

(3s.) **v. 33** 2 (2015): **233–242**. ISSN-00378712 in press doi:10.5269/bspm.v33i2.24335

A new characterization of A_p with p and p-2 are twin primes

Seyed Sadegh Salehi Amiri and Alireza Khalili Asboei

ABSTRACT: Let G be a finite group and $\pi_e(G)$ be the set of element orders of G. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. Set $\operatorname{nse}(G):=\{m_k | k \in \pi_e(G)\}$. Assume p and p-2 are twin primes. We prove that if G is a group such that $\operatorname{nse}(G)=\operatorname{nse}(A_p)$ and $p \in \pi(G)$, then $G \cong A_p$. As a consequence of our results we prove that A_p is uniquely determined by its nse and order.

Key Words: Element order, set of the numbers of elements of the same order, alternating group.

Contents

1	Introduction	233
2	Preliminary Results	234
3	Proof of the Main Theorem	237

1. Introduction

We denote by $\pi(G)$ the set of prime divisors of |G| and by $\pi_e(G)$ the set of element orders of G. Set $m_i = m_i(G) = |\{g \in G | \text{ the order of } g \text{ is } i\}|$. In fact, m_i is the number of elements of order i in G, and $\operatorname{nse}(G) := \{m_i | i \in \pi_e(G)\}$, the set of sizes of elements with the same order.

For the set nse(G), the most important problem is related to Thompson's problem. In 1987, J. G. Thompson posed a very interesting problem as follows: **Problem 1:** For each finite group G and each integer $d \ge 1$, let $G(d) = \{x \in G | x^d = 1\}$. Defining G_1 and G_2 is of the same order type if and only if, $|G_1(d)| = |G_2(d)|, d = 1, 2, 3, \ldots$ Suppose G_1 and G_2 are of the same order type. If G_1 is

solvable, is G_2 necessarily solvable? ([20, Problem 12.37]) Unfortunately, as so far, no one can prove it completely, or even give a counterexample. However, if groups G_1 and G_2 are of the same order type, we see clearly that $|G_1| = |G_2|$ and $\operatorname{nse}(G_1) = \operatorname{nse}(G_2)$. So it is natural to investigate the Thompson's Problem by |G| and $\operatorname{nse}(G)$. The influence of $\operatorname{nse}(G)$ on the structure of finite groups was studied by some authors (see [2,3,4,6,19]).

In [4,19], it is proved that the groups A_5 , A_6 , A_7 and A_8 are uniquely determined only by nse(G). In [19], the authors gave the following problem: **Problem 2:** Is a group G isomorphic to A_n $(n \ge 4)$ if and only if nse(G) = nse(A_n)?

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 20D06, 20D20, 20D60.

In this paper, we give a positive answer to this problem for some type of the alternating groups and show that the alternating groups A_p with p and p-2 primes are characterizable by $nse(A_p)$ when $p \in \pi(G)$. In fact, main theorem of our paper is as follows:

Main Theorem: Let G be a group such that $nse(G)=nse(A_p)$ with p and p-2 are twin primes. If $p \in \pi(G)$, then $G \cong A_p$.

We note that there are finite groups which are not characterizable by nse(G) and |G|. In 1987, J. G. Thompson gave an example as follows:

Let $G_1 = (C_2 \times C_2 \times C_2 \times C_2) \rtimes A_7$ and $G_2 = L_3(4) \rtimes C_2$ be the maximal subgroups of M_{23} . Then $\operatorname{nse}(G_1) = \operatorname{nse}(G_2) = \{1, 435, 2240, 5040, 5760, 6300, 6720, 8064\}$ and $|G_1| = |G_2| = 40320$, but $G_1 \ncong G_2$. Also there is a another example as follow: Let $H_1 = C_4 \times C_4$ and $H_2 = C_2 \times Q_8$, where C_2 and C_4 are cyclic groups of orders 2 and 4, respectively and Q_8 is a quaternion group of order 8. It is easy to see that $\operatorname{nse}(H_1) = \operatorname{nse}(H_2) = \{1, 3, 12\}$ and $|H_1| = |H_2| = 16$, but H_1 is an abelian group and H_2 is a non-abelian group. Therefore $H_1 \ncong H_2$.

