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Majorization Problems and Integral Transforms for a Class of

Univalent Functions with Missing Coefficients

Som P. Goyal, Rakesh Kumar and Teodor Bulboacă

abstract: In 2005, Ponnusamy and Sahoo have introduced a special subclass of
univalent functions Un(λ) (n ∈ N, λ > 0) and obtained some geometrical proper-
ties, including strongly starlikeness and convexity, for the functions of this subclass
Un(λ). Moreover, they have studied some important properties of an integral trans-
form connected with these subclasses. The aim of the present paper is to investigate
another important concept of majorization for the functions belonging to the class
Un(λ) (0 < λ ≤ 1). We shall also discuss a majorization problem for some special
integral transforms.
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1. Introduction and Preliminaries

Let H denote the class of functions which are analytic in the open unit disc
∆ = {z ∈ C : |z| < 1}. For a fixed n ∈ N = {1, 2, . . .}, let An be the class of
functions f ∈ H of the form

f(z) = z +

∞
∑

k=n+1

akz
k, z ∈ ∆. (1.1)

We denote A := A1, while the subclass of A consisting of all univalent functions in
∆ is denoted by S.

Definition 1.1. [11, p. 226] If f, g ∈ H, then f is said to be subordinate to g, if
there exists a function w ∈ H satisfying w(0) = 0 and |w(z)| < 1, z ∈ ∆, such that

f(z) = g(w(z)), z ∈ ∆.

The subordination relation is denoted by

f(z) ≺ g(z). (1.2)
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Moreover, if g is univalent in ∆, then this subordination f(z) ≺ g(z) is equiva-
lent to f(0) = g(0) and f(∆) ⊂ g(∆) (cf. Duren [3], Goodman [4]).

Definition 1.2. [17] If f, g ∈ H, then f is said to be quasi-subordinate to g, if

there exists a function ϕ ∈ H satisfying
f

ϕ
∈ H and |ϕ(z)| ≤ 1, z ∈ ∆, such that

f(z)

ϕ(z)
≺ g(z).

The quasi-subordination relation is denoted by

f(z) ≺ q g(z). (1.3)

Note that, the quasi-subordination (1.3) is equivalent to

f(z) = ϕ(z)g(w(z)), z ∈ ∆, (1.4)

where w ∈ H satisfying w(0) = 0 and |w(z)| < 1 for all z ∈ ∆.
Remark that, for the special case when if ϕ(z) ≡ 1, the quasi-subordination

(1.3) becomes the subordination (1.2).

Definition 1.3. [10] If f, g ∈ H, we say that f is majorized by g, if there exists
a function ϕ ∈ H, satisfying |ϕ(z)| ≤ 1, z ∈ ∆, such that

f(z) = ϕ(z)g(z), z ∈ ∆.

The majorization relation is denoted by

f(z) ≪ g(z). (1.5)

If we take w(z) ≡ z in (1.4), then the quasi-subordination (1.3) becomes the
majorization (1.5).

Recently, Ponnusamy and Sahoo [16] defined and studied the class Un(λ) of
functions f ∈ An which satisfy the inequality

∣

∣

∣

∣

∣

(

z

f(z)

)n+1

f ′(z)− 1

∣

∣

∣

∣

∣

< λ, z ∈ ∆, (1.6)

for some real number λ > 0. Several important properties of the class U(λ) :=
U1(λ) has been studied by many authors in [8], [12], [13], [14], [15].

Some interesting majorization problems were investigated earlier by Altinas et
al. [2] for the class of starlike functions of complex order, and in the recent years
many authors investigate majorization problems for various subclasses of univalent
functions, like in [1], [5], [6], [7], [9].

