

(3s.) **v. 33** 1 (2015): 105–110. ISSN-00378712 IN PRESS doi:10.5269/bspm.v33i1.21312

\mathcal{I}_{g} -Submaximal Spaces

K. Bhavani and D.Sivaraj

ABSTRACT: In this paper, we define \mathcal{I}_{g} - submaximal spaces and study its charecterizations and properties.

Key Words: Ideal topological space, \star - dense sets, \mathcal{I}_{g} - open sets, \mathcal{I}_{g} - closed sets, \mathcal{I} - submaximal spaces, g- submaximal spaces, \mathcal{I}_{g} - locally $- \star -$ closed set.

Contents

105
1

2 J_a - Submaximal Spaces 106

3 J_q - Submaximal Subspaces

1. Introduction and Preliminaries.

An *ideal* \mathcal{I} on X [11] is a collection of subsets of X satisfying the following: (i) If $A \in \mathfrak{I}$ and $B \subset A$, then $B \in \mathfrak{I}$, and (ii) if $A \in \mathfrak{I}$ and $B \in \mathfrak{I}$, then $A \cup B \in \mathfrak{I}$. A topological space (X, τ) together with an ideal \mathfrak{I} is called an *ideal topological space* and is denoted by (X, τ, J) . For each subset A of X, $A^{\star}(\mathcal{I}, \tau) = \{x \in X \mid U \cap A \notin J\}$ for every open set U containing x is called the *local function* of A [11] with respect to I and τ . We simply write A^* instead of $A^*(\mathfrak{I},\tau)$ in case there is no chance for confusion. We often use the properties of the local function stated in Theorem 2.3 of [8] without mentioning it. Moreover, $cl^*(A) = A \cup A^*$ [15] defines a Kuratowski closure operator for a topology τ^* , which is finer than τ . An ideal \mathcal{I} is a *boundary ideal* [15] or a *codense ideal* [8] if $\tau \cap \mathfrak{I} = \{\emptyset\}$. A subset A of an ideal space (X, τ, \mathfrak{I}) is said to be pre- \mathcal{I} -open [3], if $A \subset intcl^*(A)$ where int is the interior operator in (X, τ) . A subset A of an ideal space (X, τ, J) is said to be J- locally -*- closed set [13], if there exists an open set U and a \star - closed set F such that $A = U \cap F$. A subset A of a topological space (X, τ) is said to be g- closed [10], if $cl(A) \subset U$ whenever $A \subset U$ and U is open. The complement of a g- closed set is called a gopen set [10]. A subset A of an ideal space (X, τ, J) is said to be J_{g} - closed [4], if $A^* \subset U$ whenever $A \subset U$ and U is open. The complement of an \mathcal{I}_{q} - closed set is called an \mathcal{I}_{g} - open set [4]. A space in which every \mathcal{I}_{g} - closed set is a \star - closed set is called a $T_{\mathcal{I}}$ -space [4]. An ideal topological space (X, τ, \mathcal{I}) is said to be an \mathcal{I} submaximal [1] space, if every \star -dense set is open. A topological space (X, τ) is said to be an g- submaximal [2] space if every dense set is g- open. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I}_q -locally-*-closed set [13], if there exists an \mathcal{I}_q -

Typeset by $\mathcal{B}^{\mathcal{S}}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

109

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54A10

open set U and a \star - closed set F such that $A = U \cap F$. The following lemmas will be useful in the sequel.

Lemma 1.1. [1] For a subset A of an ideal space (X, τ, \mathcal{I}) , the following properties are equivalent.

(a) A is pre $\neg \exists -open$.

(b) $A = G \cap B$ where G is open and B is \star - dense.

Lemma 1.2. [14] Let (X, τ, J) be an ideal space and $A \subset X$. If $A \subset A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$.

Lemma 1.3. [4] Let (X, τ, J) be an ideal space and $A \subset X$. Then the finite union of J_q - closed sets is an J_q - closed set.

2. \mathcal{I}_q - Submaximal Spaces

An *ideal topological space* (X, τ, \mathcal{I}) is said to be an \mathcal{I}_g - submaximal space if every \star - dense set is \mathcal{I}_g - open. The following Theorem 2.1 shows that every \mathcal{I} submaximal space is an \mathcal{I}_g - submaximal space and Example 2.2 below shows that the converse is not true.