We construct the prime graph of G, denoted by $\Gamma(G)$, as follows: the vertex set is $\pi(G)$ and two distinct vertices p and p' are joined by an edge if and only if G has an element of order pp' (we write $p \sim p'$). Let t(G) be the number of connected components of $\Gamma(G)$ and let $\pi_1, \pi_2, \ldots, \pi_{t(G)}$ be the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose $2 \in \pi_1$.

We can express |G| as a product of integers $m_1, m_2, \ldots, m_{t(G)}$, where $\pi(m_i) = \pi_i$ for each *i*. These numbers m_i are called the order components of *G*. In particular, if m_i is odd, then we call it an odd component of *G*. Write OC(G) for the set $\{m_1, m_2, \ldots, m_{t(G)}\}$ of order components of *G* and T(G) for the set of connected components of *G* (see [12]). According to the classification theorem of finite simple groups and [5,17,18], we can list the order components of finite simple groups with disconnected prime graphs as in Tables 1-3 in [1].

Throughout this paper, we denote by ϕ the Euler totient function. If G is a finite group, then we denote by P_q a Sylow q-subgroup of G and $n_q(G)$ is the number of Sylow q-subgroup of G, that is, $n_q(G) = |\text{Syl}_q(G)|$. Also we say $p^k \parallel m$ if $p^k \mid m$ and $p^{k+1} \nmid m$. All other notations are standard and we refer to [16], for example.

2. Preliminary Results

We first quote some lemmas that are used in deducing the main theorem of this paper.

Let $\alpha \in S_n$ be a permutation and let α have t_i cycles of length i, i = 1, 2, ..., l, in its cycle decomposition. The cycle structure of α is denote by $1^{t_1}2^{t_2}...l^{t_l}$ where $1t_1 + 2t_2... + lt_l = n$. One can easily show that two permutations in S_n are conjugate if and only if they have the same cycle structure.

Lemma 2.1. [14] Let $\alpha \in S_n$ and assume that the cycle decomposition of α contains t_1 cycles of length 1, t_2 cycles of length 2, ..., t_l cycles of length l. Then

 $|cl_{S_n}(\alpha)| = n!/1^{t_1}2^{t_2}\cdots l^{t_l}t_1!t_2!\cdots t_l!.$

Lemma 2.2. [9] Let G be a finite group and m be a positive integer dividing |G|. If $L_m(G) = \{g \in G | g^m = 1\}$, then $m \mid |L_m(G)|$.

Let m_n be the number of elements of order n. We note that $m_n = k\phi(n)$ where k is the number of cyclic subgroups of order n in G. Also we note that if n > 2, then $\phi(n)$ is even. If $n \mid |G|$, then by Lemma 2.2 and the above notation we have:

$$\begin{cases} \phi(n) \mid m_n \\ & (*) \\ n \mid \sum_{d \mid n} m_d \end{cases}$$

In the proof of the main theorem, we often apply (*) and the above comments.

Lemma 2.3. [19] Let G be a group containing more than two elements. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. If $s = \sup\{m_k | k \in \pi_e(G)\}$ is finite, then G is finite and $|G| \leq s(s^2 - 1)$.

Lemma 2.4. [10] Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n = p^s m$, where (p, m) = 1. If P is not cyclic and s > 1, then the number of elements of order n is always a multiple of p^s .

Lemma 2.5. [15] Let G be a finite group, $n \ge 4$ with $n \ne 8$, 10 and r be the greatest prime not exceeding n. If $|G| = |A_n|$ and $|N_G(R)| = |N_{A_n}(S)|$ where $R \in Syl_r(G)$ and $S \in Syl_r(A_n)$, then $G \cong A_n$.

Lemma 2.6. [7] Let G be a group and P a cyclic Sylow p-subgroup of G of order p^a . If there is a prime r such that $p^a r \in \pi_e(G)$, then $m_{p^a r} = m_r(C_G(P))m_{p^a}$. In particular, $\phi(r)m_{p^a} \mid m_{p^a r}$.