The main aim of this paper is to investigate the majorization problem for the
function f ∈ An which contains the well-known subclass Un(λ) (0 < λ ≤ 1) of
univalent functions. Throughout the paper, the coefficient an+1 from the power

series expansion (1.1) is meant for
f (n+1)(0)

(n+ 1)!
.
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Remark 1.4. 2. If f ∈ Un(λ), with λ > 0, then from [16] we have

∣

∣

∣

∣

(

z

f(z)

)n

− 1

∣

∣

∣

∣

≤ n|z|n (|an+1|+ λ|z|) , z ∈ ∆. (1.7)

2. In particular, if an+1 and λ satisfy the inequality n (|an+1|+ λ) < 1, then
(1.7) is equivalent to

∣

∣

∣

∣

∣

(

f(z)

z

)n

−
1

1− n2|z|2n (|an+1|+ λ|z|)2

∣

∣

∣

∣

∣

≤
n|z|n (|an+1|+ λ|z|)

1− n2|z|2n (|an+1|+ λ|z|)2
, z ∈ ∆.

Thus, if f ∈ Un(λ), then we have

Re

(

f(z)

z

)n

≥
1

1 + n|z|n (|an+1|+ λ|z|)
>

1

1 + n (|an+1|+ λ)
, z ∈ ∆.

To prove these last two results, it is easy to see that

∣

∣

∣

∣

1

w
− 1

∣

∣

∣

∣

≤ R is equivalent

to
(

1−R2
)

|w|2 − 2Rew + 1 ≤ 0,

that is
∣

∣

∣

∣

w −
1

1−R2

∣

∣

∣

∣

≤
R

1− R2
, if R < 1. (1.8)

Moreover, this inequality implies that

1

1 +R
≤ Rew ≤

1

1−R
, if R < 1. (1.9)

Since n (|an+1|+ λ) < 1, we deduce that n|z|n (|an+1|+ λ|z|) < 1 for all z ∈ ∆.

Substituting the values w :=

(

f(z)

z

)n

and R := n|z|n (|an+1|+ λ|z|) < 1 in (1.8)

and (1.9), we obtain, respectively, the above inequalities.
In order to obtain our main results, we need the following well-known Schwarz’s

lemma:

Lemma 1.5. [4] If w ∈ Bn, where

Bn :=
{

w ∈ H : w(0) = w′(0) = . . . = w(n)(0) = 0, |w(z)| < 1, z ∈ ∆
}

,

then
|w(z)| ≤ |z|n+1, z ∈ ∆. (1.10)

The equality in (1.10) is attained if and only if w(z) = eiθzn+1, with θ ∈ R.

From this lemma we deduce the following lemma that will be used in the proof
of our first main result:
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Lemma 1.6. Let p ∈ Pn, where

Pn :=
{

p ∈ H : p(0) = p′(0) = . . . = p(n)(0) = 0
}

.

If the function p satisfies the condition
∣

∣

∣

∣

p(z)−
1

n
zp′(z)

∣

∣

∣

∣

< λ, z ∈ ∆, (1.11)

where λ > 0, then there exists a function w ∈ Bn of the form

w(z) =

∞
∑

k=n+1

wkz
k, z ∈ ∆, (1.12)

such that

p(z) = −nλ

∞
∑

k=n+1

wk

k − n
zk = −nλ

∫ 1

0

w(tz)

tn+1
d t, z ∈ ∆.

Proof: Since p ∈ Pn, therefore by the assumption (1.11) it follows that there exists
a function w ∈ Bn of the form (1.12), such that

p(z)−
1

n
zp′(z) = λw(z), z ∈ ∆. (1.13)

If we let

p(z) =

∞
∑

k=n+1

pkz
k, z ∈ ∆,

then (1.13) gives
(

1−
k

n

)

pk = wk, k ≥ n+ 1,

that is
pk = −nλ

wk

k − n
, k ≥ n+ 1,

and from this last relation immediately arrive at our conclusion. ✷

2. Majorization problem for the class Un(λ)

We begin by proving the following result contained in:

Theorem 2.1. Let g(z) = z +
∞
∑

k=n+1

bkz
k, such that g ∈ Un(λ), where 0 < λ ≤ 1.

If the function f ∈ An is majorized by g, i.e. f(z) ≪ g(z), then

|f ′(z)| ≤ |g′(z)|, for |z| ≤ r1(λ, n), (2.1)

where r1(λ, n) is the smallest positive real root of the equation

λrn+3 − 2nλrn+2 − (2n |bn+1|+ λ) rn+1 − r2 − 2r + 1 = 0. (2.2)
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Proof: For g ∈ Un(λ), with 0 < λ ≤ 1, let define the function w ∈ Bn by

w(z) =
1

λ

[

(

z

g(z)

)n+1

g′(z)− 1

]

, z ∈ ∆.

