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abstract: This paper is concerned with the existence and multiplicity of solutions
for a class of p(x)-Kirchhoff type equations with Neumann boundary condition. Our
technical approach is based on variational methods.
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1. Introduction

In this work, we study the existence and multiplicity of solutions for the nonlocal
elliptic problem under Neumann boundary condition:

{
−M (t)

(
div(|∇u|p(x)−2∇u)− a(x)|u|p(x)−2u

)
= λf(x, u) in Ω

∂u

∂ν
= 0 on ∂Ω,

(1.1)

where Ω is an open bounded subset of R
N (N ≥ 2), with smooth boundary,

∂u

∂ν
is the outer unit normal derivative, a ∈ L∞(Ω), with ess infΩ a > 0, λ > 0 and
p(x) ∈ C+(Ω) with

N < p− := inf
Ω

p(x) ≤ p+ := sup
Ω

p(x) < +∞.

In the statement of problem (1.1), f : Ω×R → R is an Carathéodory function and
M(t) is a continuous function with t :=

∫
Ω

1
p(x)

(
|∇u|p(x) + a(x)|u|p(x)

)
dx.

The p(x)-Laplacian operator possesses more complicated nonlinearities than
the p-Laplacian operator, mainly due to the fact that it is not homogeneous. The
study of various mathematical problems with variable exponent growth condition
has been received considerable attention in recent years, we can for example refer
to [1,4,17,24,29,35]. This great interest may be justified by their various physical
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applications. In fact, there are applications concerning elastic mechanics [41], elec-
trorheological fluids [38,39], image restoration [13], dielectric breakdown, electrical
resistivity and polycrystal plasticity [7,8] and continuum mechanics [5].

As it is well know, problem (1.1) is related to the stationary problem of a model
introduced by Kirchhoff [36]. More precisely, Kirchhoff introduced a model given
by the following equation

ρ
∂2u

∂t2
−

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0, (1.2)

where ρ, ρ0, h, E, L are constants,which extends the classical D’Alembert’s wave
equation, by considering the effects of the changes in the length of the strings
during the vibrations. A distinguishing feature of the Kirchhoff equation is that

the equation contains a nonlocal coefficient ρ0

h
+ E

2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx which depends

on the average E
2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx of the kinetic energy 1
2

∣∣∂u
∂x

∣∣2 on [0, L], and hence
the equation is no longer a point wise identity. On the othere hand, stationary
counterpart of (1.2) is given as

{ (
a+ b

∫
Ω |∇u|2dx

)
∆u = f(x, u) in Ω

u = 0 on ∂Ω,
(1.3)

which is has attracted much attention after Lions’s paper [31], where a functional
analysis frame work for the problem was proposed; see, e.g., [6,12,16] for some
interesting results. Moreover, nonlocal problems like

−M

(∫

Ω

|∇u|2dx

)
∆u = f(x, u) inΩ, u = 0 on ∂Ω, (1.4)

can be used for modeling several physical and biological systems where u describes
a process which depends on the average of it self, such as the population density,
see [3]. The study of Kirchhoff type equations has already been extended to the
case involving the p-Laplacian

−M

(∫

Ω

|∇u|pdx

)
∆pu = f(x, u) in Ω,

see, e.g., [11,26,30]. In [11], the authors present several sufficient conditions for
the existence of positive solutions to a class of nonlocal boundary value problems
of the p-Kirchhoff type equation. However, to our knowledge, there is not a great
number of papers which have dealt with nonlocal p(x)-Laplacian equations. We
refer the reader to [14,18,19,20,34] and the references therein for an overview on
this subject.

