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A new characterization of Ap with p and p− 2 are twin primes

Seyed Sadegh Salehi Amiri and Alireza Khalili Asboei

abstract: Let G be a finite group and πe(G) be the set of element orders of G. Let
k ∈ πe(G) and mk be the number of elements of order k in G. Set nse(G):={mk |k ∈
πe(G)}. Assume p and p − 2 are twin primes. We prove that if G is a group such
that nse(G)=nse(Ap) and p ∈ π(G), then G ∼= Ap. As a consequence of our results
we prove that Ap is uniquely determined by its nse and order.
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1. Introduction

We denote by π(G) the set of prime divisors of |G| and by πe(G) the set of
element orders of G. Set mi = mi(G)=|{g ∈ G| the order of g is i}|. In fact, mi is
the number of elements of order i in G, and nse(G):={mi| i ∈ πe(G)}, the set of
sizes of elements with the same order.

For the set nse(G), the most important problem is related to Thompson’s prob-
lem. In 1987, J. G. Thompson posed a very interesting problem as follows:
Problem 1: For each finite group G and each integer d ≥ 1, let G(d) = {x ∈ G|
xd = 1}. Defining G1 and G2 is of the same order type if and only if, |G1(d)| =
|G2(d)|, d = 1, 2, 3, . . . . Suppose G1 and G2 are of the same order type. If G1 is
solvable, is G2 necessarily solvable? ( [20, Problem 12.37])

Unfortunately, as so far, no one can prove it completely, or even give a coun-
terexample. However, if groups G1 and G2 are of the same order type, we see
clearly that |G1| = |G2| and nse(G1) = nse(G2). So it is natural to investigate the
Thompson’s Problem by |G| and nse(G). The influence of nse(G) on the structure
of finite groups was studied by some authors (see [2,3,4,6,19]).

In [4,19], it is proved that the groupsA5, A6, A7 and A8 are uniquely determined
only by nse(G). In [19], the authors gave the following problem:
Problem 2: Is a group G isomorphic to An (n ≥ 4) if and only if nse(G) =
nse(An)?
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In this paper, we give a positive answer to this problem for some type of the
alternating groups and show that the alternating groups Ap with p and p−2 primes
are characterizable by nse(Ap) when p ∈ π(G). In fact, main theorem of our paper
is as follows:

Main Theorem: Let G be a group such that nse(G)=nse(Ap) with p and p − 2
are twin primes. If p ∈ π(G), then G ∼= Ap.

We note that there are finite groups which are not characterizable by nse(G)
and |G|. In 1987, J. G. Thompson gave an example as follows:
Let G1= (C2×C2×C2×C2)⋊A7 and G2 = L3(4)⋊C2 be the maximal subgroups
of M23. Then nse(G1) = nse(G2)= {1, 435, 2240, 5040, 5760, 6300, 6720, 8064} and
|G1| = |G2| = 40320, but G1 ≇ G2. Also there is a another example as follow: Let
H1 = C4 × C4 and H2 = C2 ×Q8, where C2 and C4 are cyclic groups of orders 2
and 4, respectively and Q8 is a quaternion group of order 8. It is easy to see that
nse(H1) = nse(H2)= {1, 3, 12} and |H1|=|H2| = 16, but H1 is an abelian group
and H2 is a non-abelian group. Therefore H1 ≇ H2.

We construct the prime graph of G, denoted by Γ(G), as follows: the vertex set
is π(G) and two distinct vertices p and p′ are joined by an edge if and only if G has
an element of order pp′ (we write p ∼ p′). Let t(G) be the number of connected
components of Γ(G) and let π1, π2, . . . , πt(G) be the connected components of
Γ(G). If 2 ∈ π(G), then we always suppose 2 ∈ π1.

We can express |G| as a product of integers m1, m2, . . . , mt(G), where π(mi) =
πi for each i. These numbers mi are called the order components of G. In particu-
lar, if mi is odd, then we call it an odd component of G. Write OC(G) for the set
{m1, m2, . . . ,mt(G)} of order components of G and T (G) for the set of connected
components of G (see [12]). According to the classification theorem of finite simple
groups and [5,17,18], we can list the order components of finite simple groups with
disconnected prime graphs as in Tables 1-3 in [1].

