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1. Introduction and Preliminaries.

An ideal I on X [11] is a collection of subsets of X satisfying the following: (i)
If A ∈ I and B ⊂ A, then B ∈ I, and (ii) if A ∈ I and B ∈ I, then A ∪ B ∈ I. A
topological space (X, τ ) together with an ideal I is called an ideal topological space
and is denoted by (X, τ, I). For each subset A of X, A⋆(I, τ) = {x ∈ X | U ∩A 6∈ I

for every open set U containing x} is called the local function of A [11] with respect
to I and τ . We simply write A⋆ instead of A⋆(I, τ ) in case there is no chance for
confusion. We often use the properties of the local function stated in Theorem 2.3
of [8] without mentioning it. Moreover, cl⋆(A) = A∪A⋆ [15] defines a Kuratowski
closure operator for a topology τ⋆, which is finer than τ. An ideal I is a boundary
ideal [15] or a codense ideal [8] if τ ∩I = {∅}. A subset A of an ideal space (X, τ, I)
is said to be pre−I−open [3], if A ⊂ intcl⋆(A) where int is the interior operator
in (X, τ ). A subset A of an ideal space (X, τ, I) is said to be I- locally -⋆- closed
set [13], if there exists an open set U and a ⋆- closed set F such that A = U ∩ F.

A subset A of a topological space (X, τ ) is said to be g- closed [10], if cl(A) ⊂ U

whenever A ⊂ U and U is open. The complement of a g- closed set is called a g-
open set [10]. A subset A of an ideal space (X, τ , I) is said to be Ig- closed [4],
if A⋆ ⊂ U whenever A ⊂ U and U is open. The complement of an Ig- closed set
is called an Ig- open set [4]. A space in which every Ig- closed set is a ⋆- closed
set is called a TI- space [4]. An ideal topological space (X, τ , I) is said to be an I-
submaximal [1] space, if every ⋆-dense set is open. A topological space (X, τ) is said
to be an g- submaximal [2] space if every dense set is g- open. A subset A of an
ideal space (X, τ, I) is said to be Ig-locally-⋆-closed set [13], if there exists an Ig-

2000 Mathematics Subject Classification: 54A05, 54A10

105
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v33i1.21312


106 K. Bhavani and D.Sivaraj

open set U and a ⋆- closed set F such that A = U ∩ F. The following lemmas will
be useful in the sequel.

Lemma 1.1. [1] For a subset A of an ideal space (X, τ , I), the following properties
are equivalent.
(a) A is pre−I−open.
(b) A = G ∩B where G is open and B is ⋆- dense.

Lemma 1.2. [14] Let (X, τ , I) be an ideal space and A ⊂ X. If A ⊂ A⋆, then
A⋆ = cl(A⋆) = cl(A) = cl⋆(A).

Lemma 1.3. [4] Let (X, τ , I) be an ideal space and A ⊂ X. Then the finite union
of Ig- closed sets is an Ig- closed set.

2. Ig- Submaximal Spaces

An ideal topological space (X, τ , I) is said to be an Ig- submaximal space
if every ⋆- dense set is Ig- open. The following Theorem 2.1 shows that every I-
submaximal space is an Ig- submaximal space and Example 2.2 below shows that
the converse is not true.

Theorem 2.1. Every I- submaximal space is an Ig- submaximal space.

Proof: Let (X, τ , I) be an I- submaximal space and A be τ⋆- dense in X. Since
(X, τ , I) is I- submaximal, A is open in X. Since every open set is Ig- open, A is
Ig- open. Hence (X, τ , I) is an Ig-submaximal space. ✷

The following Example 2.2. shows that the converse of Theorem 2.1. is not true.

Example 2.2. Let X = {a, b, c, d}, τ={∅, X, {b}, {a, b}, {b, c}, {a, b, c}, {a, b, d}}
and I = {∅, {a}, {c}, {a, c}}. If A = {b, c, d}, then A is Ig- open but not open.

Theorem 2.3. If (X, τ, I) is an TI- ideal space and A is a ⋆-dense - in -itself,
Ig-closed subset of X, then A is closed.

Proof: Let A be ⋆-dense-in -itself, Ig- closed subset of X. Then by Theorem 2.1
[12], there exists no nonempty closed set in cl⋆(A) − A. Since (X, τ , I) is a TI -
space, A is ⋆- closed and so cl⋆(A)−A = ∅. Since A is ⋆- dense-in -itself, cl⋆(A) =
cl(A), cl(A)−A = ∅ which implies that cl(A) = A. Thus A is closed. ✷

Theorem 2.4. Every g- submaximal space is an Ig- submaximal space.

