\(\mu - k \)-Connectedness in GTS

Shyamapada Modak and Takashi Noiri

ABSTRACT: Császár [4] introduced \(\mu \)-semi-open sets, \(\mu \)-preopen sets, \(\mu \)-\(\alpha \)-open sets and \(\mu \)-\(\beta \)-open sets in a GTS \((X, \mu) \). By using the \(\mu \)-\(\sigma \)-closure, \(\mu \)-\(\pi \)-closure, \(\mu \)-\(\alpha \)-closure and \(\mu \)-\(\beta \)-closure in \((X, \mu) \), we introduce and investigate the notions \(\mu - k \)-separated sets and \(\mu - k \)-connected sets in \((X, \mu) \).

Key Words: \(\mu - k \)-separated, \(\mu - k \)-connected, \(\mu - k \)-component.

Contents

1 Introduction and preliminaries 159

2 \(\mu - k \)-separated sets 160

1. Introduction and preliminaries

Let \(X \) be a set and \(\exp X \) denote the power set of \(X \). We call a class \(\mu \subset \exp X \) a generalized topology \([2]\) (briefly GTS) if \(\emptyset \in \mu \) and any union of elements of \(\mu \) belongs to \(\mu \). A set with GT is called a generalized topological space (briefly GTS).

For a GTS \((X, \mu) \), the elements of \(\mu \) are called \(\mu \)-open sets and the complements of \(\mu \)-open sets are called \(\mu \)-closed sets. For \(A \subset X \), we denote by \(c_{\mu}(A) \) the intersection of all \(\mu \)-closed sets containing \(A \) and \(i_{\mu}(A) \) the union of all \(\mu \)-open sets contained in \(A \). Then we recall that \(i_{\mu}(i_{\mu}(A)) = i_{\mu}(A) \), \(c_{\mu}(c_{\mu}(A)) = c_{\mu}(A) \) and \(i_{\mu}(i_{\mu}(A)) = c_{\mu}(A) \). A set \(A \subset X \) is said to be \(\mu \)-semi-open (resp. \(\mu \)-preopen, \(\mu \)-\(\alpha \)-open, \(\mu \)-\(\beta \)-open) if \(A \subset c_{\mu}(i_{\mu}(A)) \) (resp. \(A \subset i_{\mu}(c_{\mu}(A)), A \subset i_{\mu}(i_{\mu}(A)) \)). We denote by \(\sigma(\mu) \) (resp. \(\pi(\mu), \alpha(\mu), \beta(\mu) \)) the class of all \(\mu \)-semi-open sets (resp. \(\mu \)-preopen sets, \(\mu \)-\(\alpha \)-open sets, \(\mu \)-\(\beta \)-open sets). The complement of a \(\mu \)-\(\alpha \)-open (resp. \(\mu \)-\(\sigma \)-open, \(\mu \)-\(\pi \)-open, \(\mu \)-\(\beta \)-open) set is said to be \(\mu \)-\(\alpha \)-closed (resp. \(\mu \)-\(\sigma \)-closed, \(\mu \)-\(\pi \)-closed, \(\mu \)-\(\beta \)-closed) \([5]\). \(i_{\mu}(A) \) (resp. \(i_{\sigma}(A), i_{\pi}(A), i_{\beta}(A) \)) denotes the union of \(\mu \)-\(\alpha \)-open (resp. \(\mu \)-\(\sigma \)-open, \(\mu \)-\(\pi \)-open, \(\mu \)-\(\beta \)-open) sets included in \(A \) and \(c_{\alpha}(A) \) (resp. \(c_{\sigma}(A), c_{\pi}(A), c_{\beta}(A) \)) \([5]\) denotes the intersection of \(\mu \)-\(\alpha \)-closed (resp. \(\mu \)-\(\sigma \)-closed, \(\mu \)-\(\pi \)-closed, \(\mu \)-\(\beta \)-closed) sets including \(A \).

Obviously \(\mu \subset \alpha(\mu) \subset \sigma(\mu) \subset \beta(\mu) \) and \(\alpha(\mu) \subset \pi(\mu) \subset \beta(\mu) \).

Given \(U, V \subset X \), let us say \(U \) and \(V \) are \(\gamma \)-separated \([3]\) if \(c_{\mu}(U) \cap V = c_{\mu}(V) \cap U = \emptyset \).

Let us say that a set \(S \subset X \) is \(\gamma \)-connected if \(S = U \cup V, U \) and \(V \) are \(\gamma \)-separated imply \(U = \emptyset \) or \(V = \emptyset \). The space \(X \) is said to be \(\gamma \)-connected if it is a \(\gamma \)-connected subset of itself (here space \(X \) means GTS \((X, \mu) \)).