Throughout this paper, we denote by φ the Euler totient function. If G is a
finite group, then we denote by Pq a Sylow q−subgroup of G and nq(G) is the
number of Sylow q−subgroup of G, that is, nq(G)=|Sylq(G)|. Also we say pk ‖ m
if pk | m and pk+1 ∤ m. All other notations are standard and we refer to [16], for
example.

2. Preliminary Results

We first quote some lemmas that are used in deducing the main theorem of this
paper.
Let α ∈ Sn be a permutation and let α have ti cycles of length i, i = 1, 2, ..., l,
in its cycle decomposition. The cycle structure of α is denote by 1t12t2 ...ltl where
1t1 + 2t2...+ ltl = n. One can easily show that two permutations in Sn are conju-
gate if and only if they have the same cycle structure.

Lemma 2.1. [14] Let α ∈ Sn and assume that the cycle decomposition of α con-
tains t1 cycles of length 1, t2 cycles of length 2, ..., tl cycles of length l. Then
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|clSn
(α)| = n!/1t12t2 · · · ltlt1!t2! · · · tl!.

Lemma 2.2. [9] Let G be a finite group and m be a positive integer dividing |G|.
If Lm(G) = {g ∈ G|gm = 1}, then m | |Lm(G)|.

Let mn be the number of elements of order n. We note that mn = kφ(n) where
k is the number of cyclic subgroups of order n in G. Also we note that if n > 2,
then φ(n) is even. If n | |G|, then by Lemma 2.2 and the above notation we have:















φ(n) | mn

(∗)
n |

∑

d|nmd

In the proof of the main theorem, we often apply (∗) and the above comments.

Lemma 2.3. [19] Let G be a group containing more than two elements. Let
k ∈ πe(G) and mk be the number of elements of order k in G. If s = sup{mk|k ∈
πe(G)} is finite, then G is finite and |G| ≤ s(s2 − 1).

Lemma 2.4. [10] Let G be a finite group and p ∈ π(G) be odd. Suppose that P is
a Sylow p−subgroup of G and n = psm , where (p,m) = 1. If P is not cyclic and
s > 1, then the number of elements of order n is always a multiple of ps.

Lemma 2.5. [15] Let G be a finite group, n ≥ 4 with n 6= 8, 10 and r be the
greatest prime not exceeding n. If |G| = |An| and |NG(R)| = |NAn

(S)| where
R ∈Sylr(G) and S ∈Sylr(An), then G ∼= An.

Lemma 2.6. [7] Let G be a group and P a cyclic Sylow p-subgroup of G of order
pa. If there is a prime r such that par ∈ πe(G), then mpar = mr(CG(P ))mpa . In
particular, φ(r)mpa | mpar.

Lemma 2.7. [11] Let G be a Frobenius group of even order with H and K its
Frobenius kernel and Frobenius complement, respectively. Then t(G) = 2 and
T (G) = {π(K), π(H)}.

Lemma 2.8. [11] Let G be a 2-Frobenius group of even order which has a normal
series 1✂H ✁K ✂G such that K and G/H are Frobenius groups with kernels H
and K/H, respectively. Then t(G) = 2 and T (G) = {π1(G) = π(H) ∪ π(G/K),
π2(G) = π(K/H)}.

Lemma 2.9. [17, Theorem A] Let G be a finite group with more than one prime
graph component. Then either G is a Frobenius or a 2-Frobenius group, or G has
a normal series 1 E H E K E G such that such that H and G/K are π1-groups,
K/H is a non-abelian simple group and H is a nilpotent group with πi ⊆ π(K) for
every i > 1 and H is a nilpotent group, especially, K/H E G/H EAut(K/H).
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Lemma 2.10. [13, Lemma 8] Let G be a finite group with t(G) ≥ 2 and N a
normal subgroup of G. If N is a πi-group for some prime graph component of G,
and µ1, µ2, . . . , µr are some of order components of G but not a πi-number
then µ1µ2...µr is a divisor of |N | − 1.