Since
(

z

g(z)

)n+1

g′(z) =

(

z

g(z)

)n

−
1

n
z

[(

z

g(z)

)n]′

,

therefore, we have

(

z

g(z)

)n

−
1

n
z

[(

z

g(z)

)n]′

− 1 = λw(z). (2.3)

Using the fact that

(

z

g(z)

)n

= 1− nbn+1z
n − . . . , z ∈ ∆, (2.4)

from (2.3) and (2.4), according to Lemma 1.6, we obtain

(

z

g(z)

)n

− 1 + nbn+1z
n = −nλ

∞
∑

k=n+1

wk

k − n
zk,

and therefore
(

z

g(z)

)n

= 1− nbn+1z
n − nλ

∫ 1

0

w(tz)

tn+1
d t.

If we denote

W (z) =

∫ 1

0

w(tz)

tn+1
d t, z ∈ ∆,

then
(

z

g(z)

)n

= 1− nbn+1z
n − nλW (z),

and thus, we have

zg′(z)

g(z)
=

1 + λw(z)

1− nbn+1zn − nλW (z)
, z ∈ ∆. (2.5)

In addition, a simple calculation combined with Lemma 1.5 yields that w ∈ Bn

implies that
|w(z)| ≤ |z|n+1, z ∈ ∆, (2.6)

and

|W (z)| =

∣

∣

∣

∣

∫ 1

0

w(tz)

tn+1
d t

∣

∣

∣

∣

≤

∫ 1

0

|w(tz)|

tn+1
d t ≤ |z|n+1

∫ 1

0

d t = |z|n+1, z ∈ ∆. (2.7)
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Now, from (2.5) we get

|g(z)| ≤
(1 + n |bn+1| |z|

n + nλ |W (z)|) |z|

1− λ|w(z)|
|g′(z)|, z ∈ ∆.

Since f(z) ≪ g(z), from (1.5) and (1.6) we have that

f(z) = ϕ(z)g(z), z ∈ ∆, (2.8)

and differentiating (2.8) we get

f ′(z) = ϕ′(z)g(z) + ϕ(z)g′(z), z ∈ ∆.

Noting that ϕ ∈ Bn satisfies the inequality (see, e.g. Nehari [11])

|ϕ′(z)| ≤
1− |ϕ(z)|2

1− |z|2
, z ∈ ∆. (2.9)

Therefore, we have

|f ′(z)| ≤

[

1− |ϕ(z)|2

1− |z|2
(1 + n |bn+1| |z|

n + nλ |W (z)|) |z|

1− λ|w(z)|
+ |ϕ(z)|

]

|g′(z)|, z ∈ ∆,

and using (2.6) and (2.7), after some simple calculations we get

|f ′(z)| ≤

[

1− |ϕ(z)|2

1− |z|2

(

1 + n |bn+1| |z|
n + nλ|z|n+1

)

|z|

1− λ|z|n+1
+ |ϕ(z)|

]

|g′(z)|, z ∈ ∆,

which gives

|f ′(z)|≤

(

1−|z|2
)(

1−λ|z|n+1
)

|ϕ(z)|+
(

1−|ϕ(z)|2
)(

1+n |bn+1| |z|
n + nλ|z|n+1

)

|z|

(1− |z|2) (1− λ|z|n+1)
|g′(z)|,

for all z ∈ ∆.
Upon setting |z| = r, 0 ≤ r < 1, and |ϕ(z)| = ρ, 0 ≤ ρ ≤ 1, this leads to the

inequality

|f ′(z)| ≤
Θ(r, ρ)

(1− r2) (1− λrn+1)
|g′(z)|, z ∈ ∆, (2.10)

where

Θ(r, ρ) := −
(

1 + n |bn+1| r
n + nλrn+1

)

rρ2

+
(

1− r2
) (

1− λrn+1
)

ρ+
(

1 + n |bn+1| r
n + nλrn+1

)

r.

