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On the Fourier Transform of the Products of M-Wright Functions ∗

Alireza Ansari

abstract: In this paper, using the Bromwich’s integral of the inverse Mellin
transform we find a new integral representation for the M-Wright function

Mα(x) =
∞∑

k=0

(−x)k

k!Γ(−αk + 1− α)
, α =

1

2n+ 1
, n ∈ N,

and state the Fourier transform of this function. Moreover, using the new integral
representations for the products of the M-Wright functions, we also get the Fourier
transform of it.
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1. Introduction and Preliminaries

The M-Wright function or the Mainardi function [13]

Mα(x) =

∞
∑

k=0

(−x)k

k!Γ(−αk + 1− α)
, 0 < α < 1, (1.1)

with the well-known differential equation for α = 1
ν
,

dν−1

dxν−1
M 1

ν
(x) +

(−1)ν

ν
xM 1

ν
(x) = 0, ν = 2, 3, · · · , (1.2)

plays an important role in fractional calculus. This function is derived from the
Wright function

W (α, β;x) =

∞
∑

k=0

xk

k!Γ(αk + β)
, α > −1, β ∈ C, x ∈ C, (1.3)
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and for the first time was introduced by Mainardi at the beginning of the 1990’s for
expressing the fractional diffusion-wave equations. Later, other researchers stated
some prominent roles of this function in analyzing partial fractional differential
equations and statistical distributions. Most of these works have been surveyed
using the operational calculus of this function such as the Laplace and Mellin
transforms. See for example [3,4,5,6], [9], [11,12] and [15].
Therefore for the importance and significance of this function, in this paper, we
get the Fourier transform of the M-Wright and its associate functions. For this
purpose, using the Laplace integral we derive an integral representation for the
special case M 1

2n+1
(x). Then, by applying the Bromwich’s integral for the inverse

Mellin transform we find an extended class of integrals representation for the M-
Wright function. Finally, we obtain the Fourier transform of the M-Wright function
and the products of M-Wright functions.
First, we consider the following ordinary differential equation of order 2n which
has 2n linear independent solutions in terms of the generalized hypergeometric
functions [10]

y(2n) −
x

2n+ 1
y = 0, x ∈ R, n ∈ N. (1.4)

One of the solutions can be obtained using the Laplace integral method

y(x) =

∫

C

exzv(z)dz. (1.5)

By inserting the relation (1.5) in (1.4), we get a first order differential equation

1

2n+ 1
v′(z) + z2nv(z) = 0, (1.6)

and find the solution y(x) as the following integral representation (except for a
normalization constant)

y(x) =

∫

C

e
xz− z2n+1

(2n+1)2 dz. (1.7)

The contour C is chosen such that the function v(z) must vanish at boundaries.
For this purpose, the real part of z2n+1 must be positive and can be considered as

paths between two lines of set {re
2kπi
2n+1 , r > 0, k = 0, 1, · · · , 2n}. Anyway, after the

deformation and normalization of integral (1.7), we rewrite the function y as the
A2n+1(x) function (the generalized airy function) as follows [2]

M 1
2n+1

(x) =
1

2πi

∫ i∞

−i∞

e
xz− z2n+1

(2n+1)2 dz, (1.8)

or equivalently

M 1
2n+1

(x) =
1

2π

∫ ∞

−∞

e
ixz+i(−1)n+1 z2n+1

(2n+1)2 dz,

=
1

π

∫ ∞

0

cos(xz + (−1)n+1 z2n+1

(2n+ 1)2
)dz. (1.9)
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2. Main Theorems

In this section, we establish some theorems and corollaries on the operator
e−λΦ(s). First, we derive an integral representation for the operator e−λΦ(s).

Theorem 2.1. Let Φ(s) be an entire function such that for even and odd functions
u(r) and v(r), we have φ(c±ir) = h(c)(u(r)±iv(r)) where h is an analytic function.
Then for c1 < ℜ(s) < c2 the following relation holds true

e−λΦ(s) =

∫ ∞

−∞

esξA(ξ, λ) dξ, (2.1)

where the function A(ξ, λ) is presented by

A(ξ, λ) =
1

π

∫ ∞

0

e−λu(r) cos(rξ + λv(r))dr. (2.2)

Proof: By definition of the inverse Mellin transform of function e−λΦ(s) and tran-
sition of the contour integration ℜ(s) = c, we have

