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Analytical solution of settling behavior of a particle in incompressible
Newtonian fluid by using Parameterized Perturbation Method

R. Mohammadyari, M. Rahimi-Esbo, M. Rahgoshay

abstract: The problem of solid particle settling is a well known problem in
the field of fluid mechanics. The parametrized Perturbation Method is applied to
analytically solve the unsteady motion of a spherical particle falling in a Newtonian
fluid using the drag of the form given by Oseen/Ferreira, for a range of Reynolds
numbers. Particle equation of motion involved added mass term and ignored the
Basset term. By using this new kind of perturbation method called parameterized
perturbation method (PPM), analytical expressions for the instantaneous velocity,
acceleration and position of the particle were derived. The presented results show
the effectiveness of PPM and high rate of convergency of the method to achieve
acceptable answers.

Key Words: Drag, Sphere, Acceleration motion, Non-linear equation, Param-
eterized Perturbation Method (PPM);

Contents

1 Introduction 145

2 Problem description 147

3 Basic idea of parameterized perturbation method 148

4 Conclusions 150

1. Introduction

The settling of a particle in a fluid or gas happens in a wide series of natural
and engineering phenomenon. There are numerous applications of settling veloc-
ity in many diverse fields of science and engineering, industrial process, alluvial
channels [1,2] chemical and powder processing [3,4] and Sediment transport and
deposition in pipe lines [5,6] are just a few examples. There are many researchers
who have published some research in this filed Shukla [7] et al B. Željko et al [8].
A particle falling in a fluid under the influence of gravity will accelerate until the
gravitational force is exactly balanced by the resisting forces including buoyancy
and drag. The constant velocity reaches at a stage called the “terminal velocity" or
“settling velocity". The resistive drag force depends upon drag coefficient. During
the past decades, a vast body of knowledge has been accumulated on the steady-
state motion of spheres in incompressible Newtonian fluids and extensive sets of
data have been collected resulting in several theoretical and empirical correlations
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for the drag coefficient, CD in the terms of the Reynolds number, Re. These re-
lationships for spherical particles were presented in treatises and review papers by
Clift et al. [9], Khan and Richardson [10] and Chhabra [11], among others. A
comparison between a number of these correlations for spheres by Hartman and
Yates [12] showed relatively low deviations. In contrast to steady-state motion of
particles much less has been reported about the acceleration motion of spherical
particles in incompressible Newtonian fluids. The accelerated motion is relevant to
many processes such as particle classification, centrifugal and gravity particle col-
lection and/or separation, where it is often necessary to determine the trajectories
of particles accelerating in a fluid [13]. Also for other particular situations, like
viscosity measurement using the falling-ball method or rain-drop terminal velocity
measurement it is necessary to know the time and distance required for particles to
reach their terminal velocities. For very small Reynolds numbers (creeping flows)
Stokes developed an analytical expression for the drag coefficient which is given as,

CD =
24

Re
(1.1)

a, b, c, d Constants PPM Parameterized perturbation method

A General differential operator Re Reynolds number

Acc acceleration (, /s2) t time (s)

B boundary operator u velocity (m/s)

CD Drag coefficient Greek Symbols

D particle diameter (m) Γ boundary of domain

G acceleration due to gravity (m/s2) µ Dynamic viscosity (kg/ms)

L linear part of equation ρ Fluid density (kg/m3)

M particle mass (kg) ρ
s

particle density (kg/m2)

N non-linear part of equation φ Constant

P embedding parameter ψ Constant

Ω Domain

The creeping flow equation neglects the effect of inertia and is acceptable for
Re < 0.4. For larger Reynolds numbers, at first the boundary layer around the
sphere particle has the steady laminar regime. At higher speeds, the boundary
layer around the particle tends to separate resulting in vortex shedding and wake
formation, and the fluid inertia becomes important. The vortex shedding does not
initiate until Reynolds number increases to more than twenty [14]. For Reynolds
greater than that of creeping flow there is a different regime of motion, also because
of development of the boundary layer, the drag coefficient becomes higher than that
predicted by Eq. (1.1). Another well-known analytical relationship is presented
by Oseen [15]. The inertial effect has been developed approximately to correct to
Stokes? drag given as:

CD =
24

Re
+

9

2
(1.2)
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Reviewing the literature, shows that most of the pervious works on spherical parti-
cles were performed experimentally [16,17]. Ferreira et al. [16], in their analytical
study, suggested another correlation given as:

CD =
24

RE
+

1

2
(1.3)

Eq. (1.3) was found to be in good agreement with the experimental data in a wide
range of Reynolds numbers, Re ≤ 105. Also Ferreira and Chhabra [13] presented an
analytical solution for the transient motion of a sphere falling through a Newtonian
fluid using the drag of the form given by Abraham [17] and Wadell [18]. In this
work, we studied the motion of a sphere with a drag coefficient of form given by
Eqs. (1.2) and (1.3) which has the following general expression:

CD =
φ

Re
+ ψ (1.4)

Lapple [19] shows the variations of CD versus Re for Eqs (1.2) and (1.3) in a log-log
diagram Fig. 1. This figure shows the drag given by Eq. (1.3) is much closer to
the experimental data when compared with Eq. (1.2).

In this manuscript analytical expression for the accelerated motion of a falling
spherical particle was derived. To analyze the problem the drag coefficient in
form of Eq. (1.4) and the parameterized perturbation method (PPM) were used.
Analysis of falling particle equation is a new application of parameterized per-
turbation method (PPM) which has been used for other engineering applications
[20,21,22,23,24,25,26,27,28,29].

2. Problem description

Consider a small, rigid, spherical, particle with diameter D, mass m and density
ρs falling in an infinite extent of an incompressible Newtonian fluid of density ρ
and viscosity µ. Let u represent the velocity of the particle at any instant time,
t, and g the acceleration due to gravity. Fig. 2 shows a schematic diagram of the
falling sphere. The unsteady motion of the particle in a fluid can be described
by the BBO equation. For a dense particle falling in light fluids and by assuming
ρ≪ ρs, Basset History force is negligible. Thus, the equation of particle motion is
given as

m
du

dt
= mg

(

1−
ρ

ρs

)

−
1

8
πD2CDu

2
−

1

12
πD3ρ

du

dt
(2.1)

Where CD is the drag coefficient In the right hand side of the Eq. (2.1), the
first term represents the buoyancy affect, the second term corresponds to drag
resistance, and the last term is due to the added mass effect which is due to
acceleration of fluid around the particle. The main difficulty in solution of Eq. (2.1)
hidden in the non-linear terms due to non-linearity nature of the drag coefficient
CD Substituting Eq. (1.4) in Eq. (2.1) and by rearranging parameters, Eq. (2.1)
could be rewritten as follow:

a
du

dt
+ bu+ cu2 − d = 0 , u(0) = 0 (2.2)
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Where

a = (m+
1

12
πD3ρ) (2.3)

b =
ϕ

8
πDµ (2.4)

c =
ψ

8
πD2ρ (2.5)

d = mg(1−
ρ

ρs
) (2.6)

Eq. (2.2) is a non-linear ordinary differential equation which could be solved by
numerical techniques such Runge–Kutta method. We employed PPM and com-
pared our results with numerical solution of 4th order Runge–Kutta method using
the Maple package.

3. Basic idea of parameterized perturbation method

Perturbation method is very well-known method in solving nonlinear equation.
In this method equations have a small parameter such as ε but in a width series
of equation in science and engineering there is not a small parameter so perturba-
tion method can not be applied in these conditions to use a kind of this method
called parameterized perturbation method (PPM) [20,21,22,23,24,25,26,27,28,29].
PPM makes a small parameter in equation then by considering zero value for neg-
ative powers of ε , singular points of differential equation are omitted. Finally
perturbation method can be applied to solve equation and obtaining results.
For making small parameter in equation we guess the answer such as u(t) will be:

u(t) =ε.v(t)+β (3.1)

Substituting these sentences in equation and dividing it by ε gives an equation for
v(t) in which small parameter exists, for deleting sentences with negative powers
of ε a suitable β must be chosen. Boundary condition and initial condition will
change, considering relation between u(t) and v(t).