If we denote

Ψ(r, ρ) :=
Θ(r, ρ)

(1− r2) (1− λrn+1)
,

then (2.10) becomes
|f ′(z)| ≤ Ψ(r, ρ)|g′(z)|, z ∈ ∆.
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From the above relation, in order to prove our result, we need to determine

r1 = max {r ∈ [0, 1] : Ψ(r, ρ) ≤ 1, ∀ρ ∈ [0, 1]} = max {r ∈ [0, 1] : ϕ(r, ρ) ≥ 0,

∀ρ ∈ [0, 1]} , where

ϕ(r, ρ) :=
(

1− r2
) (

1− λrn+1
)

−Θ(r, ρ) =
(

1− r2
) (

1− λrn+1
)

(1− ρ)−
(

1− ρ2
) (

1 + n |bn+1| r
n + nλrn+1

)

r.

A simple calculation shows that the inequality ϕ(r, ρ) ≥ 0 is equivalent to

u(r, ρ) :=
(

1− r2
) (

1− λrn+1
)

−
(

1 + n |bn+1| r
n + nλrn+1

)

r(1 + ρ) ≥ 0.

Obviously the function u(r, ρ) takes its minimum value at ρ = 1, that is

min {u(r, ρ) : ρ ∈ [0, 1]} = u(r, 1) =: v(r),

where

v(r) = λrn+3 − 2nλrn+2 − (2n |bn+1|+ λ) rn+1 − r2 − 2r + 1.

Since v(0) = 1 > 0 and v(1) < 0, it follows that v(r) ≥ 0 for all r ∈ [0, r1], where
r1 := r1(λ, n), is the smallest positive root of the equation (2.2), which completes
our proof. ✷

For n = 1, Theorem 2.1 gives the following special case:

Corollary 2.2. Let g(z) = z +
∞
∑

k=2

bkz
k, such that g ∈ U(λ), where 0 < λ ≤ 1. If

the function f ∈ A is majorized by g, i.e. f(z) ≪ g(z), then

|f ′(z)| ≤ |g′(z)|, for |z| ≤ ρ1(λ),

where ρ1(λ) := r1(λ, 1) is the smallest positive real root of the equation

λr4 − 2λr3 − (2 |b2|+ λ+ 1) r2 − 2r + 1 = 0.

3. Integral Transforms

In this section we consider the following integral transform Ic,n : An → An

defined by

Ic,n(f)(z) = z

[

c+ 1− n

zc+1−n

∫ z

0

(

t

f(t)

)n

tc−n d t

]1/n

, c+ 1− n > 0, (3.1)

(see also [16]). For c = n = 1 the transform (3.1) reduces to

I1,1(f)(z) =

∫ z

0

t

f(t)
d t,

which is similar to the Alexander tranform. Also, the operator Ic,n is similar to the
Bernardi transformation, for n = 1 and c > 0.
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Theorem 3.1. For g(z) = z +
∞
∑

k=n+1

bkz
k, such that g ∈ Un(λ), where 0 < λ ≤ 1,

let
G = Ic,n(g), (3.2)

where Ic,n is defined by (3.1). Let the function f ∈ An, such that F = Ic,n(f) is
majorized by G, i.e. F (z) ≪ G(z), and

2 |cn+1|+
λ(c+ 1− n)(2n+ 1)

c+ 2
≤ 1, (3.3)

where

cn+1 = −
n(c+ 1− n)

c+ 1
bn+1. (3.4)

Then,
|F ′(z)| ≤ |G′(z)|, for |z| ≤ r2(λ, n),

where r2(λ, n) is the smallest positive real root of the equation

λ(c+ 1− n)

c+ 2
(2n+ 1)rn+3 + 2n(c+ 1− n)

(

|cn+1|

c+ 1
−

λ

c+ 2

)

rn+2

−(c+ 1− n)

(

(2n+ 1)λ

c+ 2
+

2n |cn+1|

c+ 1

)

rn+1 (3.5)

−
2n(c+ 1− n)

c+ 1
|cn+1| r

n − r2 − 2r + 1 = 0.