Theorem 2.1. Every J- submaximal space is an J_q - submaximal space.

Proof: Let (X, τ, J) be an J- submaximal space and A be τ^* - dense in X. Since (X, τ, J) is J- submaximal, A is open in X. Since every open set is J_{g^-} open, A is J_{g^-} open. Hence (X, τ, J) is an J_{g} -submaximal space.

The following Example 2.2. shows that the converse of Theorem 2.1. is not true.

Example 2.2. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $J = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. If $A = \{b, c, d\}$, then A is J_g - open but not open.

Theorem 2.3. If (X, τ, \mathfrak{I}) is an T_I - ideal space and A is a \star -dense - in -itself, \mathfrak{I}_g -closed subset of X, then A is closed.

Proof: Let A be \star -dense-in -itself, \mathcal{I}_g - closed subset of X. Then by Theorem 2.1 [12], there exists no nonempty closed set in $cl^*(A) - A$. Since (X, τ, \mathcal{I}) is a T_I -space, A is \star - closed and so $cl^*(A) - A = \emptyset$. Since A is \star - dense-in -itself, $cl^*(A) = cl(A), cl(A) - A = \emptyset$ which implies that cl(A) = A. Thus A is closed. \Box

Theorem 2.4. Every g- submaximal space is an \mathcal{J}_{q} - submaximal space.

Proof: Let $A \subset X$ be \star - dense in a g- submaximal space (X, τ, \mathfrak{I}) . Since every \star dense set is a dense set, A is dense in X. Since (X, τ, \mathfrak{I}) is g- submaximal, A is gopen. By Remark 2 of [6], every g- open set is an \mathfrak{I}_g - open set and so A is \mathfrak{I}_g - open. Therefore every g- submaximal space is an \mathfrak{I}_g - submaximal space. \Box

The following Example 2.5. shows that the converse of Theorem 2.4. is not true.

106

Example 2.5. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. If $A = \{a, c\}$, then A is \mathcal{I}_g - open but not g- open.

Theorem 2.6. Let (X, τ, J) be an ideal space. Then the following are equivalent. (a) (X, τ, J) is an J_g - submaximal space. (b) Every pre-J-open set is J_g - open.

Proof: $(a) \Rightarrow (b)$. Suppose that (X, τ, \mathcal{I}) is \mathcal{I}_{g^-} submaximal and $A \subset X$ be pre- \mathcal{I} -open. Then $A = U \cap D, U \in \tau, D$ is \star -dense. Since X is \mathcal{I}_{g^-} submaximal, D is \mathcal{I}_{g^-} open. Also U is \mathcal{I}_{g^-} open. Since intersection of two \mathcal{I}_{g^-} open sets is an \mathcal{I}_{g^-} open set by Lemma 1.3, A is an \mathcal{I}_{g^-} open set.

 $(b) \Rightarrow (a)$. Let A be \star -dense in (X, τ, \mathfrak{I}) . Then A is pre- \mathfrak{I} -open which implies that A is \mathfrak{I}_{g} - open, by hypothesis. Hence (X, τ, \mathfrak{I}) is an \mathfrak{I}_{g} - submaximal space. \Box

Theorem 2.7. Let (X, τ, \mathfrak{I}) be an ideal space. Then the following are equivalent. (a) (X, τ, \mathfrak{I}) is an \mathfrak{I}_g - submaximal space.

(b) Every subset is \mathfrak{I}_q -locally- \star -closed set.

(c) Every \star - dense subset of X is an intersection of a \star -closed set and an \mathbb{J}_g - open subset of X.

Proof: $(a) \Rightarrow (b)$. Let (X, τ, \mathfrak{I}) is an \mathfrak{I}_{g} - submaximal space. Since every \star - dense set is open in (X, τ, \mathfrak{I}) , by Corollary 4.7(b) of [13], every subset is \mathfrak{I}_{g} - locally- \star - closed set.

 $(b) \Rightarrow (c)$. Let A be \star - dense in (X, τ, \mathfrak{I}) . By hypothesis, A is an \mathfrak{I}_g -locally- \star closed set. Then by Theorem 4.3 of [13], there exists an \mathfrak{I}_g - open set U such that $A = U \cap cl^{\star}(A)$. It follows that $A = U \cap X = U$ which implies that A is \mathfrak{I}_g - open. Hence (X, τ, \mathfrak{I}) is an \mathfrak{I}_g - submaximal space.