Our aim is to establish the existence and multiplicity results for problem (1.1)
through variational methods. First we will exploit a critical point theorem by
Bonanno ( [9], Theorem 5.1) which provides for the existence of a local minima
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for a parameterized abstract functional, and a classical theorem of Ambrosetti-
Rabinowitz, to guarantee that (1.1) has at least two distinct nontrivial weak so-
lutions (Theorem 3.1). Next, we will get the existence of a nontrivial solution
of the problem (1.1) where the nonlinearity f(x, u) does not satisfy Ambrosetti-
Rabinowitz condition (Theorem 3.2), by employing a local minimum theorem ( [9],
Theorem 5.3). These results can be viewed as generalizations to the nonlocal and
variable exponent space setting of some results obtained in [10,33].

2. Preliminaries

Our main tools are two consequences of a local minimum theorem [9, Theorem
3.1] which are recalled below. Given X a set and two functionals Φ,Ψ : X → R,

put

β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)

r2 − Φ(v)
, (2.1)

ρ1(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1])Ψ(u)

Φ(v)− r1
, (2.2)

for all r1, r2 ∈ R, with r1 < r2, and

ρ2(r) = sup
v∈Φ−1(]r,+∞[)

Ψ(v)− supu∈Φ−1(]−∞,r])Ψ(u)

Φ(v)− r
, (2.3)

for all r ∈ R.

Theorem 2.1 ( [9], Theorem 5.1). Let X be a reflexive real Banach space, Φ : X →
R be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable function whose Gâteaux derivative admits a continuous inverse on
X∗, Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux
derivative is compact. Put Iλ = Φ− λΨ and assume that there are r1, r2 ∈ R, with
r1 < r2, such that

β(r1, r2) < ρ1(r1, r2), (2.4)

where β and ρ1 are given by (2.1) and (2.2). Then, for each λ ∈
]

1
ρ1(r1,r2)

, 1
β(r1,r2)

[

there is u0,λ ∈ Φ−1(]r1, r2[) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and
I ′λ(u0,λ) = 0.

Theorem 2.2 ( [9], Theorem 5.3). Let X be a real Banach space; Φ : X → R be
a continuously Gâteaux differentiable function whose Gâteaux derivative admits a
continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable
function whose Gâteaux derivative is compact. Fix infX Φ < r < supX Φ and
assume that

ρ2(r) > 0, (2.5)

where ρ2 is given by (2.3), and for each λ > 1
ρ2(r)

the function Iλ = Φ − λΨ

is coercive. Then, for each λ > 1
ρ2(r)

there is u0,λ ∈ Φ−1(]r,+∞[) such that

Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r,+∞[) and I ′λ(u0,λ) = 0.
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In the sequel, let p(x) ∈ C+(Ω), where

C+(Ω) =
{
h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}
.

The variable exponent Lebesgue space is defined by

Lp(x)(Ω) = {u : Ω → R measurable and

∫

Ω

|u(x)|p(x) dx < +∞}

furnished with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{σ > 0 :

∫

σ

|
u(x)

σ
|p(x) dx ≤ 1},

and the variable exponent Sobolev space is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

equipped with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Proposition 2.3 ( [27,28]). The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable,
uniformly convex, reflexive Banach spaces. The conjugate space of Lp(x)(Ω) is
Lq(x)(Ω), where q(x) is the conjugate function of p(x); i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) we have

∣∣∣
∫

Ω

u(x)v(x)dx
∣∣∣ ≤

( 1

p−
+

1

q−

)
|u|p(x)|v|q(x).

Proposition 2.4 ( [27,28]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗(x) (r(x) <

p∗(x)) for all x ∈ Ω, there is a continuous (compact) embedding

W 1,p(x)(Ω) →֒ Lr(x)(Ω),

where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.

Now, for any u ∈ X := W 1,p(x)(Ω) define

‖u‖a := inf
{
σ > 0 :

∫

Ω

(
|
∇u(x)

σ
|p(x) + a(x)|

u(x)

σ
|p(x)

)
dx ≤ 1

}
.
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Since a ∈ L∞(Ω) with ess infΩ a > 0, we see that ‖.‖a is a norm on X equivalent
to ‖.‖W 1,p(x)(Ω). Now, we introduce the modular ρ : X → R defined by

ρ(u) =

∫

Ω

(|∇u|p(x) + a(x)|u|p(x))dx

for all u ∈ X . Here, we give some relations between the norm ||.||a and the modular
ρ.