Proof: For g ∈ Un(λ), from (3.2) we easily obtain that

(c+ 1− n)

(

G(z)

z

)n

+ z
d

dz

(

G(z)

z

)n

= (c+ 1− n)

(

z

g(z)

)n

.

Differentiating the above relation we deduce that

1

n(c+ 1− n)

[

(c− n)(n+ 1)

(

G(z)

z

)n

− (c− 2n)
d

dz

(

z

(

G(z)

z

)n)

−z
d2

dz2

(

z

(

G(z)

z

)n)]

=

(

z

g(z)

)n+1

g′(z). (3.6)

Letting

P (z) = z

(

G(z)

z

)n

, (3.7)

from (3.6) and the assumption g ∈ Un(λ) it follows that P satisfies the second
order differential equation

(c− n)(n+ 1)

n(c+ 1− n)

P (z)

z
−

(c− 2n)P ′(z)

n(c+ 1− n)
−

zP ′′(z)

n(c+ 1− n)
= 1 + λw(z), (3.8)



Majorization Problems and Integral Transforms 227

where w ∈ Bn. If we set

P (z) = z +

∞
∑

k=n+1

ckz
k and w(z) =

∞
∑

k=n+1

wkz
k,

then (3.8) could be written like

(c− n)(n+ 1)

n(c+ 1− n)

[

P (z)

z
− 1− cn+1z

n

]

−
(c− 2n)

n(c+ 1− n)
[P ′(z)−1−(n+ 1)cn+1z

n]

−
1

n(c+ 1− n)
[zP ′′(z)− n(n+ 1)cn+1z

n] = λw(z), z ∈ ∆. (3.9)

Denoting

H(z) :=
P (z)

z
− 1− cn+1z

n =

∞
∑

k=n+1

ck+1z
k, z ∈ ∆,

then
zH ′(z) +H(z) = P ′(z)− 1− (n+ 1)cn+1z

n,

z2H ′′(z) + 2zH ′(z) = zP ′′(z)− n(n+ 1)cn+1z
n,

and replacing these values in (3.9) we have

−n2 + n+ cn

n(c+ 1− n)
H(z)+

−c+ 2n− 2

n(c+ 1− n)
zH ′(z)−

1

n(c+ 1− n)
z2H ′′(z) = λw(z), z ∈ ∆.

(3.10)
Equating the coefficients of zn in (3.10) we get the relations

ck+1 = −
λn(c+ 1− n)

c+ 1

(

1

k − n
−

1

k − n+ c+ 1

)

wk, k ≥ n+ 1,

then

H(z) =

∞
∑

k=n+1

ck+1z
k

= −
λn(c+ 1− n)

c+ 1

(

∞
∑

k=n+1

wk

k − n
zk −

∞
∑

k=n+1

wk

k − n+ c+ 1
zk

)

= −
λn(c+ 1− n)

c+ 1

(
∫ 1

0

w(tz)

tn+1
d t−

∫ 1

0

tc+1w(tz)

tn+1
d t

)

, (3.11)

or
P (z)

z
= 1 + cn+1z

n −
λn(c+ 1− n)

c+ 1
W1(z),

where

W1(z) =

∫ 1

0

w(tz)

tn+1

(

1− tc+1
)

d t,
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and cn+1 is given by (3.4).
Also, differentiating the first part of the formula (3.11) we have

zH
′(z) +H(z) = −

λn(c+ 1− n)

c+ 1

[

∞
∑

k=n+1

(k + 1)wk

k − n
z
k −

∞
∑

k=n+1

(k + 1)wk

k − n+ c+ 1
z
k

]

=

−
λn(c+ 1− n)

c+ 1

[

(n+ 1)
∞
∑

k=n+1

wk

k − n
z
k + (c− n)

∞
∑

k=n+1

wk

k − n+ c+ 1
z
k

]

=

−
λn(c+ 1− n)

c+ 1

[

(n+ 1)

∫ 1

0

w(tz)

tn+1
d t+ (c− n)

∫ 1

0

tc+1w(tz)

tn+1
d t

]

.