Lemma 2.7. [11] Let G be a Frobenius group of even order with H and K its Frobenius kernel and Frobenius complement, respectively. Then t(G) = 2 and $T(G) = {\pi(K), \pi(H)}.$

Lemma 2.8. [11] Let G be a 2-Frobenius group of even order which has a normal series $1 \leq H \leq K \leq G$ such that K and G/H are Frobenius groups with kernels H and K/H, respectively. Then t(G) = 2 and $T(G) = \{\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)\}.$

Lemma 2.9. [17, Theorem A] Let G be a finite group with more than one prime graph component. Then either G is a Frobenius or a 2-Frobenius group, or G has a normal series $1 \leq H \leq K \leq G$ such that such that H and G/K are π_1 -groups, K/H is a non-abelian simple group and H is a nilpotent group with $\pi_i \subseteq \pi(K)$ for every i > 1 and H is a nilpotent group, especially, $K/H \leq G/H \leq Aut(K/H)$. **Lemma 2.10.** [13, Lemma 8] Let G be a finite group with $t(G) \ge 2$ and N a normal subgroup of G. If N is a π_i -group for some prime graph component of G, and $\mu_1, \mu_2, \ldots, \mu_r$ are some of order components of G but not a π_i -number then $\mu_1\mu_2...\mu_r$ is a divisor of |N| - 1.

Now we bring the following Lemma which is proved in [5, Lemma 6], with some differences and classify the simple groups of Lie type with prime odd order component by θ function which is introduced later.

Lemma 2.11. If L is a simple group of Lie type and has prime odd order component $p \ge 17$ and $\pi(L)$ has at most $\theta(L)$ prime numbers t, where $\frac{p+1}{2} < t < p$. Then $\theta(L) \le 3$.

Throughout the proof of the above Lemma, we can divide simple groups of Lie type, L, with prime odd order component $p \ge 17$, into the following cases:

(1) $\theta(L) = 0$ if L is isomorphic to $A_{p'-1}(q)$, $A_{p'}(q)$, where q - 1 | p' + 1, $A_2(2)$, ${}^{2}A_{p'-1}(q)$, ${}^{2}A_{p'}(q)$, where q + 1 | p' + 1, ${}^{2}A_3(2)$, $B_n(q)$, where $n = 2^{m'}$ and q is odd, $B_{p'}(3)$, $C_n(q)$, where $n = 2^{m'}$ or (n,q) = (p',3), $D_{p'+1}(3)$, $D_{p'}(q)$, for q = 3, 5, ${}^{2}D_n(q)$, for $(n,q) = (2^{m'},q)$, (p',3), where $5 \le p' \ne 2^{m'} + 1$ or $(2^{m'} + 1,3)$, where $5 \le p' \ne 2^{m'} + 1$, $G_2(q)$, where $q \equiv \epsilon \pmod{3}$, for $\epsilon = \pm 1$, ${}^{3}D_4(q)$, $E_6(q)$ or ${}^{2}E_6(q)$; (2) $\theta(L) = 1$ if L is isomorphic to one of the simple groups $A_1(q)$, where $2 | q, A_2(4), {}^{2}A_5(2), C_{p'}(2), D_n(2)$, where n = p' or $p' + 1, {}^{2}D_n(2)$, where $(n,q) = (2^{m'} + 1,2)$ or $(p' = 2^{m'} + 1,3)$, where $m' \ge 2$, $E_7(2)$, $E_7(3)$, $F_4(q), {}^{2}F_4(q)$, where $q = 2^{2n+1} > 2$, or $G_2(q)$, where 3 | q;

- (3) $\theta(L) = 2$ if L is isomorphic to the simple groups $A_1(q)$, where $q \equiv \epsilon \pmod{4}$ for $\epsilon = \pm 1$, ${}^2B_2(q)$,
- where $q = 2^{2m'+1} > 2$, or ${}^{2}G_{2}(q)$, where $q = 3^{2m'+1} > 3$; (4) $\theta(L) = 3$ if L is isomorphic to the simple groups $E_{8}(q)$ or ${}^{2}E_{6}(2)$.

Lemma 2.12. [5, Lemma 1] If $n \ge 6$ is a natural number, then there are at least s(n) prime numbers p_i such that $\frac{n+1}{2} < p_i < n$. Here

 $s(n) = 6 \text{ for } n \ge 48;$ $s(n) = 5 \text{ for } 42 \le n \le 47;$ $s(n) = 4 \text{ for } 38 \le n \le 41;$ $s(n) = 3 \text{ for } 18 \le n \le 37;$ $s(n) = 2 \text{ for } 14 \le n \le 17;$ $s(n) = 1 \text{ for } 6 \le n \le 13.$

In particular, for every natural number $n \ge 6$, there exists a prime p such that $\frac{n+1}{2} , and for every natural number <math>n > 3$, there exists an odd prime number p such that n - p .

