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On semiderivations of ∗−prime rings

Öznur Gölbaşıand Onur Ağırtıcı

abstract: Let R be a ∗-prime ring with involution ∗ and center Z(R). An
additive mapping F : R → R is called a semiderivation if there exists a function
g : R → R such that (i) F (xy) = F (x)g(y) + xF (y) = F (x)y + g(x)F (y) and (ii)
F (g(x)) = g(F (x)) hold for all x, y ∈ R. In the present paper, some well known
results concerning derivations of prime rings are extended to semiderivations of ∗-
prime rings.

Key Words: ∗−prime rings, derivations, semiderivations.

Contents

1 Introduction 179

2 Results 180

1. Introduction

Let R will be an associative ring with center Z. For any x, y ∈ R the symbol
[x, y] represents commutator xy − yx. Recall that a ring R is prime if xRy = 0
implies x = 0 or y = 0. An additive mapping ∗ : R → R is called an involu-
tion if (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R. A ring equipped with an
involution is called a ring with involution or ∗−ring. A ring with an involution
is said to ∗−prime if xRy = xRy∗ = 0 or xRy = x∗Ry = 0 implies that x = 0
or y = 0. Every prime ring with an involution is ∗−prime but the converse need
not hold general. An example due to Oukhtite [7] justifies the above statement
that is, R be a prime ring, S = R×Ro where Ro is the opposite ring of R. Define
involution ∗ on S as ∗(x, y) = (y, x). S is ∗−prime, but not prime. This exam-
ple shows that every prime ring can be injected in a ∗−prime ring and from this
point of view ∗−prime rings constitute a more general class of prime rings. In all
that follows the symbol Sa∗

(R), first introduced by Oukhtite, will denote the set
of symmetric and skew symmetric elements of R, i.e. Sa∗

(R) = {x ∈ R | x∗ = ±x}.

An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y)
holds for all x, y ∈ R. For a fixed a ∈ R, the mapping Ia : R → R given by
Ia(x) = [a, x] is a derivation which is said to be an inner derivation. The study of
derivations in prime rings was initiated by E. C. Posner in [11]. Recently, Bresar
defined the following notation in [1]: An additive mapping F : R → R is called a
generalized derivation if there exists a derivation d : R → R such that

F (xy) = F (x)y + xd(y), for all x, y ∈ R.
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Basic examples are derivations and generalized inner derivations (i.e., maps of type
x → ax + xb for some a, b ∈ R). Several authors consider the structure of a
prime ring in the case that the derivation d is replaced by a generalized derivation.
Generalized derivations have been primarily studied on operator algebras.

In [2] J. Bergen has introduced the notion of semiderivations of a ring R which
extends the notion of derivations of a ring R. An additive mapping F : R → R is
called a semiderivation if there exists a function g : R → R such that (i) F (xy) =
F (x)g(y) + xF (y) = F (x)y + g(x)F (y) and (ii) F (g(x)) = g(F (x)) hold for all
x, y ∈ R. In case g is an identity map of R, then all semiderivations associated with
g are merely ordinary derivations. On the other hand, if g is a homomorphism of
R such that g 6= 1, then f = g− 1 is a semiderivation which is not a derivation. In
case R is prime and F 6= 0, it has been shown by Chang [3] that g must necessarily
be a ring endomorphism.

Let S be a nonempty subset of R. A mapping F from R to R is called centralizing
on S if [F (x), x] ∈ Z for all x ∈ S and is called commuting on S if [F (x), x] = 0
for all x ∈ S. The study of such mappings was initiated by E. C. Posner in [11]. A
famous result due to Herstein [5] states that if R is a prime ring of characteristic
not 2 which admits a nonzero derivation d such that [d(x), a] = 0 for all x ∈ R,

then a ∈ Z. Also, Herstein showed that if d (R) ⊂ Z, then R must be commutative.
On the other hand, in [4], Daif and Bell proved that if a semiprime ring R has a
derivation d satisfying the following condition, then I is a central ideal;

there exists a nonzero ideal I of R such that

either d([x, y]) = [x, y] for all x, y ∈ I, or d([x, y]) = −[x, y] for all x, y ∈ I.

Many authors have studied commutativity of prime and semiprime rings admitting
derivations, generalized derivations and semiderivations which satisfy appropriate
algebraic conditions on suitable subsets of the rings. Recently, some well-known
results concerning prime rings have been proved for ∗−prime ring by Oukhtite et
al. (see, [6-10], where further references can be found). In the present paper our
objective is to generalize above results for semiderivations of a ∗−prime ring.