Now we bring the following Lemma which is proved in [5, Lemma 6], with some
differences and classify the simple groups of Lie type with prime odd order compo-
nent by θ function which is introduced later.
Lemma 2.11. If L is a simple group of Lie type and has prime odd order com-
ponent p ≥ 17 and π(L) has at most θ(L) prime numbers t, where p+1

2 < t < p.
Then θ(L) ≤ 3.
Throughout the proof of the above Lemma, we can divide simple groups of Lie type,
L, with prime odd order component p ≥ 17, into the following cases:
(1) θ(L) = 0 if L is isomorphic to Ap

′−1(q), Ap
′ (q),

where q − 1 | p
′

+ 1, A2(2),
2Ap

′−1(q),
2Ap

′ (q),

where q + 1 | p
′

+ 1, 2A3(2), Bn(q),

where n = 2m
′

and q is odd, Bp
′ (3), Cn(q),

where n = 2m
′

or (n, q) = (p
′

, 3), Dp
′+1(3), Dp

′ (q), for q = 3, 5,

2Dn(q), for (n, q) = (2m
′

, q), (p
′

, 3), where 5 ≤ p
′

6= 2m
′

+ 1 or (2m
′

+ 1, 3),

where 5 ≤ p
′

6= 2m
′

+ 1, G2(q),
where q ≡ ǫ (mod 3), for ǫ = ±1, 3D4(q), E6(q) or 2E6(q);

(2) θ(L) = 1 if L is isomorphic to one of the simple groups A1(q),
where 2 | q, A2(4),

2A5(2), Cp
′ (2), Dn(2),

where n = p
′

or p
′

+1, 2Dn(2), where (n, q) = (2m
′

+1, 2) or (p
′

= 2m
′

+1, 3),
where m

′

≥ 2, E7(2), E7(3), F4(q),
2F4(q),

where q = 22n+1 > 2, or G2(q), where 3 | q;
(3) θ(L) = 2 if L is isomorphic to the simple groups A1(q),

where q ≡ ǫ (mod 4) for ǫ = ±1, 2B2(q),

where q = 22m
′

+1 > 2, or 2G2(q), where q = 32m
′

+1 > 3;
(4) θ(L) = 3 if L is isomorphic to the simple groups E8(q) or 2E6(2).

Lemma 2.12. [5, Lemma 1] If n ≥ 6 is a natural number, then there are at
least s(n) prime numbers pi such that n+1

2 < pi < n. Here

s(n) = 6 for n ≥ 48;
s(n) = 5 for 42 ≤ n ≤ 47;
s(n) = 4 for 38 ≤ n ≤ 41;
s(n) = 3 for 18 ≤ n ≤ 37;
s(n) = 2 for 14 ≤ n ≤ 17;
s(n) = 1 for 6 ≤ n ≤ 13.

In particular, for every natural number n ≥ 6, there exists a prime p such that
n+1
2 < p < n, and for every natural number n > 3, there exists an odd prime

number p such that n− p < p < n.
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3. Proof of the Main Theorem

Let G be a group such that nse(G)=nse(Ap) where p and p− 2 are twin primes
and p ∈ π(G). By Lemma 2.3, we can assume that G is finite. Let p′ = p − 2.
The following lemmas reduce the problem to a study of groups with the same order
with Ap.

Lemma 3.1. If i ∈ πe(Ap) and i 6= 1, p, then p ‖ mi(Ap).

Proof: We have mi(Ap) =
∑

|clAp
(xk)| such that |xk| = i . Since i 6= 1, p, the

cyclic structure of xk for any k is 1r12r2 ...lrl where r1, r2, ..., rl and 1, 2, ..., l are not
equal to p. On the other hand, by Lemma 2.1, |clAp

(xk)| = p!/1r12r2 ...lrlr1!r2!···rl!.
Then p | |clAp

(xk)| for any k. Hence p | mi(Ap) and mi(Ap) = p! · α where α < 1.
Therefore, p ‖ mi(Ap). ✷

Lemma 3.2. mp(G) = mp(Ap).

Proof: Let mp(G) 6= mp(Ap). Since nse(G)=nse(Ap), mp(G) ∈ nse(Ap). Sup-
pose that there exists k 6= p ∈ πe(G) such that mp(G) = mk(Ap). Thus mk(Ap) ≡
−1 (mod p). We know that mk(Ap) =

∑

|clAp
(xi)| such that |xi| = k for every i.