2000 Mathematics Subject Classification: 54A05, 54D05
The purpose of this paper is to introduce and investigate the notions of $\mu - k$ - connected sets by using $c_\mu(A)$, $c_\sigma(A)$, $c_\pi(A)$ and $c_\beta(A)$ in GTS (X, μ).

2. $\mu - k$ - separated sets

Definition 2.1. Let (X, μ) be a GTS. Two nonempty subsets U, V of X are said to be $\mu - k$ - separated if $c_\mu(U) \cap c_k(V) = \emptyset = c_k(U) \cap c_\mu(V)$, where $k = \alpha, \sigma, \pi$ or β.

If we assign the values $k = \sigma, \pi, \alpha, \beta$, then we get different types $\mu - k$ - separated sets.

Observe that two $\mu - k$ - separated sets are disjoint. Moreover, if U and V are $\mu - k$ - separated, $U' \subset U$, $V' \subset V$, then U' and V' are $\mu - k$ - separated as well.

Again every $\mu - k$ - separated sets is a γ - separated set.

From the above definition we obtain the following diagram:

DIAGRAM I

```
\begin{array}{ccc}
\mu-\sigma\text{-separated} & \rightarrow & \mu-\alpha\text{-separated} \\
\downarrow & & \downarrow \\
\gamma\text{-separated} & \rightarrow & \mu-\beta\text{-separated} \\
& & \downarrow \\
& & \mu-\pi\text{-separated}
\end{array}
```

Definition 2.2. A subset A of a GTS X is said to be $\mu - k$ - connected if A is not the union of two $\mu - k$ - separated sets in X.

From the above definition for a subset of a GTS the following diagram holds:

DIAGRAM II

```
\begin{array}{ccc}
\gamma\text{-connected} & \rightarrow & \mu-\beta\text{-connected} \\
& & \downarrow \\
& & \mu-\pi\text{-connected} \\
\downarrow & & \downarrow \\
\mu-\sigma\text{-connected} & \rightarrow & \mu-\alpha\text{-connected}
\end{array}
```

In the sequel, a GTS is briefly called a space.

Theorem 2.3. Let X be a space. If A is a $\mu - k$ - connected subset of X and H, G are $\mu - k$ - separated subsets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Proof: Let A be a $\mu - k$ - connected set. Let $A \subset H \cup G$. Since $A = (A \cap H) \cup (A \cap G)$, then $c_k(A \cap G) \cap c_\mu(A \cap H) \subset c_k(G) \cap c_\mu(H) = \emptyset$ and $c_\mu(A \cap G) \cap c_k(A \cap H) = \emptyset$, $c_\mu(A \cap G) \cap c_k(H) = \emptyset$. Suppose $A \cap H$ and $A \cap G$ are nonempty. Then A is not $\mu - k$ - connected. This is a contradiction. Thus, either $A \cap H = \emptyset$ or $A \cap G = \emptyset$. This implies that $A \subset H$ or $A \subset G$. □
Theorem 2.4. If A and B are μ - k - connected sets of a space X such that A and B are not μ - k - separated, then $A \cup B$ is μ - k - connected.

Proof: Let A and B be μ - k - connected sets in X. Suppose $A \cup B$ is not μ - k - connected. Then, there exist two nonempty μ - k - separated sets G and H such that $A \cup B = G \cup H$. Since A and B are μ - k - connected, by Theorem 2.3, either $A \subset G$ and $B \subset H$ or $B \subset G$ and $A \subset H$. Now if $A \subset G$ and $B \subset H$, then $\cap_{\mu}(A) \cap \cap_{\mu}(B) \subset \cap_{\mu}(G) \cap \cap_{\mu}(H) = \emptyset$ and $\cap_{\mu}(A) \cap \cap_{\mu}(B) \subset \cap_{\mu}(G) \cap \cap_{\mu}(H) = \emptyset$. Thus, A and B are μ - k - separated, which is a contradiction. In case $B \subset G$ and $A \subset H$ a contradiction is similarly shown. Hence, $A \cup B$ is μ - k - connected. □

Theorem 2.5. If $\{M_i : i \in I\}$ is a nonempty family of μ - k - connected sets of a space X, with $\cap_{i \in I} M_i \neq \emptyset$, then $\cup_{i \in I} M_i$ is μ - k - connected.