 $(c) \Rightarrow (a)$. Let A be \star - dense in (X, τ, \mathfrak{I}) . By hypothesis, $A = U \cap F$, where U is an \mathfrak{I}_g - open and F is a \star - closed set. Since $A \subset F$, F is \star -dense and so F = X. Hence A = U which is an \mathfrak{I}_g - open set. Thus (X, τ, \mathfrak{I}) is an \mathfrak{I}_g - submaximal space. \Box

Theorem 2.8. For an ideal space (X, τ, \mathfrak{I}) , the following are equivalent. (a) (X, τ, \mathfrak{I}) is an \mathfrak{I}_g - submaximal space. (b) For every subset $A \subset X$, if A is not an \mathfrak{I}_g - open set, then

 $A - intcl^*(A) \neq \emptyset.$

(c) $\eta = \{U - A : U \text{ is } \mathfrak{I}_g\text{-open and } int^*(A) = \emptyset\}$ where η is the family of all $\mathfrak{I}_g\text{-open sets.}$

Proof: $(a) \Rightarrow (b)$. Suppose that $A - intcl^*(A) = \emptyset$. Then $A \subset intcl^*(A)$ which implies A is pre- \mathbb{I} -open. Since X is \mathbb{J}_{g^-} submaximal, A is \mathbb{J}_{g^-} open which is a contradiction. Hence $A - intcl^*(A) \neq \emptyset$.

 $(b) \Rightarrow (a)$. Let A be pre- \mathcal{I} -open. Suppose that A is not an \mathcal{I}_g - open set. Then by hypothesis, $A-intcl^*(A) \neq \emptyset$ which implies $A \not\subseteq intcl^*(A)$ which is a contradiction. Hence A is \mathcal{I}_g - open which implies that (X, τ, \mathcal{I}) is an \mathcal{I}_g - submaximal space.

 $(a) \Rightarrow (c)$. Suppose that $\sigma = \{U - A : U \text{ is } \mathcal{I}_q \text{-open and } int^*(A) = \emptyset\}$. Let $G \in \eta$.

Since $G = G - \emptyset$, and $int^*(\emptyset) = \emptyset$, then $\eta \subset \sigma$. Let $G \in \sigma$. Then G = U - A, where U is \mathfrak{I}_{g^-} open and $int^*(A) = \emptyset$. Then $G = U \cap (X - A)$. Since $int^*(A) = \emptyset, X - int^*(A) = cl^*(X - A) = X$. Since X is \mathfrak{I}_{g^-} submaximal, X - A is \mathfrak{I}_{g^-} open. By Lemma 1.3, G is \mathfrak{I}_{g^-} open. Hence $\sigma \subset \eta$.

 $(c) \Rightarrow (a)$. Let A be a pre- \mathfrak{I} -open set. By Lemma 1.1, $A = G \cap B$, where G is open and B is \star - dense. Hence $cl^{\star}(B) = X$ and so $int^{\star}(X - B) = \emptyset$. This implies A = G - (X - B) and $int^{\star}(X - B) = \emptyset$. Since every open set is \mathfrak{I}_{g} - open, G is \mathfrak{I}_{g} - open. Hence by Lemma 1.3, A is \mathfrak{I}_{g} - open. \Box

Theorem 2.9. Let (X, τ, \mathfrak{I}) be an ideal space. Then the following are equivalent. (a) (X, τ, \mathfrak{I}) is an \mathfrak{I}_g - submaximal space. (b) $cl^*(A) - A$ is \mathfrak{I}_g - closed for every $A \subset X$.

Proof: $(a) \Rightarrow (b)$. Let (X, τ, \mathfrak{I}) be an $\mathfrak{I}_{g^{-}}$ submaximal space and $A \subset X$. Consider $(X - (cl^{*}(A) - A)) = (X - cl^{*}(A)) \cup A$. Then $cl^{*}(X - (cl^{*}(A) - A)) = cl^{*}((X - cl^{*}(A)) \cup A) \supset (X - (cl^{*}(A)) \cup cl^{*}(A) = X$. Thus $cl^{*}(X - (cl^{*}(A) - A)) = X$. Hence $X - (cl^{*}(A) - A)$ is $\mathfrak{I}_{g^{-}}$ open which implies that $cl^{*}(A) - A$ is $\mathfrak{I}_{g^{-}}$ closed for every $A \subset X$.