Since mk(Ap) ≡ −1 (mod p), (p,mk(Ap)) = 1.
If for every i, the cyclic structure of xi is 1r12r2 ...lrl such that p ∤ 1r12r2 ...lrlr1!

r2!...rl!, then |clAp
(xi)| =

p!
1r12r2 ...lrlr1!r2!...rl!

≡ 0 (mod p). Hence (p,mk(Ap)) 6= 1,

which is a contradiction. Hence p | 1r12r2 ...lrlr1!r2!...rl!. Therefore, there exists at
least a xi with cyclic structure 1r12r2 ...lrlsuch that rj = p+ t for some 1 ≤ j ≤ l,
where t is a non-negative integer, or one of the numbers 1, 2, ..., l is equal to p.
Thus there exists xi such that the cyclic structure of xi is 1p or p1.

If the cyclic structure of xi is 1p, then |xi| = 1, which is a contradiction.
If the cyclic structure of xi is p1, then |xi| = k = p. Therefore, mp(G) =

mp(Ap). �

Lemma 3.3. If i ∈ πe(Ap), i 6= 1 and i 6= p′, then p′ ‖ mi(Ap).

Proof: We can prove this lemma as the proof of the Lemma 3.1. �

Lemma 3.4. If p′ ∈ π(G), then mp′(G) = mp′(Ap).

Proof: There exists k ∈ πe(G) such that p′ | (1 + mk(Ap)). We know that
mk(Ap) =

∑

|clAp
(xi)| such that |xi| = k. Since p′ | (1 +mk(Ap)), (p

′,mk(Ap)) =
1. If the cyclic structure of xi for any i is 1t12t2 ···ltl such that r1, r2, ..., rl and 1, 2,
..., l are not equal to p′, then p′ | p!/1r12r2 ...lrlr1!r2! · · · rl!. Hence p′ | |clAp

(xi)| for
any i and therefore (p′,mk(Ap)) 6= 1, which is a contradiction. Thus there exists
i ∈ N such that ri = p′ or one of the numbers 1 or 2 ... or l are equal to p′.

If there exists i ∈ N such that ri = p′, then the cyclic structure of xi is 1p
′

21.
Hence xi is an odd permutation, which is a contradiction.
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If one of the numbers 1 or 2 ... or l are equal to p′, then the cyclic structure of
xi is 12p′1. Hence |xi| = p′ and k = p′. Therefore, mp′(G) = mp′(Ap). �

Lemma 3.5. |Pp| = p.

Proof: By Lemma 3.1, p2 ∤ mi(G) for any i ∈ πe(G). If p3 ∈ πe(G), then
by (∗), φ(p3) | mp3(G). Thus p2 | mp3(G), which is a contradiction. Therefore
p3 6∈ πe(G). Hence exp(Pp) = p or p2. We claim that exp (Pp) = p. Suppose that
exp(Pp) = p2. There exists an element of order p2 in G such that φ(p2) | mp2(G).
Thus p(p− 1) | mp2(G).

If |Pp| = p2, then Pp is a cyclic group and np(G) = mp2(G)/φ(p2) = p(p −
1)t/p(p − 1) = t. On the other hand, we know two of the Sylow p-subgroups
might intersect in a subgroup of order p. So the number of cyclic subgroups of
order p is something between 1 and the number of Sylow p -subgroups. Since
mp(G) = (p−1)!, (p−1)! ≤ (p−1)np(G) = (p−1)t. Therefore np(G) = t ≥ (p−2)!
and mp2(G) ≥ p(p− 1)(p− 2)! = p!, which is a contradiction.

If |Pp| = ps where s ≥ 3, then by Lemma 2.4, mp2(G) = p2l for some l, which
is a contradiction by Lemma 3.1. Thus exp(Pp) = p.

We obtain that |Pp| | (1 + mp) = 1 + (p − 1)!, which implies that |Pp| = p or
|Pp| = ps where s ≥ 2. Consider the case |Pp| = ps where s ≥ 2.

We prove that 2p ∈ πe(G). Assume that this is false. Then the group Pp acts
fixed-point-freely on the set of elements of order 2, which implies that ps = |Pp| |
m2. By Lemma 3.1, we get a contradiction.