Proof: Suppose $\cup_{i \in I} M_i$ is not μ - k - connected. Then we have $\cup_{i \in I} M_i = H \cup G$, where H and G are nonempty μ - k - separated sets in X. Since $\cap_{i \in I} M_i \neq \emptyset$, we have a point $x \in \cap_{i \in I} M_i$. Since $x \in \cup_{i \in I} M_i$, either $x \in H$ or $x \in G$. Suppose that $x \in H$. Since $x \in M_i$ for each $i \in I$, then M_i and H intersect for each $i \in I$. By Theorem 2.3, $M_i \subset H$ or $M_i \subset G$. Since H and G are disjoint, $M_i \subset H$ for all $i \in I$ and hence $\cup_{i \in I} M_i \subset H$. This implies that G is empty. This is a contradiction.

Suppose that $x \in G$. By the similar way, we have that H is empty. This is a contradiction. Thus, $\cup_{i \in I} M_i$ is μ - k - connected. □

Theorem 2.6. Let X be a space, $\{A_\alpha : \alpha \in \Delta\}$ be a family of μ - k - connected sets and A be a μ - k - connected set. If $A \cap A_\alpha \neq \emptyset$ for every $\alpha \in \Delta$, then $A \cup (\cup_{\alpha \in \Delta} A_\alpha)$ is μ - k - connected.

Proof: Since $A \cap A_\alpha \neq \emptyset$ for each $\alpha \in \Delta$, by Theorem 2.5, $A \cup A_\alpha$ is μ - k - connected for each $\alpha \in \Delta$. Moreover, $A \cup (\cup A_\alpha) = (A \cup A_\alpha)$ and $\cap (A \cup A_\alpha) \supset A \neq \emptyset$. Thus by Theorem 2.5, $A \cup (\cup A_\alpha)$ is μ - k - connected. □

Theorem 2.7. If A is a μ - k - connected subset of a space X and $A \subset B \subset c_k(A)$, then B is also a μ - k - connected subset of X.

Proof: Suppose B is not a μ - k - connected subset of X then there exist μ - k - separated sets H and G such that $B = H \cup G$. This implies that H and G are nonempty and $c_k(G) \cap c_k(H) = \emptyset = c_\mu(G) \cap c_\mu(H)$. By Theorem 2.3, we have that either $A \subset H$ or $A \subset G$. Suppose that $A \subset H$. Then $c_k(A) \subset c_k(H)$ and $c_\mu(G) \cap c_k(A) \subset c_\mu(G) \cap c_k(H) = \emptyset$. This implies that $G \subset B \subset c_k(A)$ and $G = c_k(A) \cap G \subset c_k(A) \cap c_\mu(G) = \emptyset$. Thus G is an empty set. Since G is nonempty, this is a contradiction. Hence, B is μ - k - connected. □

Corollary 2.8. If A is a μ - k - connected subset of X, then $c_k(A)$ is also a μ - k - connected subset of X.

Definition 2.9. Let X be a space and $x \in X$. Then union of all μ-k-connected subsets of X containing x is called the μ-k-component of X containing x.

Theorem 2.10. 1. The set of all distinct μ-k-components of a space X forms a partition of X.
2. Each μ-k-component of a space X is a k-closed set.

Proof: The proof of (2) follows from Corollary 2.8. □

Now we recall the following definition from [2] and [5]:

Definition 2.11. Let (X, μ) and (X, μ') be GTS’s. Then a function $f : X \to X'$ is said to be (μ, μ')-continuous if $f^{-1}(V)$ is μ-open set in X for every μ'-open set of X'.

Theorem 2.12. The (μ, μ')-continuous image of a γ-connected space is a μ-k-connected space.

Proof: The proof is obvious from the Theorem 2.2 of [3] and the DIAGRAM II. □

Definition 2.13. ([6]) Let (X, μ) be a GTS and $G \subset X$.
1) G is called μ-dense if $c_\mu(G) = X$.
2) (X, μ) is called hyperconnected if G is μ-dense for every μ-open subset $G = \emptyset$ of (X, μ).

Remark 2.14. ([6]) For a GTS (X, μ), the following holds: (X, μ) is hyperconnected \rightarrow (X, μ) is connected. This implication is not reversible as shown in [6].

Theorem 2.15. ([6]) Let (X, μ) be a GTS. The following properties are equivalent:
1) (X, μ) is hyperconnected,
2) $G \cap H = \emptyset$ for every nonempty μ-open subsets G and H of (X, μ).

References
μ - k - Connectedness in GTS

Shyamapada Modak
Department of Mathematics, University of Gour Banga, P.O. Mokdumpur,
Malda - 732103, India,
E-mail address: spmodak2000@yahoo.co.in

and

Takashi Noiri
2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 JAPAN
E-mail address: t.noiri@nifty.com