Proposition 2.5 ( [27]). For u ∈ X we have

(i) ‖u‖a < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1);

(ii) If ‖u‖a < 1 ⇒ ‖u‖p
+

a ≤ ρ(u) ≤ ‖u‖p
−

a ;

(iii) If ‖u‖a > 1 ⇒ ‖u‖p
−

a ≤ ρ(u) ≤ ‖u‖p
+

a .

Now, let

k := max



 sup

u∈X\{0}

max
x∈Ω

|u(x)|

||u||a



 . (2.6)

It is well know that X →֒ W 1,p−

(Ω) is a continuous embedding, and the embedding

W 1,p−

(Ω) →֒ C0(Ω) is compact when N < p−. So we obtain the embedding
X →֒ C0(Ω) is compact whenever N < p−, and hence k < ∞. If Ω is convex, an
explicit upper bound for the constant k is

k ≤ 2
p−−1

p− max





(
1

‖a‖1

) 1

p−

,
d

N
1

p−

(
p− − 1

p− −N
|Ω|

) p−−1

p− ‖a‖∞
‖a‖1



 (1 + |Ω|) ,

where ‖a‖1 :=
∫
Ω a(x)dx, ‖a‖∞ := supx∈Ω a(x), d := diam(Ω) and |Ω| is the

Lebesgue measure of Ω (see [23]).
Hereafter, we state the assumptions on M(t) and f(x, t):

(M0) M(t) : R → (m0,+∞) is a continuous and increasing function, with m0 > 0.

(M1) there exists 0 < θ < 1 such that

M̂(t) ≥ (1 − θ)M(t)t for all t ≥ 0.

(f0) f : Ω × R → R satisfies Carathéodory condition and there exists c > 0 such
that

|f(x, t)| ≤ c
(
1 + |t|α(x)−1

)
for all (x, t) ∈ Ω× R,

where α ∈ C+(Ω) and α(x) < p∗(x) for all x ∈ Ω.
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(f1) there exist two constants µ > p+

1−θ
and R > 0 such that

0 < µF (x, s) ≤ sf(x, s) for all x ∈ Ω and for all |s| ≥ R,

where θ is given in (M1).

Definition 2.6. We say that u ∈ X is a weak solution of problem (1.1) if

M

(∫

Ω

|∇u|p(x) + a(x)|u|p(x)

p(x)
dx

)∫

Ω

(
|∇u|p(x)−2∇u∇v + a(x)|u|p(x)−2uv

)
dx

−λ

∫

Ω

f(x, u)vdx = 0,

for all v ∈ X.

We introduce the functionals Φ,Ψ : X → R, defined by

Φ(u) = M̂

(∫

Ω

|∇u|p(x) + a(x)|u|p(x)

p(x)
dx

)
, Ψ(u) =

∫

Ω

F (x, u)dx, (2.7)

for all u ∈ X, where

M̂(t) =

∫ t

0

M(s)ds, for all t ≥ 0,

F (x, t) =

∫ t

0

f(x, ξ)dξ, for all (x, t) ∈ Ω× R.

It is well known that Φ and Ψ are well defined and continuously Gâteaux differen-
tiable whose Gâteaux derivatives at point u ∈ X are given by

〈Φ′(u), v〉=M

(
∫

Ω

|∇u|p(x) + a(x)|u|p(x)

p(x)
dx

)
∫

Ω

(

|∇u|p(x)−2∇u∇v + a(x)|u|p(x)−2
uv

)

dx

〈Ψ′(u), v〉 =

∫

Ω

f(x, u)v dx,

for all v ∈ X .
We need the following theorem in the proofs of our main results.

Theorem 2.7 ( [21], Theorem 2.1). If (M0) holds, then

(i) Φ is weakly lower semicontinuous.