Therefore 2p ∈ πe(G), as required. Since exp(Pp) = p, 2p2 /∈ πe(G), so by
Lemma 2.2, L2p2(G) = L2p(G), and so 2p2 | (1+m2+mp+m2p). Since p2 | (1+mp),
p2 | (m2 +m2p). But m2 +m2p = p!k, where 0 < k < 1, which is a contradiction.
Therefore, |Pp| = p. �

Lemma 3.6. π(G) = π(Ap).

Proof: By Lemma 3.5, |Pp| = p. Hence (p − 2)! = mp(G)/φ(p) = np(G) | |G|.
Thus π(Ap) ⊆ π(G). Now we show that π(Ap) = π(G). Let r > p be a prime
such that r ∈ π(G). If pr ∈ πe(G), then by Lemma 2.6, (r − 1)(p− 1)! | mpr. But
(r − 1)(p − 1)! > p!, which is a contradiction. Thus pr 6∈ πe(G). Then the group
Pr acts fixed point freely on the set of elements of order p, and so |Pr| | (p− 1)!, a
contradiction. Therefore r 6∈ π(G) and π(G) = π(Ap). �

Lemma 3.7. G has not any element of order 2p and 2p′.

Proof: Suppose that G has an element of order 2p. By Lemma 2.6, (p − 1)! |
m2p(G). On the other hand, by (∗) 2p | (1 +m2 +mp +m2p). Since p | (1 +mp)
and p | m2, p | m2p(G). Therefore p! | m2p(G), which is a contradiction. Now sup-
pose that G has an element of order 2p′. By Lemma 2.6, p!/2p′ | m2p(G). On the
other hand, by (∗) 2p′ | (1+m2 +mp′ +m2p′). Since p′ | (1 +mp′) and by Lemma
3.3, p′ | m2, p

′ | m2p′(G). Therefore p!/2 | m2p′(G), which is a contradiction. �
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Lemma 3.8. rp, sp′ /∈ πe(G) for every r ∈ π(G) and s ∈ π(G)\{p′}.

Proof: The proof of this lemma is completely similar to Lemma 3.7. �

Lemma 3.9. |G| = |Ap|.

Proof: Suppose that |Ap| = 2k23k35k5 · · · p′p where k2, k3, k5, ...are non-negative
integers. By Lemma 3.7, 2p′ /∈ πe(G), so the group P2 acts fixed point freely on
the set of elements of order p′, and so |P2| | p!/2p

′ = mp′(G). Thus |P2| | 2
k2 . By

Lemma 3.8 and arguing as above, |P3| | 3
k3 , |P5| | 5

k5 , .... Therefore |G| | p!/2.
On the other hand, (p− 2)! = np(G) | |G| and p!/2p′(p′ − 1) = np′(G) | |G|. Then
the least common multiple of (p − 2)! and p!/2p′(p′ − 1) divide the order of G.
Therefore p!/2 | |G| and so |G| = |Ap| or |G| = p!/4. We will show that |G| = |Ap|.

Let |G| = p!/4. By Lemma 3.8, t(G) ≥ 3. Hence by Lemma 2.7 and 2.8, G is
neither Frobenius nor 2-Frobenius.

By Lemma 2.9, G has a normal series 1 E H E K E G such that H and G/K
are π1-groups, K/H is a non-abelian simple group and H is a nilpotent group. If
K/H has an element of order rq where r and q are primes, then G has also such
element. Hence by definition of order components, an odd order component of
G must be an odd order component of K/H . Note that t(K/H) ≥ 3. Now we
consider the following claims.
Claim 1.

(a) If t ∈ π(H), then t ≤ p+1
2 ;

(b) K/H cannot be isomorphic to a sporadic simple group. Moreover, if K/H
is isomorphic to an alternating simple group, then we show that it is impossible.
(a) if t divides |H | where p+1

2 < t < p, then since H is nilpotent subgroup of G
and the order of T , the Sylow t-subgroup of H , is equal to t. By Lemma 2.10, we
must have p | t− 1, which is impossible. Thus |H | is not divisible by the primes t
with p+1

2 < t < p.
For the subcase (b), we note that if H 6= 1, by nilpotency of H , we may assume

that H is a t-group for t ∈ π1(G).
If K/H ∼= J4, then p = 43. Since 19 ∈ π(G)\π(Aut(J4)), then 19 ∈ π(H). By