3. Proof of the Main Theorem

Let G be a group such that $nse(G)=nse(A_p)$ where p and p-2 are twin primes and $p \in \pi(G)$. By Lemma 2.3, we can assume that G is finite. Let p' = p - 2. The following lemmas reduce the problem to a study of groups with the same order with A_p .

Lemma 3.1. If $i \in \pi_e(A_p)$ and $i \neq 1$, p, then $p \parallel m_i(A_p)$.

Proof: We have $m_i(A_p) = \sum |cl_{A_p}(x_k)|$ such that $|x_k| = i$. Since $i \neq 1, p$, the cyclic structure of x_k for any k is $1^{r_1}2^{r_2}...l^{r_l}$ where $r_1, r_2, ..., r_l$ and 1, 2, ..., l are not equal to p. On the other hand, by Lemma 2.1, $|cl_{A_p}(x_k)| = p!/1^{r_1}2^{r_2}...l^{r_l}r_1!r_2!\cdots r_l!$. Then $p \mid |cl_{A_p}(x_k)|$ for any k. Hence $p \mid m_i(A_p)$ and $m_i(A_p) = p! \cdot \alpha$ where $\alpha < 1$. Therefore, $p \mid m_i(A_p)$.

Lemma 3.2. $m_p(G) = m_p(A_p)$.

Proof: Let $m_p(G) \neq m_p(A_p)$. Since $\operatorname{nse}(G) = \operatorname{nse}(A_p)$, $m_p(G) \in \operatorname{nse}(A_p)$. Suppose that there exists $k \neq p \in \pi_e(G)$ such that $m_p(G) = m_k(A_p)$. Thus $m_k(A_p) \equiv -1 \pmod{p}$. We know that $m_k(A_p) = \sum |cl_{A_p}(x_i)|$ such that $|x_i| = k$ for every *i*. Since $m_k(A_p) \equiv -1 \pmod{p}$, $(p, m_k(A_p)) = 1$.

If for every *i*, the cyclic structure of x_i is $1^{r_1}2^{r_2}...l^{r_l}$ such that $p \nmid 1^{r_1}2^{r_2}...l^{r_l}r_1!$ $r_2!...r_l!$, then $|cl_{A_p}(x_i)| = \frac{p!}{1^{r_1}2^{r_2}...l^{r_l}r_1!r_2!...r_l!} \equiv 0 \pmod{p}$. Hence $(p, m_k(A_p)) \neq 1$, which is a contradiction. Hence $p \mid 1^{r_1}2^{r_2}...l^{r_l}r_1!r_2!...r_l!$. Therefore, there exists at least a x_i with cyclic structure $1^{r_1}2^{r_2}...l^{r_l}$ such that $r_j = p + t$ for some $1 \leq j \leq l$, where t is a non-negative integer, or one of the numbers 1, 2, ..., l is equal to p. Thus there exists x_i such that the cyclic structure of x_i is 1^p or p^1 .

If the cyclic structure of x_i is 1^p , then $|x_i| = 1$, which is a contradiction.

If the cyclic structure of x_i is p^1 , then $|x_i| = k = p$. Therefore, $m_p(G) = m_p(A_p)$.

Lemma 3.3. If $i \in \pi_e(A_p)$, $i \neq 1$ and $i \neq p'$, then $p' \parallel m_i(A_p)$.

Proof: We can prove this lemma as the proof of the Lemma 3.1.

Lemma 3.4. If $p' \in \pi(G)$, then $m_{p'}(G) = m_{p'}(A_p)$.