Throughout the paper, R will be a ∗−prime ring and F be a semiderivation of
R associated with a surjective function g of R such that ∗F = F ∗ . Also, we will
make some extensive use of the basic commutator identities:

[x, yz] = y[x, z] + [x, y]z

[xy, z] = [x, z]y + x[y, z].

2. Results

Lemma 2.1. Let R be a ∗−prime ring and a ∈ R. If R admits a semiderivation
F of R such that aF (x) = 0 ( or F (x)a = 0) for all x ∈ R, then a = 0 or F = 0.

Proof: For all x, y ∈ R, we get aF (xy) = 0, and hence

aF (x)g(y) + axF (y) = 0,
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and so
aRF (y) = 0, for all y ∈ R.

Replacing y by y∗ in this equation and using ∗F = F∗, we find that

aRF (y)∗ = 0, for all y ∈ R.

Since R is a ∗−prime ring, we have a = 0 or F = 0. Similarly holds case F (x)a = 0.
✷

The following theorem is be obtained using the same methods in [3, Theorem
1].

Theorem 2.2. Let R be a ∗−prime ring, F a nonzero semiderivation of R asso-
ciated with a function g (not necessarily surjective). Then g is a homomorphism
of R.

Proof: For any x, y, z ∈ R, we get

F (z(x+ y)) = F (z)g(x+ y) + zF (x+ y)

= F (z)g(x+ y) + zF (x) + zF (y).

On the other hand,

F (z(x+ y)) = F (zx+ zy)

= F (z)g(x) + zF (x) + F (z)g(y) + zF (y).

Comparing these two equations, we arrive at F (z)(g(x+ y)− g(x)− g(y)) = 0, for
all x, y, z ∈ R. Using Lemma 2.1 and F 6= 0, we obtain that

g(x+ y) = g(x) + g(y), for all x, y ∈ R.

Now, let x, y, z ∈ R. Then

F ((xy)z) = g(xy)F (z) + F (xy)z

= g(xy)F (z) + g(x)F (y)z + F (x)yz.

On the other hand,

F ((xy)z) = F (x(yz)) = g(x)F (yz) + F (x)yz

= g(x)g(y)F (z) + g(x)F (y)z + F (x)yz.

Hence we get (g(xy) − g(x)g(y))F (z) = 0, for all x, y, z ∈ R. Again using Lemma
2.1 and F 6= 0, we have

g(xy) = g(x)g(y), for all x, y ∈ R.

✷
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Theorem 2.3. Let R be a ∗−prime ring, F a semiderivation of R such that
F (R) ⊆ Z, then F = 0 or R is commutative.

Proof: By the hypothesis, we have

F (xy) ∈ Z, for all x, y ∈ R.

That is

F (x)g(y) + xF (y) ∈ Z, for all x, y ∈ R.

Commuting this term with x and using the hypothesis, we get

0 = [F (x)g(y) + xF (y), x]

= F (x)[g(y), x]

Since F (x) ∈ Z and g is surjective function of R, we arrive at

F (x)R[y, x] = 0, for all x, y ∈ R.

Using ∗F = F∗, for any x ∈ Sa∗
(R), we have

F (x)∗R[y, x] = 0, for all x ∈ Sa∗
(R), y ∈ R.

Since R is a ∗−prime ring, we arrive at

F (x) = 0 or [y, x] = 0, for all x ∈ Sa∗
(R), y ∈ R.

Using the fact that x + x∗ ∈ Sa∗
(R), x − x∗ ∈ Sa∗

(R) for all x ∈ R, we easily
deduce F (x ± x∗) = 0 or [y, x ± x∗] = 0. Hence we obtain R is union of its two
additive subgroups such that

K = {x ∈ R | F (x) = 0}

and

L = {x ∈ R | x ∈ Z}.

Clearly each of K and L is additive subgroup of R. Morever, R is the set-theoretic
union of K and L. But a group can not be the set-theoretic union of two proper
subgroups, hence K = R or L = R. In the former case, we have F = 0 and the
second case, R is commutative. ✷

Theorem 2.4. Let R be a 2−torsion free ∗−prime ring, F a semiderivation of R
such that F 2(x) = 0, for all x ∈ R, then F = 0.

Proof: Assume that

F 2(x) = 0, for all x ∈ R.
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Replacing x by xy in this equation, we get

0 = F 2(xy) = F (F (x)g(y) + xF (y))

= F 2(x)g2(y) + F (x)F (g(y)) + F (x)g(F (y)) + xF 2(y)

and so
2F (x)F (g(y)) = 0, for all x, y ∈ R.

Using R is a 2−torsion free and g is surjective function of R, we have

F (x)F (y) = 0, for all x, y ∈ R.