Lemma 2.10, 43 | 19i − 1 for i = 1 or 2, which is impossible.
If K/H ∼= M22, then p = 11. Since 52 | |G| and 5 ‖ |Aut(M22)|, 5 ∈ π(H). So

by Lemma 2.10, we get a contradiction.
If K/H is isomorphic to other sporadic simple groups we can view a contradic-

tion similarly.
Now let K/H be isomorphic to an alternating group. By Tables 1 and 2 in [1],

K/H must be isomorphic to Ap, p, p − 2 both primes, since |G| = p!/4, we get a
contradiction.
Claim 2. Let K/H is a simple group of Lie type over finite field GF(q). Then
the order of factor group G/K cannot be divided by primes t, with p+1

2 < t < p.
Therefore t ∈ π(K/H).
It follows from the proof of Lemma 6 in [5].
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Claim 3. K/H can not be isomorphic to a simple group of Lie type.
By the Claim 2 and Lemma 2.12, we must have 17 ≤ p ≤ 37 and θ(K/H) ≥ 2.
Therefore K/H is isomorphic to one of the following simple groups by Lemma 2.11.

(1) L2(q), where q ≡ ǫ (mod 4) for ǫ = ±1;

(2) 2B2(q), where q = 22m
′

+1 > 2;

(3) 2G2(q), where q = 32m
′

+1 > 3;

(4) E8(q) or 2E6(2).

Since one of the odd order components of K/H is equal to p, by Tables 2 and
3 in [1], we must have:

(1) K/H ∼= L2(17), for p = 17;

(2) K/H ∼= L2(19),
2G2(27) or 2E6(2), for p = 19;

(3) K/H ∼= L2(q), where p = q is equal to 23, 29 or 31;

(4) K/H ∼= L2(37),
2G2(27) or 2E6(2), for p = 37.

If K/H ∼= L2(17), then Since 13 /∈ π(L2(17)), we get a contradiction by the
Claim 2.

If K/H ∼= 2G2(27) for p = 37 or K/H ∼= L2(q), where p = q is equal to 23, 29,
31, or 37, we view a contradiction similarly. Let p = 19. If K/H ∼= L2(19), again by
the Claim 2, we get a contradiction because 17 /∈ π(L2(19)). Since 37 | |2G2(27)|,
we have K/H ≇ 2G2(27).

For the case K/H ∼= 2E6(2), we view a contradiction by 236 | |2E6(2)|.
Also if 5 ≤ p ≤ 13 we know that G has a normal series 1 ⊳ H ⊳ K ⊳ G such that
H and G/K are π1-groups, K/H is a non-abelian simple group, G/H ≤Aut(K/H)
and H is a nilpotent group. By the Claim 1(b), K/H cannot be isomorphic to a
sporadic simple group, and if K/H is isomorphic to an alternating simple group,
then we get a contradiction.

Let K/H be isomorphic to the simple group of Lie type G(q) where q = sm and
s is a prime number. Let p = 5. We know, 5 is one of the odd order components
of K/H . So s = 5 and K/H be isomorphic to L2(5) ∼= A5, a contradiction.

Let p = 7. We know, 7 is one of the odd order components of K/H . So s = 2,
3 or 7. Then the order of all Sylow t-subgroups of G are less than or equal to 64 or
81, respectively. Therefore for both of these cases, K/H is isomorphic to L2(7) or
L2(8). Let K/H ∼= L2(7) or L2(8). Since 5 ∈ π(G)\π(Aut(K/H)), 5 ∈ π(H), which
it contradicts Claim 1(a). For the cases p = 11, 13, we do similarly. Therefore,
|G| = |Ap|. �

Now, we are prepared to prove our main theorem.
Proof of the main theorem. We have |G| = |Ap| and mp(G) = mp(Ap).
Hence the number of Sylow p−subgroups of G is equal to the number of Sylow
p−subgroups of Ap. Since |G| = |Ap| and np(G) = np(Ap), |NG(R)| = |NAp

(S)|
where R ∈Sylp(G) and S ∈Sylp(Ap). Now by Lemma 2.5, G ∼= Ap and the proof is
completed. �

Corollary. Let G be a finite group. If nse(G)=nse(Ap) and |G| = |Ap|, where
p and p− 2 are twin primes, then G ∼= Ap.
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Proof: This is an immediate consequence of the main theorem.
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