(ii) Φ′ is strictly monotone

(iii) Φ′ is of (S+) type, namely

un ⇀ u and lim sup
n→∞

〈Φ′(un), un − u〉 ≤ 0 implies un → u.

(iv) Φ′ admits a continuous inverse on X∗.



Existence and multiplicity of solutions 209

3. Main results

In order to introduce our result, given two positive constants c and d with

p−

p+

( c
k

)p−

6= ||a||1d
p+

.

Set

Ad(c) :=

∫
Ωmax|ξ|≤σ(c) F (x, ξ)dx−

∫
Ω F (x, d)dx

M̂

(
1
p+

(
c
k

)p−

)
− M̂

(
1
p−

‖a‖1dp
+
) ,

where

σ(c) := k

[
p+

m0
M̂
( 1

p+

( c
k

)p−)] 1

p−

and k is given by (2.6).

Theorem 3.1. If (f0), (f1), (M0) and (M1) hold, and there exist three constants
c1 ≥ k, c2 ≥ k and d ≥ 1 with

(c1
k

)p−

< ||a||1d
p−

≤ ||a||1d
p+

<
p−

p+

(c2
k

)p−

(3.1)

such that
Ad(c2) < Ad(c1).

Then, for each λ ∈
]

1
Ad(c1)

, 1
Ad(c2)

[
, problem (1.1) admits at least two nontrivial

weak solutions u1 and u2 such that p−

p+

(
c1
k

)p−

< ρ(u1) <
(

c2
k

)p−

.

Proof: Let Φ, Ψ be the functionals defined in (2.7). Since p− > 1, for each u ∈ X

such that ‖u‖a ≥ 1 we have

〈Φ(u), u〉

‖u‖a
≥

m0

p+
ρ(u)

‖u‖a
≥

m0

p+
‖u‖p

−−1
a → ∞ as ‖u‖a → ∞.

So, Φ is a coercive. From Theorem 2.7, of course, Φ′ admits a continuous inverse
on X∗, moreover, Ψ has a compact derivative, it results sequentially weakly con-
tinuous. Hence Φ and Ψ satisfy all regularity assumptions requested in Theorem
2.1 and that the critical points of the functional Φ− λΨ in X are exactly the weak
solutions of problem (1.1). So, our aim is to verify condition (2.4) of Theorem 2.1.
To this end, let u0(x) = d for all x ∈ Ω, and put

r1 = M̂

(
1

p+

(c1
k

)p−

)
and r2 = M̂

(
1

p+

(c2
k

)p−

)
.

Clearly u0 ∈ X, and

Ψ(u0) =

∫

Ω

F (x, u0)dx =

∫

Ω

F (x, d)dx, (3.2)



210 El. M. Hssini, M. Massar, N. Tsouli

Φ(u0) = M̂

(∫

Ω

a(x)|u0|
p(x)

p(x)
dx

)
.

Then, in virtu of the strict monotonicity of M̂ , we get

M̂

(
‖a‖1d

p−

p+

)
≤ Φ(u0) ≤ M̂

(
‖a‖1d

p+

p−

)
.

Hence, it follows from (3.1) that

r1 < Φ(u0) < r2. (3.3)

Now, let u ∈ X such that u ∈ Φ−1] − ∞, r2[. By (M0) and Proposition 2.5, we
obtain

min
{
‖u‖p

+

a , ‖u‖p
−

a

}
<

r2p
+

m0
.

Then

‖u‖a < max

{(
r2p

+

m0

) 1

p+

,
(r2p+

m0

) 1

p−

}
,

the fact that c2 ≥ k, we get r2p
+

m0
≥ 1 and

‖u‖a <
(r2p+

m0

) 1

p−

.