1

2πi

∫ c+i∞

c−i∞

e−λΦ(s)t−sds =
1

2π

∫ ∞

0

e−λΦ(−ir)tirdr +
1

2π

∫ ∞

0

e−λΦ(ir)t−irdr

=
1

2π

∫ ∞

0

e−λ(u(r)−iv(r))tirdr

+
1

2π

∫ ∞

0

e−λ(u(r)+iv(r))t−irdr

=
1

2π

∫ ∞

0

e−λu(r)e+iλv(r)+ir ln(t)dr

+
1

2π

∫ ∞

0

e−λu(r)e−iλv(r)−ir ln(t)dr

=
1

π

∫ ∞

0

e−λu(r) cos(r ln(t) + λv(r))dr.

(2.3)

The relation (2.3) implies that the Mellin transform of the last integral is equal to
function e−λΦ(s), that is

e−λΦ(s) =
1

π
M{

∫ ∞

0

e−λu(r) cos(r ln(t) + λv(r))dr; s}

=
1

π

∫ ∞

0

ts−1

∫ ∞

0

e−λu(r) cos(r ln(t) + λv(r))dr dt,

which by setting ln(t) = ξ, we get the relation (2.1). ✷
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Corollary 2.2. If we suppose that the function Φ(ir) can be written as the real
function Φ1(ir) = u(r) or pure imaginary function Φ2(ir) = iv(r), then, the rela-
tion (2.1) can be changed into two special cases:

e−λΦ1(s) =

∫ ∞

−∞

esξAR(ξ, λ)dξ. (2.4)

e−λΦ2(s) =

∫ ∞

−∞

esξAI(ξ, λ)dξ. (2.5)

where the functions AK and AI are given by

AR(ξ, λ) =
1

π

∫ ∞

0

e−λu(r) cos(rξ)dr, (2.6)

AI(ξ, λ) =
1

π

∫ ∞

0

cos(rξ + λv(r))dr. (2.7)

Example 2.3. Setting Φ1(s) = s2n+1, we have

e
s2n+1

2n+1 =

∫ ∞

−∞

esξA2n+1(ξ)dξ, (2.8)

where the A2n+1(ξ) function is given by

A2n+1(ξ) =
1

π

∫ ∞

0

cos(rξ + (−1)n+1 r2n+1

2n+ 1
))dr. (2.9)

For more details about this function and its asymptotic expansion at infinity, see
[2], [14].

Corollary 2.4. It is obvious that the relationship between the A2n+1(x) in (2.9)
and M 1

2n+1
(x) in (1.9) is given by

M 1
2n+1

(x) = (2n+ 1)
1

2n+1A2n+1(x(2n+ 1)
1

2n+1 ). (2.10)

Theorem 2.5. (The Schouten-Vanderpol theorem for the Mellin transform)
Let F (s) and φ(s) be analytic functions in the strip c1 < ℜ(s) < c2 and let F (s)
be the Mellin transform of f(t), then the inverse Mellin transform of F (φ(s)) is
written by

g(t) = M
−1{F (φ(s)); t} =

∫ ∞

0

f(τ )

τ
[
1

2πi

∫ c+i∞

c−i∞

e−φ(s) ln( 1
τ
)+s ln( 1

t
)ds] dτ . (2.11)

Proof: Using the definition of Mellin transform of F (φ(s))

F (φ(s)) =

∫ ∞

0

τφ(s)−1f(τ)dτ ,
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and by replacing in the inverse Mellin transform of F (φ(s)) we have

g(t) = M
−1{F (φ(s)); t} =

1

2πi

∫ c+i∞

c−i∞

F (φ(s))t−sds.

Now, by changing the order of integration, we arrive at the relation (2.11). ✷

Corollary 2.6. It is obvious that by setting φ(s) = sα, 0 < α < 1, in the rela-
tion (2.11) and using the following Bromwich’s integral in terms of the M-Wright
function [1]

αλ

tα+1
Mα(λt

−α) =
1

2πi

∫ c+i∞

c−i∞

e−λsα+st ds, (2.12)

the inverse Mellin transform of F (sα) can be presented in terms of the M-Wright
function as follows

M
−1{F (sα); t} =

α

(− ln(t))α+1

∫ ∞

−∞

τf(e−τ )Mα(τ (− ln(t))
−α

) dτ . (2.13)

Corollary 2.7. By setting F (s) = e−λΦ(s) in the relation (2.1) and combining with
(2.13), we get a new integral representation for the fractional exponential operator
e−λΦ(sα) as follows

e−λΦ(sα) =

∫ ∞

−∞

esξAα(ξ, λ) dξ, 0 < α < 1, (2.14)

where the function Aα(ξ, λ) is given by

Aα(ξ, λ) = −
α

πξα+1

∫ ∞

−∞

τA(τ , λ)Mα(τ (−ξ)
−α

) dτ . (2.15)

3. The Fourier Transform of The M-Wright Function

In this section, using the obtained relations in previous section we get the
Fourier transform of the M-Wright function and its associate functions. First, we
get an integral representation for the products of A2n+1(x) functions.