Proof: There exists $k \in \pi_e(G)$ such that $p' \mid (1 + m_k(A_p))$. We know that $m_k(A_p) = \sum |cl_{A_p}(x_i)|$ such that $|x_i| = k$. Since $p' \mid (1 + m_k(A_p)), (p', m_k(A_p)) = 1$. If the cyclic structure of x_i for any i is $1^{t_1}2^{t_2}\cdots l^{t_l}$ such that r_1, r_2, \ldots, r_l and $1, 2, \ldots, l$ are not equal to p', then $p' \mid p!/1^{r_1}2^{r_2}\ldots l^{r_l}r_1!r_2!\cdots r_l!$. Hence $p' \mid |cl_{A_p}(x_i)|$ for any i and therefore $(p', m_k(A_p)) \neq 1$, which is a contradiction. Thus there exists $i \in \mathbb{N}$ such that $r_i = p'$ or one of the numbers 1 or 2 ... or l are equal to p'.

If there exists $i \in \mathbb{N}$ such that $r_i = p'$, then the cyclic structure of x_i is $1^{p'}2^1$. Hence x_i is an odd permutation, which is a contradiction. If one of the numbers 1 or 2 ... or l are equal to p', then the cyclic structure of x_i is $1^2 p'^1$. Hence $|x_i| = p'$ and k = p'. Therefore, $m_{p'}(G) = m_{p'}(A_p)$.

Lemma 3.5. $|P_p| = p$.

Proof: By Lemma 3.1, $p^2 \nmid m_i(G)$ for any $i \in \pi_e(G)$. If $p^3 \in \pi_e(G)$, then by (*), $\phi(p^3) \mid m_{p^3}(G)$. Thus $p^2 \mid m_{p^3}(G)$, which is a contradiction. Therefore $p^3 \notin \pi_e(G)$. Hence $\exp(P_p) = p$ or p^2 . We claim that $\exp(P_p) = p$. Suppose that $\exp(P_p) = p^2$. There exists an element of order p^2 in G such that $\phi(p^2) \mid m_{p^2}(G)$. Thus $p(p-1) \mid m_{p^2}(G)$.

If $|P_p| = p^2$, then P_p is a cyclic group and $n_p(G) = m_{p^2}(G)/\phi(p^2) = p(p-1)t/p(p-1) = t$. On the other hand, we know two of the Sylow *p*-subgroups might intersect in a subgroup of order *p*. So the number of cyclic subgroups of order *p* is something between 1 and the number of Sylow *p*-subgroups. Since $m_p(G) = (p-1)!, (p-1)! \leq (p-1)n_p(G) = (p-1)t$. Therefore $n_p(G) = t \geq (p-2)!$ and $m_{p^2}(G) \geq p(p-1)(p-2)! = p!$, which is a contradiction.

If $|P_p| = p^s$ where $s \ge 3$, then by Lemma 2.4, $m_{p^2}(G) = p^2 l$ for some l, which is a contradiction by Lemma 3.1. Thus $\exp(P_p) = p$.

We obtain that $|P_p| \mid (1 + m_p) = 1 + (p - 1)!$, which implies that $|P_p| = p$ or $|P_p| = p^s$ where $s \ge 2$. Consider the case $|P_p| = p^s$ where $s \ge 2$.

We prove that $2p \in \pi_e(G)$. Assume that this is false. Then the group P_p acts fixed-point-freely on the set of elements of order 2, which implies that $p^s = |P_p| | m_2$. By Lemma 3.1, we get a contradiction.

Therefore $2p \in \pi_e(G)$, as required. Since $\exp(P_p) = p$, $2p^2 \notin \pi_e(G)$, so by Lemma 2.2, $L_{2p^2}(G) = L_{2p}(G)$, and so $2p^2 \mid (1+m_2+m_p+m_{2p})$. Since $p^2 \mid (1+m_p)$, $p^2 \mid (m_2+m_{2p})$. But $m_2+m_{2p}=p!k$, where 0 < k < 1, which is a contradiction. Therefore, $|P_p| = p$.

Lemma 3.6. $\pi(G) = \pi(A_p)$.

Proof: By Lemma 3.5, $|P_p| = p$. Hence $(p-2)! = m_p(G)/\phi(p) = n_p(G) \mid |G|$. Thus $\pi(A_p) \subseteq \pi(G)$. Now we show that $\pi(A_p) = \pi(G)$. Let r > p be a prime such that $r \in \pi(G)$. If $pr \in \pi_e(G)$, then by Lemma 2.6, $(r-1)(p-1)! \mid m_{pr}$. But (r-1)(p-1)! > p!, which is a contradiction. Thus $pr \notin \pi_e(G)$. Then the group P_r acts fixed point freely on the set of elements of order p, and so $|P_r| \mid (p-1)!$, a contradiction. Therefore $r \notin \pi(G)$ and $\pi(G) = \pi(A_p)$.