By Lemma 2.1, we complete the proof. ✷

Theorem 2.5. Let R be a 2−torsion free ∗−prime ring and a ∈ R. If R admits a
semiderivation F such that [F (x), a] = 0, for all x ∈ R, then F = 0 or a ∈ Z.

Proof: Replacing x by xy and using the hypothesis, we have

0 = [a, F (xy)] = [a, F (x)y + g(x)F (y)]

= F (x)[a, y] + [a, g(x)]F (y) (2.1)

Writing y for F (y) in this equation and again using the hypothesis, we obtain that

[a, g(x)]F 2(y) = 0, for all x, y ∈ R.

Since g is surjective function of R, we have

[a, x]F 2(y) = 0, for all x, y ∈ R.

Substituting xz for x in this equation, we get

[a, x]RF 2(y) = 0, for all x, y ∈ R.

Since ∗F = F∗, it reduces

[a, x]RF 2(y)∗ = 0, for all x, y ∈ R.

By the ∗−primeness of R, we find that

a ∈ Z or F 2(y) = 0, for all y ∈ R.

If F 2(y) = 0, for all y ∈ R, then F = 0 by Theorem 2.4. ✷

Theorem 2.6. Let R be a 2−torsion free ∗−prime ring and F a semiderivation
of R such that [F (R), F (R)] = 0, then F = 0 or R is commutative.

Proof: By Theorem 2.5, we have F = 0 or F (R) ⊆ Z. If F (R) ⊆ Z, then F = 0
or R is commutative by Theorem 2.3. ✷
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Theorem 2.7. Let R be a ∗−prime ring, F a semiderivation of R such that
[F (x), x] = 0, for all x ∈ R, then F = 0 or R is commutative.

Proof: Linearizing the hypothesis, we have

[F (x), y] + [F (y), x] = 0, for all x, y ∈ R.

Replacing y by yx in this equation and using the hypothesis, we get

0 = [F (x), yx] + [F (yx), x]

= [F (x), y]x + [F (y)x+ g(y)F (x), x],

and so
[g(y), x]F (x) = 0, for all x, y ∈ R.

Since g is surjective function of R, we have

[y, x]F (x) = 0, for all x, y ∈ R.

Writing yz for y and using this equation, we obtain that

[y, x]RF (x) = 0, for all x, y ∈ R.

Using the same arguments as we used in the last part of proof of the Theorem 2.3,
we get the required result. ✷

Theorem 2.8. Let R be a ∗−prime ring, F a nonzero semiderivation of R such
that F ([x, y]) = 0, for all x, y ∈ R, then R is commutative.

Proof: Replacing y by xy in the hypothesis, we get

0 = F (x[x, y]) = F (x)g([x, y]) + xF ([x, y])

= F (x)g([x, y]).

We know that g is homomorphism of R by Theorem 1. Hence we have

F (x)[g(x), g(y)] = 0, for all x, y ∈ R.

Since g is surjective function of R, we get

F (x)[g(x), y] = 0, for all x, y ∈ R.

Writing yz for y and using this equation, we obtain that

F (x)R[g(x), z] = 0, for all x, z ∈ R.

Using ∗F = F∗, for any x ∈ Sa∗
(R), we have

F (x)∗R[g(x), z] = 0, for all x ∈ Sa∗
(R), z ∈ R.
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Since R is a ∗−prime ring, we arrive at

F (x) = 0 or [g(x), y] = 0, for all x ∈ Sa∗
(R), y ∈ R.

Using the fact that x+x∗ ∈ Sa∗
(R), x−x∗ ∈ Sa∗

(R) for all x ∈ R, we easily deduce
F (x ± x∗) = 0 or [g(x ± x∗), y] = 0. Hence we obtain that R is union of its two
additive subgroups such that

K = {x ∈ R | F (x) = 0}

and
L = {x ∈ R | [g(x), y] = 0, for all y ∈ R}.

Clearly each of K and L is additive subgroup of R. Morever, R is the set-theoretic
union of K and L. But a group can not be the set-theoretic union of two proper sub-
groups, hence K = R or L = R. In the former case, we have F = 0, a contradiction.
So, we must have L = R. Hence R is commutative. ✷

Theorem 2.9. Let R be a ∗−prime ring, F a nonzero semiderivation of R such
that F ([x, y]) = ±[x, y], for all x, y ∈ R, then R is commutative.

Proof: Replacing y by xy in the hypothesis, we get

F (x[x, y]) = ±x[x, y]

F (x)g([x, y]) + xF ([x, y]) = ±x[x, y],

and so
F (x)g([x, y]) = 0.

Using the same arguments as we used in the last part of proof of the Theorem 2.8,
we get the required result. ✷
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