Lemma 3.1. The following identity holds for the product of A2n+1(x) functions
[2]

A2n+1(u)A2n+1(v) =
2−

6n+2
2n+1

π2

∫ ∞

−∞

e2
−

1
2n+1 (v−u)iz

A
∗
2n+1(2

− 1
2n+1 (u+ v), z)dz, (3.1)

where the A
∗
2n+1(x, z) function in two variables is given by

A
∗
2n+1(x, z) =

∫ ∞

0

cos((−1)n+1 t2n+1

2n+ 1
+ t(x + (−1)n+1z2n)

+
(−1)n+1

2(2n+ 1)

n−1
∑

j=1

(

2n+ 1

2j

)

z2jt2n+1−2j)dt. (3.2)
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Proof: With the help of the integral representation (1.9), we consider the following
product of the A2n+1(x) functions

A2n+1(2
− 2n

2n+1 (a − k))×A2n+1(2
− 2n

2n+1 (a+ k))

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

ei(a−k)x+i(a+k)y+i(−1)n+1 x2n+1+y2n+1

2n+1 dxdy.

(3.3)

Now, using the following change of variables

{

x = 2−
1

2n+1 (t− z)

y = 2−
1

2n+1 (t+ z)
(3.4)

the integral (3.3) leads to the inverse Fourier transform of the A
∗
2n+1(x, z) function

in two variables

A2n+1(2
− 2n

2n+1 (a− k))A2n+1(2
− 2n

2n+1 (a+ k)) =
2−

6n+2
2n+1

π2

∫ ∞

−∞

eikzA∗
2n+1(a, z)dz,

(3.5)

which by setting 2−
2n

2n+1 (a−k) = u, 2−
2n

2n+1 (a+k) = v, the relation (3.1) is derived.
✷

Corollary 3.2. From the relation (3.2), we can derive some special cases

i) u = v

A
2
2n+1(u) =

2−
6n+2
2n+1

π2

∫ ∞

−∞

A
∗
2n+1(2

− 1
2n+1 (u+ v), z)dz, (3.6)

ii) u = −v

A2n+1(u)A2n+1(−u) =
2−

6n+2
2n+1

π2

∫ ∞

−∞

e2
2n

2n+1 iuz
A

∗
2n+1(0, z)dz, (3.7)

iii) u = v∗

A2n+1(u)A2n+1(u
∗) = |A2n+1(u)|

2

=
2−

6n+2
2n+1

π2

∫ ∞

−∞

e2
2n

2n+1 iℑ(u)z
A

∗
2n+1(2

2n
2n+1ℜ(u), z)dz,

(3.8)
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iv) u = 0

A2n+1(v) =
2−

6n+2
2n+1

A2n+1(0)π2

∫ ∞

−∞

e2
−

1
2n+1 ivz

A
∗
2n+1(2

− 1
2n+1 v, z)dz. (3.9)

Lemma 3.3. The function d2n

du2n [A2n+1(u)A2n+1(−u)] has 2n vanishing moments
as follows [2]

∫ ∞

−∞

uk d2n

du2n
[A2n+1(u)A2n+1(−u)]du = 0, k = 0, 1, · · · , 2n− 1. (3.10)

Proof: By the identity (3.6), we take 2n derivatives of the function
A2n+1(u)A2n+1(−u) as follows

d2n

du2n
[A2n+1(u)A2n+1(−u)] =

(−1)n2
4n2

−6n−2
2n+1

π2

∫ ∞

−∞

e2
2n

2n+1 iuz
A

∗
2n+1(0, z)z

2ndz

=
(−1)n2−

8n+2
2n+1

π2

∫ ∞

−∞

eiuwA∗
2n+1(0,

w

2−
2n

2n+1

)w2ndw.