Lemma 3.7. G has not any element of order 2p and 2p'.

Proof: Suppose that G has an element of order 2p. By Lemma 2.6, $(p-1)! \mid m_{2p}(G)$. On the other hand, by (*) $2p \mid (1 + m_2 + m_p + m_{2p})$. Since $p \mid (1 + m_p)$ and $p \mid m_2, p \mid m_{2p}(G)$. Therefore $p! \mid m_{2p}(G)$, which is a contradiction. Now suppose that G has an element of order 2p'. By Lemma 2.6, $p!/2p' \mid m_{2p}(G)$. On the other hand, by (*) $2p' \mid (1 + m_2 + m_{p'} + m_{2p'})$. Since $p' \mid (1 + m_{p'})$ and by Lemma 3.3, $p' \mid m_2, p' \mid m_{2p'}(G)$. Therefore $p!/2 \mid m_{2p'}(G)$, which is a contradiction. \Box

Lemma 3.8. $rp, sp' \notin \pi_e(G)$ for every $r \in \pi(G)$ and $s \in \pi(G) \setminus \{p'\}$.

Proof: The proof of this lemma is completely similar to Lemma 3.7.

Lemma 3.9. $|G| = |A_p|$.

Proof: Suppose that $|A_p| = 2^{k_2} 3^{k_3} 5^{k_5} \cdots p'p$ where k_2, k_3, k_5, \ldots are non-negative integers. By Lemma 3.7, $2p' \notin \pi_e(G)$, so the group P_2 acts fixed point freely on the set of elements of order p', and so $|P_2| \mid p!/2p' = m_{p'}(G)$. Thus $|P_2| \mid 2^{k_2}$. By Lemma 3.8 and arguing as above, $|P_3| \mid 3^{k_3}, |P_5| \mid 5^{k_5}, \ldots$ Therefore $|G| \mid p!/2$. On the other hand, $(p-2)! = n_p(G) \mid |G|$ and $p!/2p'(p'-1) = n_{p'}(G) \mid |G|$. Then the least common multiple of (p-2)! and p!/2p'(p'-1) divide the order of G. Therefore $p!/2 \mid |G|$ and so $|G| = |A_p|$ or |G| = p!/4. We will show that $|G| = |A_p|$.

Let |G| = p!/4. By Lemma 3.8, $t(G) \ge 3$. Hence by Lemma 2.7 and 2.8, G is neither Frobenius nor 2-Frobenius.

By Lemma 2.9, G has a normal series $1 \leq H \leq K \leq G$ such that H and G/K are π_1 -groups, K/H is a non-abelian simple group and H is a nilpotent group. If K/H has an element of order rq where r and q are primes, then G has also such element. Hence by definition of order components, an odd order component of G must be an odd order component of K/H. Note that $t(K/H) \geq 3$. Now we consider the following claims.

Claim 1.

(a) If $t \in \pi(H)$, then $t \leq \frac{p+1}{2}$;

(b) K/H cannot be isomorphic to a sporadic simple group. Moreover, if K/H is isomorphic to an alternating simple group, then we show that it is impossible.

(a) if t divides |H| where $\frac{p+1}{2} < t < p$, then since H is nilpotent subgroup of G and the order of T, the Sylow t-subgroup of H, is equal to t. By Lemma 2.10, we must have $p \mid t-1$, which is impossible. Thus |H| is not divisible by the primes t with $\frac{p+1}{2} < t < p$.

For the subcase (b), we note that if $H \neq 1$, by nilpotency of H, we may assume that H is a t-group for $t \in \pi_1(G)$.

If $K/H \cong J_4$, then p = 43. Since $19 \in \pi(G) \setminus \pi(\operatorname{Aut}(J_4))$, then $19 \in \pi(H)$. By Lemma 2.10, $43 \mid 19^i - 1$ for i = 1 or 2, which is impossible.