 $(b) \Rightarrow (a)$. Suppose that (b) holds. Let A be *-dense in (X, τ, \mathcal{I}) . Since $cl^*(A) - A$ is \mathcal{I}_g - closed for every $A \subset X$, X - A is \mathcal{I}_g -closed which implies that A is an \mathcal{I}_g -open set for every $A \subset X$. Hence (X, τ, \mathcal{I}) is an \mathcal{I}_g - submaximal space. \Box

Theorem 2.10. Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent. (a) (X, τ, \mathcal{I}) is an \mathcal{I}_g - submaximal space. (b) $A \cap (A^* - A)^*$ is \mathcal{I}_g - open for every $A \subset X$.

Proof: $(a) \Rightarrow (b)$. Let (X, τ, \mathcal{I}) be an \mathcal{I}_g - submaximal space. Then by Theorem 2.9, every subset is \mathcal{I}_g - locally -*- closed and so by Theorem 4.8 of [13], $A \cap (A^* - A)^*$ is \mathcal{I}_g - open for every $A \subset X$.

 $(b) \Rightarrow (a).$ Let A be a \star -dense set in an ideal space (X, τ, \mathcal{I}) . Then by hypothesis, $A \cap (A^{\star} - A)^{\star}$ is \mathcal{I}_{g} - open for every $A \subset X$. Since A is \star - dense, $A^{\star} - A = cl^{\star}(A) - A = X - A$. This implies that $A \cap (A^{\star} - A)^{\star} = (A^{\star} - A)^{\star} \cap A = (X - A)^{\star} \cap A = (X - A)^{\star} \cap A = (X - A)^{\star} - (X - A)$. Since $(X - A)^{\star} - (X - A)$ is \mathcal{I}_{g} - open, by Theorem 2.12 of [13], X - A is \mathcal{I}_{g} - closed which implies that A is \mathcal{I}_{g} - open in (X, τ, \mathcal{I}) . Hence (X, τ, \mathcal{I}) is an \mathcal{I}_{q} - submaximal space.

A subset A of an ideal space (X, τ, J) is said to be *-codense [5], if X - A is *dense. The following Theorem 2.12 follows from the definition of \mathcal{I}_{g} - submaximal spaces.

Theorem 2.11. Let (X, τ, \mathfrak{I}) be an ideal space. Then the following are equivalent. (a) (X, τ, \mathfrak{I}) is an \mathfrak{I}_g - submaximal space. (b) Every \star - codense subset A of X is \mathfrak{I}_g - closed.

3. \mathcal{I}_q - Submaximal Subspaces

If (X, τ, \mathfrak{I}) is an ideal topological space and $A \subset X$, then $(A, \tau_A, \mathfrak{I}_A)$, where τ_A is the relative topology on A and $\mathfrak{I}_A = \{A \cap \mathcal{J} : \mathcal{J} \in \mathfrak{I}\}$ is an ideal topological space.

Lemma 3.1. [9] Let (X, τ, J) be an ideal topological space and $B \subset A \subset X$. Then $B^*(\tau_A, J_A) = B^*(\tau, J) \cap A$.

Lemma 3.2. [7] Let (X, τ, J) be an ideal topological space and $B \subset A \subset X$. Then $cl^*_A(B) = cl^*(B) \cap A$.

Theorem 3.3. If (X, τ, \mathfrak{I}) is an \mathfrak{I}_g - submaximal space, then every open subspace $(A, \tau_A, \mathfrak{I}_A)$ is an \mathfrak{I}_g - submaximal space.

Proof: Let B be \star - dense in $(A, \tau_A, \mathfrak{I}_A)$. Let $U = B \cup (X - A)$. Then $cl^*(U) = cl^*(B) \cup cl^*(X - A) \supset cl^*_A(B) \cup cl^*(X - A) = A \cup cl^*(X - A)$. We have $cl^*(U) \supset A \cup (X - A) \cup (X - A)^* = X$. Therefore U is \star - dense in X. Since X is \mathfrak{I}_g - submaximal, U is \mathfrak{I}_g -open. Now $B = U \cap A$ is \mathfrak{I}_g - open, since A is open. Therefore $(A, \tau_A, \mathfrak{I}_A)$ is an \mathfrak{I}_g - submaximal space.