Proof: Let A ⊂ X be ⋆- dense in a g- submaximal space (X, τ , I). Since every ⋆-
dense set is a dense set, A is dense in X. Since(X, τ, I) is g- submaximal, A is g-
open. By Remark 2 of [6], every g- open set is an Ig- open set and so A is Ig- open.
Therefore every g- submaximal space is an Ig- submaximal space. ✷

The following Example 2.5. shows that the converse of Theorem 2.4. is not
true.
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Example 2.5. Let X = {a, b, c, d}, τ = {∅, X, {a}, {b, c}, {a, b, c}} and I =
{∅, {a}, {d}, {a, d}}. If A = {a, c}, then A is Ig- open but not g- open.

Theorem 2.6. Let (X, τ, I) be an ideal space. Then the following are equivalent.
(a) (X, τ , I) is an Ig- submaximal space.
(b) Every pre−I−open set is Ig- open.

Proof: (a) ⇒ (b). Suppose that (X, τ, I) is Ig- submaximal and A ⊂ X be
pre−I−open. Then A = U ∩ D,U ∈ τ ,D is ⋆-dense. Since X is Ig- submaxi-
mal, D is Ig- open. Also U is Ig- open. Since intersection of two Ig- open sets is
an Ig- open set by Lemma 1.3, A is an Ig- open set.
(b) ⇒ (a). Let A be ⋆-dense in (X, τ , I). Then A is pre−I−open which implies that
A is Ig- open, by hypothesis. Hence (X, τ, I) is an Ig- submaximal space. ✷

Theorem 2.7. Let (X, τ, I) be an ideal space. Then the following are equivalent.
(a) (X, τ , I) is an Ig- submaximal space.
(b) Every subset is Ig-locally-⋆-closed set.
(c) Every ⋆- dense subset of X is an intersection of a ⋆-closed set and an Ig- open
subset of X.

Proof: (a) ⇒ (b). Let (X, τ, I) is an Ig- submaximal space. Since every ⋆- dense
set is open in (X, τ , I), by Corollary 4.7(b) of [13], every subset is Ig- locally-⋆-
closed set.
(b) ⇒ (c). Let A be ⋆- dense in (X, τ , I). By hypothesis, A is an Ig -locally-⋆-
closed set. Then by Theorem 4.3 of [13], there exists an Ig- open set U such that
A = U ∩ cl⋆(A). It follows that A = U ∩X = U which implies that A is Ig- open.
Hence (X, τ, I) is an Ig- submaximal space.
(c) ⇒ (a). Let A be ⋆- dense in (X, τ , I). By hypothesis, A = U ∩F , where U is an
Ig- open and F is a ⋆- closed set. Since A ⊂ F, F is ⋆-dense and so F = X. Hence
A = U which is an Ig- open set. Thus (X, τ , I) is an Ig- submaximal space. ✷

Theorem 2.8. For an ideal space (X, τ, I),the following are equivalent.
(a) (X, τ , I) is an Ig- submaximal space.
(b) For every subset A ⊂ X, if A is not an Ig- open set, then
A− intcl⋆(A) 6= ∅.
(c) η = {U − A : U is Ig-open and int⋆(A) = ∅} where η is the family of all Ig-
open sets.

Proof: (a) ⇒ (b). Suppose that A − intcl⋆(A) = ∅. Then A ⊂ intcl⋆(A) which
implies A is pre−I−open. Since X is Ig- submaximal, A is Ig- open which is a
contradiction. Hence A− intcl⋆(A) 6= ∅.
(b) ⇒ (a). Let A be pre−I−open. Suppose that A is not an Ig- open set. Then by
hypothesis, A−intcl⋆(A) 6= ∅ which implies A * intcl⋆(A) which is a contradiction.
Hence A is Ig- open which implies that (X, τ , I) is an Ig- submaximal space.
(a) ⇒ (c). Suppose that σ = {U − A : U is Ig-open and int⋆(A) = ∅}. Let G ∈ η.
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Since G = G − ∅, and int⋆(∅) = ∅, then η ⊂ σ. Let G ∈ σ. Then G = U − A,

where U is Ig- open and int⋆(A) = ∅. Then G = U ∩ (X − A). Since int⋆(A) =
∅, X − int⋆(A) = cl⋆(X − A) = X. Since X is Ig- submaximal, X −A is Ig- open.
By Lemma 1.3, G is Ig- open. Hence σ ⊂ η.

(c) ⇒ (a). Let A be a pre−I−open set. By Lemma 1.1, A = G ∩ B, where G is
open and B is ⋆- dense. Hence cl⋆(B) = X and so int⋆(X − B) = ∅. This implies
A = G− (X −B) and int⋆(X −B) = ∅. Since every open set is Ig- open, G is Ig-
open. Hence by Lemma 1.3, A is Ig- open. ✷

Theorem 2.9. Let (X, τ, I) be an ideal space. Then the following are equivalent.
(a) (X, τ , I) is an Ig- submaximal space.
(b) cl⋆(A) −A is Ig- closed for every A ⊂ X.