If $K/H \cong M_{22}$, then p = 11. Since $5^2 ||G|$ and $5 |||\operatorname{Aut}(M_{22})|$, $5 \in \pi(H)$. So by Lemma 2.10, we get a contradiction.

If K/H is isomorphic to other sporadic simple groups we can view a contradiction similarly.

Now let K/H be isomorphic to an alternating group. By Tables 1 and 2 in [1], K/H must be isomorphic to A_p , p, p - 2 both primes, since |G| = p!/4, we get a contradiction.

Claim 2. Let K/H is a simple group of Lie type over finite field GF(q). Then the order of factor group G/K cannot be divided by primes t, with $\frac{p+1}{2} < t < p$. Therefore $t \in \pi(K/H)$.

It follows from the proof of Lemma 6 in [5].

Claim 3. K/H can not be isomorphic to a simple group of Lie type.

By the Claim 2 and Lemma 2.12, we must have $17 \le p \le 37$ and $\theta(K/H) \ge 2$. Therefore K/H is isomorphic to one of the following simple groups by Lemma 2.11.

(1) $L_2(q)$, where $q \equiv \epsilon \pmod{4}$ for $\epsilon = \pm 1$;

(2) ${}^{2}B_{2}(q)$, where $q = 2^{2m'+1} > 2$;

(3) ${}^{2}G_{2}(q)$, where $q = 3^{2m'+1} > 3$;

(4) $E_8(q)$ or ${}^2E_6(2)$.

Since one of the odd order components of K/H is equal to p, by Tables 2 and 3 in [1], we must have:

(1) $K/H \cong L_2(17)$, for p = 17;

(2) $K/H \cong L_2(19)$, ${}^2G_2(27)$ or ${}^2E_6(2)$, for p = 19;

(3) $K/H \cong L_2(q)$, where p = q is equal to 23, 29 or 31;

(4) $K/H \cong L_2(37)$, ${}^2G_2(27)$ or ${}^2E_6(2)$, for p = 37.

If $K/H \cong L_2(17)$, then Since $13 \notin \pi(L_2(17))$, we get a contradiction by the Claim 2.

If $K/H \cong {}^{2}G_{2}(27)$ for p = 37 or $K/H \cong L_{2}(q)$, where p = q is equal to 23, 29, 31, or 37, we view a contradiction similarly. Let p = 19. If $K/H \cong L_{2}(19)$, again by the Claim 2, we get a contradiction because $17 \notin \pi(L_{2}(19))$. Since $37 \mid |{}^{2}G_{2}(27)|$, we have $K/H \ncong {}^{2}G_{2}(27)$.

For the case $K/H \cong {}^{2}E_{6}(2)$, we view a contradiction by $2^{36} \mid |{}^{2}E_{6}(2)|$.

Also if $5 \le p \le 13$ we know that G has a normal series $1 \lhd H \lhd K \lhd G$ such that H and G/K are π_1 -groups, K/H is a non-abelian simple group, $G/H \le \operatorname{Aut}(K/H)$ and H is a nilpotent group. By the Claim 1(b), K/H cannot be isomorphic to a sporadic simple group, and if K/H is isomorphic to an alternating simple group, then we get a contradiction.

Let K/H be isomorphic to the simple group of Lie type G(q) where $q = s^m$ and s is a prime number. Let p = 5. We know, 5 is one of the odd order components of K/H. So s = 5 and K/H be isomorphic to $L_2(5) \cong A_5$, a contradiction.

Let p = 7. We know, 7 is one of the odd order components of K/H. So s = 2, 3 or 7. Then the order of all Sylow *t*-subgroups of G are less than or equal to 64 or 81, respectively. Therefore for both of these cases, K/H is isomorphic to $L_2(7)$ or $L_2(8)$. Let $K/H \cong L_2(7)$ or $L_2(8)$. Since $5 \in \pi(G) \setminus \pi(\operatorname{Aut}(K/H)), 5 \in \pi(H)$, which it contradicts Claim 1(a). For the cases p = 11, 13, we do similarly. Therefore, $|G| = |A_p|$.

Now, we are prepared to prove our main theorem.