Application

By considering Eq. (2.2) for using PPM, in [24,25], the expanding parameter is
introduced by a linear transformation:

u(t) =ε.v(t)+β (3.2)

Where ε is the introduced as perturbation parameter, β is a constant .With these
guesses, general equation and initial condition from Eq.6 will be:

a.
dv(t)

dt
+b.v(t) + c.ε.v2(t) + 2c.v(t)+

(c.β2+bβ− d)

ε
= 0 (3.3)

v(0) = −
β

ε
(3.4)
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For omitting the sentence of equation with negative power of epsilon terms, the
answer of following equation will be chosen for β. This action will simplify the
procedure of solution:

c.β2+bβ− d = 0 (3.5)

The final form of Eq. (3.4) will be changed in the following form:

a.
dv(t)

dt
+b.v(t) + c.ε.v2(t) + 2c.v(t) = 0 (3.6)

By using perturbation method for v(t) assuming that solution of the Eq. (3.4) can
be written in the form:

v = v0 + εv1 + ε2v2 + ε3v3 + . . . (3.7)

Unlike the traditional perturbation methods, we keep

v0(0) = v(0) (3.8)

And
∑

i=1

vi(0) = 0 (3.9)

By considering coefficient of different fluids from Table. 1 and using the coefficient
of general equation Eq. (2.2) from Table. 2 and continuing procedure of solution,
velocity and acceleration function will be obtained.
By considering following values for Water by

a = 1.0863 ∗ 10−5 , b = 2.8273 ∗ 10−5 , c = 1.5848 ∗ 10−2 , d = 2.3665 ∗ 10−5

The velocity profile will be as follows:

u(t) =− 0.06656852263e(−104.9486898t) + 0.05391265951e(−209.8973795t)

−0.3243531202e(−314.8460693t)+ 0.01199744606e(−419.7947591t) (3.10)

−0.001982766901e(−524.7434489t)+ 0.03507649599

Results of Numerical Runge-Kutta method and PPM for Water at Eq. (1.2) and
(1.3) were compared in table. 3 and 4.
The mentioned method was applied for analyzing settling manner of a spherical
particle in a Newtonian fluid. A single spherical Aluminum particle of 3 mm diam-
eter was assumed to fall in an infinity body of Water, Glycerin or Ethylene glycol.
Required physical properties of selected materials are given in Table 1.Inserting the
above properties into Eqs.(2.3–2.6), and using Eqs. (1.2) and (1.3) , six different
combinations are gained which are classified in Table 2. By substituting the above
coefficients in Eq. (2.2), six different non-linear equations are achieved. Parame-
terized Perturbation Method was used to solve applied equations. The results of



150 R. Mohammadyari and M.Rahimi-Esbo

this method were compared with those from the numerical solution. Figs. 4 and 5
depict the variation of falling velocity of the particle versus time in different fluids
and drag coefficients obtained from Eq. (1.2) and (1.3). Figs. 6 and 7 depict
the variation of falling acceleration of the particle versus time in different fluids
by using drag coefficient obtained from Eqs. (1.2) and (1.3). Presented results
demonstrate an excellent agreement between PPM and the numerical method.
By increasing the fluid viscosity, terminal velocity (shown in Figs. 4 and 5 and
acceleration duration (shown in Figs. 6 and 7) decline. Moreover the difference
between the results of Eqs. (1.2) and (1.3) were decreased by the reduction of fluid
viscosity that this object can be seen in Figs. 10 and 11 for velocity values and
in Fig. 12 and 13 for acceleration values. Fig.8 and 9 demonstrate the position of
the falling particle in different fluids for each instant during the falling procedure,
Comparing Figs.8 and 9 reveals the difference between the positions predicted by
Eqs. (1.2) and (1.3) , which is stronger for the higher viscose media due to a larger
calculated drag coefficient by Eq. (1.2) in low Reynolds number.