(3.11)

The above relation can be expressed as the Fourier transform of the following
function

(−1)n2−
6n+1
2n+1

π
A

∗
2n+1(0,

w

2−
2n

2n+1

)w2n =

∫ ∞

−∞

e−iuw d2n

du2n
[A2n+1(u)A2n+1(−u)]du

= F{
d2n

du2n
[A2n+1(u)A2n+1(−u)];w},

(3.12)

which implies that 2n−1 first moments of d2n

du2n [A2n+1(u)A2n+1(−u)] are zero, that
is

∫ ∞

−∞

uk d2n

du2n
[A2n+1(u)A2n+1(−u)]du = 0, k = 0, 1, · · · , 2n− 1. (3.13)

✷

Theorem 3.4. The following relation have been held for the Fourier transform of
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the M-Wright function and its associate functions

F{A(ξ, λ);w} = e−λΦ(−iw), (3.14)

F{M 1
2n+1

(
ξ

(2n+ 1)
1

2n+1

);w} = (2n+ 1)
1

2n+1 e
(−iw)2n+1

2n+1 , (3.15)

F{Aα(ξ, λ);w} = e−λΦ((−iw)α), (3.16)

F{A∗
2n+1(0, z); 2

2n
2n+1w} =

π2

(2n+ 1),
2

2n+1 2−
6n+2
2n+1

M 1
2n+1

(
w

(2n+ 1)
1

2n+1

)

× M 1
2n+1

(−
w

(2n+ 1)
1

2n+1

). (3.17)

Proof: Using the definition of the Fourier transform

F{f(x);w} =

∫ ∞

−∞

e−iwxf(x)dx,

and applying the relations (2.1), (2.8), (2.14) and (3.6) respectively, the above
relations can be easily obtained. ✷

Theorem 3.5. The following orthogonality relation holds for the function M 1
2n+1

(ξ)

∫ ∞

−∞

M 1
2n+1

(ξ + a)M 1
2n+1

(ξ + b)dξ = δ(b − a), a, b ∈ R, a 6= b, (3.18)

where δ(x) is the Dirac delta function.

Proof: Using the definition of the M 1
2n+1

(ξ) function in (2.8)

I =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

e
i[(−1)n+1 r2n+1

(2n+1)2
+(−1)n+1 r′2n+1

(2n+1)2
+ar+br′]

drdr′
∫ ∞

−∞

eiξ(r+r′)dξ,

(3.19)
and applying the following fact for the Dirac delta function

1

2π

∫ ∞

−∞

eiξ(r+r′)dξ = δ(r + r′), (3.20)

we get the desired result

I =
1

2π

∫ ∞

−∞

e
i[(−1)n+1 r2n+1

(2n+1)2
+(−1)n+1 (−r)2n+1

(2n+1)2
+ar−br]

dr

=
1

2π

∫ ∞

−∞

ei(a−b)rdr

= δ(b− a). (3.21)

✷
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Corollary 3.6. Using the relation (3.18) for the orthogonality condition of the
M 1

2n+1
(ξ) function, we can get a new integral transform (which we denote as the

M 1
2n+1

-transform) with its inversion formula as

F (y) =

∫ ∞

−∞

f(x)M 1
2n+1

(y − x)dx, (3.22)

f(x) =

∫ ∞

−∞

F (y)M 1
2n+1

(y − x)dy. (3.23)

Example 3.7. For stating a property of the above integral transform, by setting
f(x) = xm in the relation (3.22), we get the well-known Kampé de Fériét polyno-
mials of order m [7]

F (y) = (2n+ 1)
1

2n+1H2n+1
m ((2n+ 1)

1
2n+1x, y), (3.24)

where

H2n+1
m (x, y) = ey(

∂
∂x

)2n+1

{xm} = m!

[ m
2n+1 ]
∑

r=0

xm−(2n+1)ryr

(m− (2n+ 1)r)!r!
. (3.25)

4. Concluding Remarks

This paper provides new results on the operational calculus of the M-Wright
function. Theses results have been obtained using the new integral representations
of the exponential function in some special cases. These integral representations
led to the Fourier transform of the M-Wright function and its associate functions.
Also, we found the Fourier transform of the products of the M-Wright functions
according to the relation (3.6) and we saw that this product is orthogonal according
to the relation (3.18). Also, we showed that 2n− 1 first moments of the function
d2n

du2n [A2n+1(u)A2n+1(−u)] are zero.
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