Proof of the main theorem. We have $|G| = |A_p|$ and $m_p(G) = m_p(A_p)$. Hence the number of Sylow p-subgroups of G is equal to the number of Sylow p-subgroups of A_p . Since $|G| = |A_p|$ and $n_p(G) = n_p(A_p)$, $|N_G(R)| = |N_{A_p}(S)|$ where $R \in \text{Syl}_p(G)$ and $S \in \text{Syl}_p(A_p)$. Now by Lemma 2.5, $G \cong A_p$ and the proof is completed.

Corollary. Let G be a finite group. If $nse(G)=nse(A_p)$ and $|G| = |A_p|$, where p and p-2 are twin primes, then $G \cong A_p$.

Proof: This is an immediate consequence of the main theorem.

Acknowledgments

The authors are thankful to the referee for carefully reading the paper and for his suggestions and remarks.

References

- A. Iranmanesh, S. H. Alavi and B. Khosravi, A Characterization of PSL(3,q) where q is an odd prime power, J. Pure Appl. Algebra, 170, 243-254 (2002).
- A. K. Asboei, S. S. salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of Symmetric group S_r, where r is prime number, Ann. Math. Inform, 40, 13-23 (2012).
- A. K. Asboei, S. S. salehi Amiri, A. Iranmanesh and A. Tehranian, A new characterization of sporadic simple groups by NSE and order, J. Algebra Appl, 12(2), DOI: 10.1142/S0219498812501587 (2013).
- A. K. Asboei, S. S. salehi Amiri, A. Iranmanesh and A. Tehranian, A new characterization of A₇ and A₈, An. Stint. Univ. Ovidius Constanta, 21(3), 43-50 (2013).
- A. S. Kondtratev and V. D. Mazurove, Recognition Of Alternating groups of prime degree from their element orders, Siberian Mathematical Journal, 41(2), 294-302 (2000).
- C. G. Shao, W. Shi and Q. H. Jiang, *Characterization of simple K₄-groups*, Front Math China, 3, 355-370 (2008).
- C. G. Shao and Q. H. Jiang, A new characterization of some linear groups by NSE, J. Alg. Appl, 13(2), DOI:10.1142/S0219498813500941 (2014).
- 8. D. J. S. Robinson, A course on the theory of groups, Springer-Verlag, New York, (1982).
- 9. G. Frobenius, Verallgemeinerung des sylowschen satze, Berliner sitz, 981-993 (1895).
- 10. G. Miller, Addition to a theorem due to Frobenius, Bull. Am. Math. Soc, 11, 6-7 (1904).
- G. Y. Chen, On structure of Frobenius and 2-Frobenius group, Journal of Southwest China Normal University, 20(5), 485–487, (1995)(Chinese).
- 12. G. Y. Chen, On Thompson's conjecture, J. Algebra, 185(1), 184–193 (1996).
- 13. G. Y. Chen, Further reflections on Thompson's conjecture, J. Algebra, 218, 276-285 (1999).
- 14. H. Zassenhaus, The theory of groups, 2nd ed. Chelsea Publishing Company, New York, (1958).
- J. Bi, Characteristic of Alternating Groups by Orders of Normalizers of Sylow Subgroups, Algebra Colloq, 8(3), 249-256 (2001).
- J. H. Conway, R. T. Curtis, S. P. Norton and R. A. Wilson, Atlas of Finite Groups, Clarendon, Oxford, (1985).
- 17. J. S. Williams, Prime graph components of finite groups, J. Algebra, 69(2), 487–513 (1981).
- N. Iiyori and H. Yamaki, Prime graph components of the simple groups of Lie type over the field of even characteristic, J. Algebra, 155(2), 335-343 (1993).
- R. Shen, C. G. Shao, Q. Jiang, W. Shi and V. Mazuro, A New Characterization of A₅, Monatsh Math, 337-341 (2010).
- V. D. Mazurov and E. I. Khukhro, Unsolved Problems in group theory, the Kourovka Notebook, 16 ed, Novosibirsk, Inst. Mat. Sibirsk. Otdel. Akad, (2006).

Seyed Sadegh Salehi Amiri and Alireza Khalili Asboei

Seyed Sadegh Salehi Amiri (Corresponding Author) Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran E-mail address: salehisss@baboliau.ac.ir

and

Alireza Khalili Asboei Department of Mathematics, Farhangian University, Shariati Mazandaran,Iran