Thus, we obtain

P ′(z) = 1 + (n+ 1)cn+1z
n −

λn(c+ 1− n)

c+ 1
W2(z),

where

W2(z) =

∫ 1

0

w(tz)

tn+1

[

n+ 1 + (c− n)tc+1
]

d t,

and cn+1 is given by (3.4).
From (3.7) we obtain

zG′(z)

G(z)
=

1

n

[

zP ′(z)

P (z)
− 1

]

+ 1

=
1

n

[

1 + (n+ 1)cn+1z
n − λn(c+1−n)

c+1 W2(z)

1 + cn+1zn − λn(c+1−n)
c+1 W1(z)

− 1

]

+ 1,

which easily gives

zG′(z)

G(z)
=

1 + 2cn+1z
n − λ(c+1−n)

c+1 [(n− 1)W1(z) +W2(z)]

1 + cn+1zn − λn(c+1−n)
c+1 W1(z)

,

and from this equality we get

|G(z)| ≤

[

1 + |cn+1| |z|
n + λn(c+1−n)

c+1 |W1(z)|
]

|z|

1− 2 |cn+1| |z|n − λ(c+1−n)
c+1 [(n− 1) |W1(z)|+ |W2(z)|]

|G′(z)| . (3.12)

Using the fact that w ∈ Bn, a simple calculation combined with Lemma 1.5
implies that

|W1(z)| =

∣

∣

∣

∣

∫ 1

0

w(tz)

tn+1

(

1− tc+1
)

d t

∣

∣

∣

∣

≤

∫ 1

0

|w(tz)|

tn+1

(

1− tc+1
)

d t ≤
c+ 1

c+ 2
|z|n+1, z ∈ ∆, (3.13)
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and

|W2(z)| =

∣

∣

∣

∣

∫ 1

0

w(tz)

tn+1

[

(n+ 1) + (c− n)tc+1
]

d t

∣

∣

∣

∣

≤

∫ 1

0

|w(tz)|

tn+1

[

(n+ 1) + (c− n)tc+1
]

d t ≤
(n+ 2)(c+ 1)

c+ 2
|z|n+1, z ∈ ∆. (3.14)

Since F (z) ≪ G(z), from (1.5) and (1.6) we obtain that

F (z) = ϕ(z)G(z), z ∈ ∆,

and differentiating the above relation we have

F ′(z) = ϕ′(z)G(z) + ϕ(z)G′(z), z ∈ ∆. (3.15)

Thus, noting that ϕ ∈ Bn satisfies the inequality (2.9), by (3.12) and (3.15) we
deduce that
∣

∣F
′(z)

∣

∣ ≤




1− |ϕ(z)|2

1− |z|2

[

1 + |cn+1| |z|
n + λn(c+1−n)

c+1
|W1(z)|

]

|z|

1− 2 |cn+1| |z|n − λ(c+1−n)
c+1

[(n− 1) |W1(z)|+ |W2(z)|]
+ |ϕ(z)|





∣

∣G
′(z)

∣

∣ ,

for all z ∈ ∆. Using (3.13) and (3.14), the above inequality gives that

|F ′(z)|≤





1− |ϕ(z)|2

1− |z|2

[

1 + |cn+1| |z|
n + λn(c+1−n)

c+2 |z|n+1
]

|z|

1− 2 |cn+1| |z|n − λ(c+1−n)
c+2 (2n+ 1)|z|n+1

+|ϕ(z)|



 |G′(z)| ,

that is

|F ′(z)| ≤
Θ(|z|, |ϕ(z)|)

(1− |z|2)
[

1− 2 |cn+1| |z|n − λ(c+1−n)
c+2 (2n+ 1)|z|n+1

] |G′(z)| , z ∈ ∆,

where

Θ(|z|, |ϕ(z)|) :=
(

1− |z|2
)

[

1− 2 |cn+1| |z|
n −

λn(c+ 1− n)

c+ 2
(2n+ 1)|z|n+1

]

|ϕ(z)|

+
(

1− |ϕ(z)|2
)

[

1 + |cn+1| |z|
n +

λn(c+ 1− n)

c+ 2
|z|n+1

]

|z|.