This together with (2.6), yields

|u(x)| ≤ k||u||a < k
(r2p+

m0

) 1

p−

= σ(c2) for all x ∈ Ω. (3.4)

So

Ψ(u) =

∫

Ω

F (x, u)dx ≤

∫

Ω

max
|ξ|≤σ(c2)

F (x, ξ)dx,

for all u ∈ X such that u ∈ Φ−1(]−∞, r2[). Thus

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) ≤

∫

Ω

max
|ξ|≤σ(c2)

F (x, ξ)dx. (3.5)

On the other hand, arguing as before we obtain

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤

∫

Ω

max
|ξ|≤σ(c1)

F (x, ξ)dx. (3.6)

In view of (3.2)-(3.3) and (3.5)-(3.6), one has

β(r1, r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)−Ψ(u0)

r2 − Φ(u0)

≤

∫
Ωmax|ξ|≤σ(c2) F (x, ξ)dx−

∫
Ω F (x, d)dx

M̂

(
1
p+

(
c2
k

)p−

)
− M̂

(
‖a‖1

p−
dp

+
)

= Ad(c2)
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and

ρ1(r1, r2) ≥
Ψ(u0)− supu∈Φ−1(]−∞,r1]) Ψ(u)

Φ(u0)− r1

≥

∫
Ω
max|ξ|≤σ(c1) F (x, ξ)dx −

∫
Ω
F (x, d)dx

M̂

(
1
p+

(
c1
k

)p−

)
− M̂

(
‖a‖1

p−
dp

+

)

= Ad(c1).

So, by our assumption it follows that

β(r1, r2) < ρ1(r1, r2).

Hence, from Theorem 2.1 for each λ ∈
]

1
Ad(c1)

, 1
Ad(c2)

[
⊂
]

1
ρ1(r1,r2)

, 1
β(r1,r2)

[
, the

functional Iλ := Φ−λΨ admits at least one critical point u1 such that r1 < Φ(u1) <
r2. Therefore

p−

p+

(c1
k

)p−

< ρ(u1) <
(c2
k

)p−

.

Now we prove the existence of the second local minimum distinct from the first
one. To this purpose, we verify the hypotheses of the mountain pass theorem for
the functional Iλ. Clearly Iλ is of class C1 and Iλ(0) = 0. The first part of proof
guarantees that u1 ∈ X is a local nontrivial local minimum for Iλ in X . Therefore
there is ̺ > 0 such that

inf
‖u−u1‖a=̺

Iλ(u) ≥ Iλ(u1),

so condition [37, (I1), Theorem 2.2] is verified. From condition (f1), by standard
computations, there is a positive constant c1 such that

F (x, s) ≥ c1|s|
µ. (3.7)

By integrating (M1), we get

M̂(t) ≤
M̂(t0)

t
1

1−θ

0

t
1

1−θ = c2t
1

1−θ for all t ≥ t0 > 0. (3.8)

Hence, from (3.7) and (3.8), for u ∈ X\{0} and t > 1, we obtain

Iλ(tu) ≤ M̂

(∫

Ω

|t∇u|p(x) + a(x)|tu|p(x)

p(x)
dx

)
− λ

∫

Ω

F (x, tu(x))dx

≤ c3

(∫

Ω

(
|t∇u|p(x) + a(x)|tu|p(x)

)
dx

) 1
1−θ

− c1λt
µ

∫

Ω

|u(x)|µdx

≤ c3t
p+

1−θ

(∫

Ω

(
|∇u|p(x) + a(x)|u|p(x)

)
dx

) 1
1−θ

−c1λt
µ

∫

Ω

|u(x)|µdx → −∞
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as t → ∞, since µ > p+

1−θ
. So the condition [37, (I2), Theorem 2.2] is verified.

Now, we verify that Iλ satisfies the (PS)-condition. To this end, suppose that
(un) ⊂ X is a (PS)-sequence; i.e., there is M > 0 such that

sup |Iλ(un)| ≤ M, I ′λ(un) → 0 as n → +∞.