4. Conclusions

In this study behavior of settling a spherical particle in a Newtonian fluid analyti-
cally is expanded. By considering the different drag coefficient, governing equation
of particle’s behavior was achieved in non-linear differential form. In this equation
there wasn’t a small parameter, this matter makes a problem for using perturbation
method. A new kind of perturbation method called parameterized perturbation
method (PPM) was used to implement small parameter artificially and solve the
non-linear governing equation. The instantaneous velocity, acceleration and posi-
tion of particle were obtained by using PPM. Results were compared with numerical
Runge-Kutta method which a very good approximation was observed. Analysis of
the results has presented relation between viscosity of fluid on the behavior of set-
tling and velocity and acceleration regime of particle. This presented work reveals
high flexibility and accuracy of Parameterized parameter method (PPM) for solv-
ing a wide series of engineering and natural problems without a small parameter.
PPM can be used in future for other non-linear equations.
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Figure 1: Drag coefficient as a function of Reynolds number.

Figure 2: Schematic picture of free falling spherical particle in a Newtonian fluid
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Figure 3: free body diagram of forces

Figure 4: velocity variation for different fluids, Drag Eq.(1.2)
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Figure 5: elocity variation for different fluids, Drag Eq.(1.3)

Figure 6: Acceleration variation for different fluids, Drag Eq.(1.2)
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Figure 7: Acceleration variation for different fluids, Drag Eq.(1.3)

Figure 8: Positions of falling particle for different fluids at Time step = 0.03 s using
Eq. (1.2)
(a) Water, (b) Ethylene-glycol and (c) Glycerin
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Figure 9: Positions of falling particle for different fluids at Time step = 0.03 s using
Eq. (1.3)
(a) Water, (b) Ethylene-glycol and (c) Glycerin

Figure 10: Velocity profile from Eq.2 and Eq.3 for Water
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Figure 11: Velocity profile from Eq.2 and Eq.3 for Glycerin

Figure 12: Acceleration profile from Eq.2 and Eq.3 for Water
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Figure 13: Acceleration profile from Eq.2 and Eq.3 for Glycerin

Table 1: Physical properties of materials.
Materials Density(kg/m3) Viscosity(kg/m s)
Water 996.51 0.001
Glycerin 1259 0.799
Ethylene-glycol 1111.40 0.0157
Aluminum 2702.00 —

Table 2: Selected coefficient of Eq. (1.2).
Solid Fluid Drag

equation

A B c d

Aluminum Water Eq.(1.2) 1.0863 e -5 2.8273 e-5 1.5848 e-2 2.3665 e-5
Eq.(1.3) 1.0863 e -5 5.8903 e-8 1.5848 e-2 2.3665 e-5

Glycerin Eq.(1.2) 1.2719 e-5 2.2590 e-2 2.0022 e-2 2.0023 e-5
Eq.(1.3) 1.2719 e-5 4.7063 e-4 2.0022 e-2 2.0023 e-5

Ethylene-
glycol

Eq.(1.2) 1.1675 e-5 4.4389 e-4 1.7675 e-2 2.2071 e-5

Eq.(1.3) 1.1675 e-5 9.2477 e-6 1.7675 e-2 2.2071 e-5
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Table 3: Comparing PPM and numerical results for Water at Eq. (1.2).
u(t)

T PPM Numerical Error
0 0 0 0
0.015 0.023245 0.026197 0.002952
0.030 0.032267 0.035335 0.003067
0.045 0.034477 0.037302 0.002826
0.060 0.034951 0.037676 0.002724
0.075 0.035051 0.037745 0.002695
0.090 0.035071 0.037758 0.002687
0.105 0.035075 0.037760 0.002685
0.120 0.035076 0.037761 0.002684
0.135 0.035076 0.037761 0.002684
0.150 0.035076 0.037761 0.002684

Table 4: Comparing PPM and numerical results for Water at Eq. (1.3)
u(t)

T PPM Numerical Error
0 0 0 0
0.015 0.02720542 0.02661540 0.00059002
0.030 0.03634794 0.03610248 0.00024546
0.045 0.03822480 0.03816010 0.00006470
0.060 0.03856669 0.03855171 0.00001498
0.075 0.03862758 0.03862431 0.00000327
0.090 0.03863839 0.03863770 0.00000068
0.105 0.03864030 0.03864017 0.00000013
0.120 0.03864064 0.03864062 0.00000002
0.135 0.03864070 0.03864070 0.00000000
0.150 0.03864071 0.03864072 0.00000000
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