Theorem 3.4. Let (X, τ, \mathfrak{I}) be an ideal space where \mathfrak{I} is codense. If every subset is \mathfrak{I} - locally closed, then (X, τ, \mathfrak{I}) is an \mathfrak{I}_q - submaximal space.

Proof: Let A be τ^* - dense. Since \mathfrak{I} is codense, A is \mathfrak{I} - dense. Also A is \mathfrak{I} - locally closed. Then by Theorem 4.8 of [14], A is open. Thus A is \mathfrak{I}_g - open. Hence (X, τ, \mathfrak{I}) is an \mathfrak{I}_g - submaximal space.

Theorem 3.5. Let (X, τ, \mathfrak{I}) be an \mathfrak{I}_g - submaximal space and $\mathfrak{I} \subset \mathfrak{J}$ where \mathfrak{I} and \mathfrak{J} are ideals on X. Then (X, τ, \mathfrak{J}) is \mathfrak{J}_g - submaximal.

Proof: Let A be $\tau^*(\mathcal{J})$ - dense in (X, τ, \mathcal{J}) . Then $A \cup A^*(\mathcal{J}) = X$. Since $\mathcal{I} \subset \mathcal{J}$, $A^*(\mathcal{J}) \subset A^*(\mathcal{I})$. Hence $X = A \cup A^*(\mathcal{J}) \subset A \cup A^*(\mathcal{I})$ which implies that $A \cup A^*(\mathcal{I}) = X$. Thus A is $\tau^*(\mathcal{I})$ -dense. Since (X, τ, \mathcal{I}) is \mathcal{I}_g - submaximal, A is \mathcal{I}_g - open. Since $\mathcal{I} \subset \mathcal{J}$, A is \mathcal{J}_g - open. Hence (X, τ, \mathcal{J}) is \mathcal{J}_g - submaximal. \Box

Acknowledgments

The authors wish to thank the referees for their valuable suggestions.

References

- 1. A. Acikgoz, S. Yuksel and T. Noiri, α J–preirresolute functions and β J–preirresolute functions, Bull. Malays. Math. Sci. Soc.(2) (28), (1) (2005), 1 8.
- 2. K. Balachandran, P. Sundaram and H.Maki, Generalised locally closed sets and GLC -continuous functions, Indian J. Pure and Appl. Math., 27(3)(1996) ,235 -244.
- J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).

- 4. J. Dontchev, M. Ganster and T. Noiri, Unified approach of generalized open sets via topological ideals, Math. Japonica, 49 (1999), 395 409.
- 5. E. Ekici and T. Noiri, Properties of J-submaximal ideal topological spaces, Filomat, 24 $(4)(2010),\,87\text{-}94.$
- 6. E. Ekici, On
J- Alexandroff and \mathbb{I}_g- Alexandroff ideal topological spaces, Filomat 25
(4) (2011), 99-108.
- 7. E. Hatir, A. Keskin and T. Noiri, A Note on strong β -J-sets and strongly β -J- continuous functions, Acta Mathematica Hungarica, 108(1-2)(2005),87-94.
- 8. D. Jankovic and T. R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295 310.
- D. Jankovic and T. R. Hamlett, Compatible extensions of ideals, Boll.Un.Mat.Ital., (7) 6 B (1992), 453 - 465.
- 10. N. Levine, Generalised closed sets in topology, Rend. Circ. Mat. Palermo 19(1970), 89 96.
- 11. K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- 12. M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar.,119 (4) (2008),365 371.
- 13. M. Navaneethakrishnan and D. Sivaraj, Generalised locally closed sets in ideal topological spaces, Bull.Allahabad Math.Soc, Vol.24,Part1, 2009, 13 19.
- V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Math. Hungar., 108 (3)(2005), 197-205.
- R. Vaidyanathaswamy, The localization theory in Set Topology, Proc. Indian Acad. Sci., 20 (1945), 51 - 61.

K. Bhavani Department of Mathematics, RMK College of Engineering and Technology Puduvoyal, Thiruvallur district, Tamil Nadu, India. E-mail address: bhavanidhurairaj@gmail.com

and

D.Sivaraj Department of Mathematics, GKM college of Engineering and Technology Perungalathur, Chennai-63, Tamil Nadu, India. E-mail address: ttn_sivaraj@yahoo.co.in