Let us show that (un) is bounded in X . Using hypothesis (f1) and (M1), for n

large enough, we have

M + ‖un‖a ≥ Iλ(un)−
1

µ
〈I ′λ(un), un〉

= M̂

(∫

Ω

|∇un|
p(x) + a(x)|un|

p(x)

p(x)
dx

)
− λ

∫

Ω

F (x, un)dx

−
1

µ
M

(∫

Ω

|∇un|
p(x) + a(x)|un|

p(x)

p(x)
dx

)

∫

Ω

(
|∇un|

p(x) + a(x)|un|
p(x)
)
dx + λ

∫

Ω

1

µ
f(x, un)undx

≥

(
1− θ

p+
−

1

µ

)
M

(∫

Ω

|∇un|
p(x) + a(x)|un|

p(x)

p(x)
dx

)

∫

Ω

(
|∇un|

p(x) + a(x)|un|
p(x)
)
dx

+ λ

∫

Ω

(
1

µ
f(x, un)un − F (x, un)

)
dx

≥ m0

(
1− θ

p+
−

1

µ

)
‖un‖

p−

a + λ

∫

Ω

(
1

µ
f(x, un)un − F (x, un)

)
dx

≥ m0

(
1− θ

p+
−

1

µ

)
‖un‖

p−

a − c4.

Since µ > p+

1−θ
, (un) is bounded, for a subsequence still denoted (un), we can

assume that un ⇀ u in X , then 〈I ′λ(un), un − u〉 → 0. Thus, we have

M

(∫

Ω

|∇un|
p(x) + a(x)|un|

p(x)

p(x)
dx

)

∫

Ω

(
|∇un|

p(x)−2∇un(∇un −∇u) + a(x)|un|
p(x)−2un(un − u)

)
dx

−

∫

Ω

f(x, un)(un − u) dx → 0.

From (f0) and Proposition 2.3, we get that
∫
Ω
f(x, un)(un − u) dx → 0. there-
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fore, one has

M

(∫

Ω

|∇un|
p(x) + a(x)|un|

p(x)

p(x)
dx

)

∫

Ω

(
|∇un|

p(x)−2∇un(∇un −∇u) + a(x)|un|
p(x)−2un(un − u)

)
dx → 0.

In view of condition (M0), we obtain

∫

Ω

(
|∇un|

p(x)−2∇un(∇un −∇u) + a(x)|un|
p(x)−2un(un − u)

)
dx → 0.

We write

J(u) :=

∫

Ω

1

p(x)

(
|∇u|p(x) + a(x)|u|p(x)

)
dx.

Using Theorem 2.7, the mapping J ′ : X → X∗ is of (S+) type. Then we have
un → u. Consequently, the classical theorem of Ambrosetti and Rabinowitz ensures
a critical point u2 such that Iλ(u2) > Iλ(u1). So u1 and u2 are distinct weak
solutions of the problem, and the proof of Theorem 3.1 is achieved. ✷

Corollary 3.2. Assume that f(x, s) = α(x)g(s) for all (x, s) ∈ Ω × R, where
α ∈ L1(Ω) such that α ≥ 0 a.e. x ∈ Ω, α 6≡ 0, and g : R → R be a nonnega-
tive continuous function. If (f0), (f1), (M0) and (M1) hold, and there exist three
constants c1 ≥ k, c2 ≥ k and d ≥ 1 such that (3.1) and

G(c2)−G(d)

M̂

(
1
p+

(
c2
k

)p−

)
− M̂

(
1
p−

‖a‖1dp
+

) <
G(c1)−G(d)

M̂

(
1
p+

(
c1
k

)p−

)
− M̂

(
1
p−

‖a‖1dp
+

)

Then, for each

λ ∈



M̂

(
1
p+

(
c1
k

)p−

)
− M̂

(
1
p−

‖a‖1d
p+
)

G(c1)−G(d)
,

M̂

(
1
p+

(
c2
k

)p−

)
− M̂

(
1
p−

‖a‖1d
p+
)