Proof: (a) ⇒ (b). Let (X, τ , I) be an Ig- submaximal space and A ⊂ X. Consider
(X − (cl⋆(A) − A)) = (X − cl⋆(A)) ∪ A. Then cl⋆(X − (cl⋆(A) − A)) = cl⋆((X −
cl⋆(A))∪A) ⊃ (X− (cl⋆(A))∪cl⋆(A) = X. Thus cl⋆(X− (cl⋆(A)−A)) = X. Hence
X − (cl⋆(A) −A) is Ig- open which implies that cl⋆(A) −A is Ig- closed for every
A ⊂ X.

(b) ⇒ (a). Suppose that (b) holds. Let A be ⋆-dense in (X, τ , I). Since cl⋆(A)−A

is Ig- closed for every A ⊂ X, X−A is Ig-closed which implies that A is an Ig-open
set for every A ⊂ X. Hence (X, τ , I) is an Ig- submaximal space. ✷

Theorem 2.10. Let (X, τ , I) be an ideal space. Then the following are equivalent.
(a) (X, τ , I) is an Ig- submaximal space.
(b) A ∩ (A⋆ − A)⋆ is Ig- open for every A ⊂ X.

Proof: (a) ⇒ (b). Let (X, τ , I) be an Ig- submaximal space. Then by Theorem 2.9,
every subset is Ig- locally -⋆- closed and so by Theorem 4.8 of [13], A ∩ (A⋆ −A)⋆

is Ig- open for every A ⊂ X.

(b) ⇒ (a). Let A be a ⋆−dense set in an ideal space (X, τ, I). Then by hypothesis,
A∩(A⋆−A)⋆ is Ig- open for every A ⊂ X. Since A is ⋆- dense, A⋆−A = cl⋆(A)−A =
X − A. This implies that A ∩ (A⋆ − A)⋆ = (A⋆ − A)⋆ ∩ A = (X − A)⋆ ∩ A =
(X−A)⋆− (X−A). Since (X−A)⋆− (X−A) is Ig- open, by Theorem 2.12 of [13],
X −A is Ig- closed which implies that A is Ig- open in (X, τ , I). Hence (X, τ , I) is
an Ig- submaximal space. ✷

A subset A of an ideal space (X, τ, I) is said to be ⋆-codense [5], if X −A is ⋆-
dense. The following Theorem 2.12 follows from the definition of Ig- submaximal
spaces.

Theorem 2.11. Let (X, τ , I) be an ideal space. Then the following are equivalent.
(a) (X, τ , I) is an Ig- submaximal space.
(b) Every ⋆- codense subset A of X is Ig- closed.
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3. Ig- Submaximal Subspaces

If (X, τ , I) is an ideal topological space and A ⊂ X, then (A, τA, IA), where τA
is the relative topology on A and IA = {A∩ J : J ∈ I} is an ideal topological space.

Lemma 3.1. [9] Let (X, τ , I) be an ideal topological space and B ⊂ A ⊂ X. Then
B⋆(τA, IA) = B⋆(τ , I) ∩ A.

Lemma 3.2. [7] Let (X, τ , I) be an ideal topological space and B ⊂ A ⊂ X. Then
cl⋆A(B) = cl⋆(B) ∩ A.

Theorem 3.3. If (X, τ , I) is an Ig- submaximal space, then every open subspace
(A, τA, IA) is an Ig- submaximal space.

Proof: Let B be ⋆- dense in (A, τA, IA). Let U = B ∪ (X − A). Then cl⋆(U) =
cl⋆(B) ∪ cl⋆(X − A) ⊃ cl⋆A(B) ∪ cl⋆(X − A) = A ∪ cl⋆(X − A). We have cl⋆(U) ⊃
A∪(X−A)∪(X−A)⋆ = X. Therefore U is ⋆- dense in X. Since X is Ig- submaximal,
U is Ig-open. Now B = U ∩ A is Ig- open, since A is open. Therefore (A, τA, IA)
is an Ig- submaximal space. ✷

Theorem 3.4. Let (X, τ, I) be an ideal space where I is codense. If every subset
is I- locally closed, then (X, τ, I) is an Ig- submaximal space.

Proof: Let A be τ⋆- dense. Since I is codense, A is I- dense. Also A is I- locally
closed. Then by Theorem 4.8 of [14], A is open. Thus A is Ig- open. Hence (X, τ, I)
is an Ig- submaximal space. ✷

Theorem 3.5. Let (X, τ, I) be an Ig- submaximal space and I ⊂ J where I and J

are ideals on X. Then (X, τ , J) is Jg- submaximal.

Proof: Let A be τ⋆(J)- dense in (X, τ , J). Then A ∪ A⋆(J) = X. Since I ⊂ J,
A⋆(J) ⊂ A⋆(I). Hence X = A∪A⋆(J) ⊂ A∪A⋆(I) which implies that A∪A⋆(I) = X.

Thus A is τ⋆(I)-dense. Since (X, τ , I) is Ig- submaximal, A is Ig- open. Since I ⊂ J,

A is Jg- open. Hence (X, τ , J) is Jg- submaximal. ✷
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