then |N∆(2,2)([α]) ∩
N∆(2,2)([β])| = q2(ν−2)(q − 1).

Proof: By (6.1), [α] = [α1 . . . , αν , 0, 0, αν+3, . . . , α2ν ] and [β] = [β1, . . . , βν , 0, 0,
βν+3, . . . , β2ν ]. Put [α′] = [α3, . . . , αν , αν+3, . . . , α2ν ] and [β′] = [β3, . . . , βν , βν+3,
. . . , β2ν ]. Obviously [α] ∼ [β] if and only if [α′] and [β′] are adjacent in Sp(2(ν −
2), q) and we can check at once that

N∆(2,2)([α]) ∩N∆(2,2)([β]) = {[γ1, γ2, . . . , γν , 0, 0, γν+3, . . . , γ2ν ] :

[γ3, . . . , γν , γν+3, . . . , γ2ν ] ∈ NSp(2(ν−2),q)([α
′]) ∩NSp(2(ν−2),q)([β

′])}.

Thus |N∆(2,2)([α]) ∩ N∆(2,2)([β])| = q2|NSp(2(ν−2),q)([α
′]) ∩ NSp(2(ν−2),q)([β

′])| and

hence, Lemma 2.1 shows that |N∆(2,2)([α]) ∩N∆(2,2)([β])| = q2(ν−2)(q − 1). ✷

Proposition 6.4. If [α], [β] ∈ V (∆(2,2)) such that [α] 6∼ [β], then |N∆(2,2)([α]) ∩
N∆(2,2)([β])| = q2ν−3 or q2(ν−2)(q − 1). In particular, if ν = 3, then |N∆(2,2)([α]) ∩
N∆(2,2)([β])| = q3

Proof: By (5.1), [α] = [α1 . . . , αν , 0, 0, αν+3, . . . , α2ν ] and [β] = [β1, . . . , βν , 0, 0,
βν+3, . . . , β2ν ]. Put [α′] = [α3, . . . , αν , αν+3, . . . , α2ν ] and [β′] = [β3, . . . , βν , βν+3,
. . . , β2ν ]. Obviously [α] 6∼ [β] if and only if [α′] = [β′] or ν ≥ 4 and [α′] and [β′]
are not adjacent in Sp(2(ν − 2), q). We continue the proof in the following cases:

(i) If [α′] = [β′], then N∆(2,2)([α]) ∩ N∆(2,2)([β]) = N∆(2,2)([α]). Therefore,
|N∆(2,2)([α]) ∩N∆(2,2)([β])| = q2ν−3.

(ii) If ν ≥ 4 and [α′] and [β′] are not adjacent in Sp(2(ν − 2), q), then we can see
at once that

N∆(2,2)([α]) ∩N∆(2,2)([β]) = {[γ1, γ2, . . . , γν , 0, 0, γν+3, . . . , γ2ν ] :

[γ3, . . . , γν , γν+3, . . . , γ2ν ] ∈ NSp(2(ν−2),q)([α
′]) ∩NSp(2(ν−2),q)([β

′])}.

Thus |N∆(2,2)([α])∩N∆(2,2)([β])| = q2|NSp(2(ν−2),q)([α
′])∩NSp(2(ν−2),q)([β

′])|

and hence, Lemma 2.1 shows that |N∆(2,2)([α])∩N∆(2,2)([β])| = q2(ν−2)(q−1).

✷
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Theorem 6.5. (i) If ν ≥ 4, then ∆(2,2) is a strictly Deza graph with parameters

(q2(q2(ν−2) − 1)/(q − 1), q2ν−3, q2ν−3, q2(ν−2)(q − 1)).

(ii) If ν = 3, then ∆(2,2) is a strongly regular graph with parameters

(q2(q + 1), q3, q2(q − 1), q3).

Proof: It follows immediately from Propositions 6.1, 6.2, 6.3 and 6.4. ✷

Let Fq ×Fq be a clique with Fq ×Fq as its vertex set and the adjacency defined
by x ∼ y if and only if x 6= y. Then the complement Fq × Fq of Fq × Fq is a
coclique.

Theorem 6.6. ∆(2,2) is isomorphic to Sp(2(ν − 2), q)[Fq × Fq].

Proof: Define

φ : ∆(2,2) −→ Sp(2(ν − 2), q)[Fq × Fq]

[α1, α2, . . . , αν , 0, 0, αν+3, . . . , α2ν ] 7−→ ([α3, . . . , αν , αν+3, . . . , α2ν ], α1, α2),

under conditions that f2(ν−1)(α3, . . . , αν , αν+3, . . . , α2ν) = 1, where f2(ν−1) is de-
fined as (4.2). We can check at once that φ is a graph isomorphism, so theorem
follows. ✷

Theorem 6.7. χ(Γ(2,2)) = qν−2 + 1 .

Proof: Theorem 6.6 shows that χ(∆(2,2)) = χ(Sp(2(ν − 2), q)), so Lemma 2.1
completes the proof. ✷
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