G(c2)−G(d)


 ,

the problem

−M

(∫

Ω

1

p(x)

(
|∇u|p(x) + a(x)|u|p(x)

)
dx

)(
div(|∇u|p(x)−2∇u)− a(x)|u|p(x)−2u

)

= λα(x)g(u) in Ω

∂u

∂ν
= 0 on ∂Ω,

admits at least two nonnegative weak solutions.
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Proof: Clearly, one has F (x, s) = α(x)G(s) for all (x, s) ∈ Ω × R. Therefore,
taking into account that G is a nondecreasing function, one has

Ad(c2) = ‖α‖1
G(c2)−G(d)

M̂

(
1
p+

(
c2
k

)p−

)
− M̂

(
1
p−

‖a‖1dp
+
)

< ‖α‖1
G(c1)−G(d)

M̂

(
1
p+

(
c1
k

)p−

)
− M̂

(
1
p−

‖a‖1dp
+

) = Ad(c1).

Therefore, Theorem 3.1 ensure the existence of at last two solutions, and by stan-
dard argument we see that they are nonnegative. ✷

Finally, we give an application of Theorem 2.2.

Theorem 3.3. If (M0) and (f0) hold, and there exist two constants c and d ≥ 1
with

1 ≤
( c
k

)p−

< ||a||1d
p−

such that ∫

Ω

max
|ξ|≤σ(c)

F (x, ξ)dx <

∫

Ω

F (x, d)dx (3.9)

and

lim sup
|ξ|→+∞

F (x, ξ)

|ξ|p−

≤ 0 uniformly in x. (3.10)

Then, for each

λ ∈ Λ :=




M̂

(
1
p+

(
c
k

)p−

)
− M̂

(
1
p−

‖a‖1d
p+
)

∫
Ω
max|ξ|≤σ(c) F (x, ξ)dx−

∫
Ω
F (x, d)dx

,+∞


 ,

problem (1.1) admits at least one nontrivial weak solution u such that ρ(u) >

p−

p+

(
c
k

)p−

.

Proof: The functionals Φ and Ψ given by (2.7) satisfy all regularity assumptions
requested in Theorem 2.2. By (3.10) and (f0), for every ε > 0, we get

F (x, ξ) ≤ ε|ξ|p
−

+ lε(x) for all (x, ξ) ∈ Ω× R, (3.11)

where lε ∈ L1(Ω). This implies that

∫

Ω

F (x, u)dx ≤ εc5||u||
p−

a +

∫

Ω

lε(x)dx for all u ∈ X,
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where c5 is a constant of Sobolev. Therefore, choosing 0 < ε < m0

c5p+ , from (3.11)
and Proposition 2.5, we obtain

Iλ(u) = Φ(u)− λΨ(u) ≥

(
m0

p+
− εc5

)
||u||p

−

a −

∫

Ω

lε(x)dx.

for all u ∈ X such that ||u||a ≥ 1. So, Iλ is coercive. To apply Theorem 2.2, it
suffices to verify condition (2.5). Indeed, put

r = M̂

(
1

p+

( c
k

)p−

)
and u0(x) = d for all x ∈ Ω.

Arguing as in the proof of Theorem 3.1 we obtain

ρ2(r) ≥

∫
Ω
max|ξ|≤σ(c) F (x, ξ)dx −

∫
Ω
F (x, d)dx

M̂

(
1
p+

(
c
k

)p−

)
− M̂

(
1
p−

‖a‖1d
p+
) .

So, from our assumption it follows that ρ2(r) > 0. Hence, in view of Theorem 2.2
for each λ ∈ Λ, Iλ admits at least one local minimum u such that

M̂

(∫

Ω

1

p(x)

(
|∇u|p(x) + a(x)|u|p(x)

))
> M̂

(
1

p+

( c
k

)p−

)
.

Therefore

ρ(u) >
p−

p+

( c
k

)p−

,

and our conclusion is achieved. ✷
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