Upon setting |z| = r, 0 ≤ r < 1, and |ϕ(z)| = ρ, 0 ≤ ρ ≤ 1, this inequality
implies that

|F ′(z)| ≤
Θ(r, ρ)

(1− r2)
[

1− 2 |cn+1| rn − λ(c+1−n)
c+2 (2n+ 1)rn+1

] |G′(z)| , z ∈ ∆.

(3.16)
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According to the assumption (3.3), we remark that the denominator of the right-
hand side fraction is positive, for all r ∈ [0, 1).

If we denote

Ψ(r, ρ) :=
Θ(r, ρ)

(1− r2)
[

1− 2 |cn+1| rn − λ(c+1−n)
c+2 (2n+ 1)rn+1

] ,

then (3.16) becomes

|F ′(z)| ≤ Ψ(r, ρ) |G′(z)| , z ∈ ∆.

From the above relation, in order to prove our result, we need to determine

r2 = max {r ∈ [0, 1] : Ψ(r, ρ) ≤ 1, ∀ρ ∈ [0, 1]} = max {r ∈ [0, 1] : ϕ(r, ρ) ≥ 0,

∀ρ ∈ [0, 1]}, where

ϕ(r, ρ) :=
(

1− r2
)

[

1− 2 |cn+1| r
n −

λ(c+ 1− n)

c+ 2
(2n+ 1)rn+1

]

(1− ρ)

−
(

1− ρ2
)

[

1 + |cn+1| r
n +

λn(c+ 1− n)

c+ 2
rn+1

]

r.

A simple calculation shows that the inequality ϕ(r, ρ) ≥ 0 is equivalent to

u(r, ρ) :=
(

1− r2
)

[

1− 2 |cn+1| r
n −

λ(c+ 1− n)

c+ 2
(2n+ 1)rn+1

]

−

[

1 + |cn+1| r
n +

λn(c+ 1− n)

c+ 2
rn+1

]

r(1 + ρ) ≥ 0.

Obviously, the function u(r, ρ) takes its minimum value at ρ = 1, i.e.

min {u(r, ρ) : ρ ∈ [0, 1]} = u(r, 1) =: v(r),

where

v(r) =
λ(c+ 1− n)

c+ 2
(2n+ 1)rn+3 + 2n(c+ 1− n)

(

|cn+1|

c+ 1
−

λ

c+ 2

)

rn+2

−(c+ 1− n)

(

(2n+ 1)λ

c+ 2
+

2n |cn+1|

c+ 1

)

rn+1

−
2n(c+ 1− n)

c+ 1
|cn+1| r

n − r2 − 2r + 1.

Since v(0) = 1 > 0 and v(1) < 0, it follows that v(r) ≥ 0 for all r ∈ [0, r2], where
r2 := r2(λ, n), is the smallest positive root of the equation (3.1), which completes
our proof. ✷

For n = 1, Theorem 3.1 reduces to the following result:
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Corollary 3.2. For g(z) = z +
∞
∑

k=2

bkz
k, such that g ∈ U(λ), where 0 < λ ≤ 1, let

G = Ic,1(g), where Ic,1 is defined by

Ic,1(f)(z) =
c

zc−1

∫ z

0

tc

f(t)
d t, c > 0.

Let the function f ∈ A, such that F = Ic,1(f) is majorized by G, i.e. F (z) ≪ G(z),
and

2c |b2|

c+ 1
+

3λc

c+ 2
≤ 1.

Then,
|F ′(z)| ≤ |G′(z)|, for |z| ≤ ρ2(λ),

where ρ2(λ) := r2(λ, 1) is the smallest positive real root of the equation

3λc

c+ 2
r4 + 2c

[

|b2|c

(c+ 1)2
−

λ

c+ 2

]

r3 −

[

3λc

c+ 2
+ 2

(

c

c+ 1

)2

|b2|+ 1

]

r2

−2

[

(

c

c+ 1

)2

|b2|+ 1

]

r + 1 = 0.
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