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Existence and uniqueness of solution for p(x)-Laplacian problems

Mostafa Allaoui, Abdelrachid El Amrouss, Anass Ourraoui

abstract: This paper shows the existence and uniqueness of weak solution of a
problem which involves the p(x)-Laplacian with some different boundary conditions.
The proof of the result is made by Browder Theorem.
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1. Introduction

At the turn of the millennium, a large number of papers is scattered to study
of elliptic equations and variational problems with variable exponent, it is of con-
siderable importance in the theory of partial differential equations. Some of these
problems come from different areas of applied mathematics and physics such as
Micro Electro-Mechanical systems, surface diffusion on solids or image processing
and restoration... For more inquiries on modeling physical phenomena involving
p(x)-growth condition we refer to [2,3,4,5,6,8].

In this work, we consider the following problems involving p(x)-Laplacian
� Dirichlet problem

−∆p(x)u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

� Neumann problem

−∆p(x)u+ |u|p(x)−2u = f(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.2)

� No flux problem

−∆p(x)u = f(x, u) in Ω,

u = constant on ∂Ω,
∫

∂Ω

|∇u|p(x)−2 ∂u

∂ν
= 0.

(1.3)
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� Steklov problem

∆p(x)u = |u|p(x)−2u in Ω,

|∇u|p(x)−2∂u

∂ν
= g(x, u) on ∂Ω,

(1.4)

� Robin problem

∆p(x)u = f(x, u) in Ω,

|∇u|p(x)−2∂u

∂ν
+ β|u|p(x)−2u = 0 on ∂Ω,

(1.5)

where Ω is a bounded domain in R
N ,∆p(x)u = div(|∇u|p(x)−2∇u) is the p(x)−

Laplacian operator, p ∈ C(Ω), with 1 < p− = infx∈Ω p(x) ≤ p(x) ≤ supx∈Ω p(x) =
p+ < ∞ and ∂u

∂ν
denotes the out normal derivative of u, λ ∈ R and β : ∂Ω → R ∈

L∞(∂Ω) is real function with β− = infx∈∂Ω β(x) > 0.
Assume that
(f1) f and g are Carathéodory functions which are decreasing with respect to

the second variable.
(f2) There exist b > 0, c > 0 and q ∈ C(Ω), r ∈ C(Ω) such that

|f(x, t| ≤ b(1 + |t|q(x)), a.e x ∈ Ω, t ∈ R,

and
|g(x, t) ≤ c(1 + |t|r(x)), a.e.x ∈ ∂Ω, t ∈ R.

where
1 < q(x) ≤ sup

Ω
q(x) = q+ < p−,

and
1 < r(x) ≤ sup

Ω

r(x) = r+ < p−

(f3) f(x, 0) 6= 0, g(x, 0) 6= 0.
We report our main result,

Theorem 1.1. Suppose that f satisfies the conditions (f1), (f2) and (f3). Then the
problems (1.1)− (1.5) have a unique weak solution.

When p = 2, theses problems are normal Schrödinger equations which has been
extensively studied. There are several studies of the existence of solutions such
problems on a bounded domain of RN . We mention the results obtained in [1], [8]
and [11] for the case when p is constant. In recent years, more and more attention
is paid to the quasilinear elliptic with a variable exponent. The main difficulty in
the study of p(x)−Laplacian equations arises from its inhomogeneity.

Define the operators I, J , L and K : X → X∗ by

〈I(u), v〉 =

∫

Ω

|∇u|p(x)−2∇u.∇vdx,
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〈J(u), v〉 =

∫

Ω

|u|p(x)−2uvdx,

〈L(u), v〉 =

∫

Ω

f(x, u)vdx,

〈K(u), v〉 =

∫

∂Ω

g(x, u)vdx.

Definition 1.2. Let X = W
1,p(x)
0 (Ω),W 1,p(x)(Ω) or W

1,p(x)
0 (Ω)⊕ R, u ∈ X.

(i) We say that u is a weak solution of (1.1)and (1.3) if
∫

Ω

|∇u|p(x)−2∇u.∇vdx =

∫

Ω

f(x, u)vdx,

for all v ∈ X.

(ii) Let u ∈ W 1,p(x)(Ω). We say that u is a weak solution of (1.2) if

∫

Ω

|∇u|p(x)−2∇u.∇vdx +

∫

Ω

|u|p(x)−2uvdx =

∫

Ω

f(x, u)vdx,

for all v ∈ W 1,p(x)(Ω).
(iii) Let u ∈ W 1,p(x)(Ω), a weak solution u for Steklov problem (1.4) provided

∫

Ω

(|∇u|p(x)−2∇u.∇v + |u|p(x)−2uv)dx =

∫

∂Ω

g(x, u)v dx,

for all v ∈ W 1,p(x)(Ω).
(iv) Let u ∈ W 1,p(x)(Ω), u is a weak solution of the Robin problem (1.5) if

∫

Ω

|∇u|p(x)−2∇u.∇vdx +

∫

∂Ω

β|u|p(x)−2uvdx =

∫

Ω

f(x, u)v dx,

for all v ∈ W 1,p(x)(Ω).

Theorem 1.3. (cf. [9]) Let T be a reflexive real Banach space. Moreover, let
T : X → X∗ be an operator which is: bounded, demicontinuous, coercive, and
monotone on the space X . Then, the equation T (u) = f has at least one solution
u ∈ X for each f ∈ X∗. If moreover, T is strictly monotone operator, then for
every f ∈ X∗ the equation T (u) = f has precisely one solution u ∈ X.

Define the operator T : X → X∗ by
T = I + aJ − bL− cK − d

∫

∂Ω β(x)|u|p(x)−2udx, with a, b, c et d ≥ 0.

Definition 1.4. Let X be a real Hilbert space. An operator I : X → X∗ verifies

〈I(u)− I(v), u − v〉 ≥ 0, (1.6)

for any u, v ∈ X is called a monotone operator. An operator I is called strictly
monotone if for u 6= v the strict inequality holds in (1.6). An operator I is called
strongly monotone if there exists C > 0 such that

〈I(u)− I(v), u − v〉 ≥ C ‖ u− v ‖2,

for any u, v ∈ X.
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2. Preliminary Notes

In order to deal with these problems, we need some theory of variable exponent
Sobolev Space. For convenience, we only recall some basic facts which will be used
later, we refer to [7] and references therein for more details.

Define the variable exponent Lebesgue space Lp(x)(Ω),
Lp(x)(Ω) = {u : Ω → R measurable :

∫

Ω
| u |p(x) dx < ∞} then Lp(x)(Ω) endowed

with the norm

| u |p(x)= inf{λ > 0 :

∫

Ω

|
u

λ
|p(x) dx ≤ 1}

becomes a Banach separable and reflexive space.

Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u ∈ Lp(x)(Ω)}

equipped with the norm

‖ u ‖= |u|p(x) + |∇u|p(x),

which is a separable reflexive Banach space.

Proposition 2.1. Set, ρ(u) =
∫

Ω | ∇u |p(x) dx, if u ∈ W 1,p(x)(Ω)

we have

(1) ‖ u ‖≥ 1 ⇒‖ u ‖p
−

≤ ρ(u) ≤‖ u ‖p
+

.

(2) ‖ u ‖≤ 1 ⇒‖ u ‖p
+

≤ ρ(u) ≤‖ u ‖p
−

.

(3) lim
n→∞

‖ un ‖= 0(resp +∞) ⇔ lim
n→+∞

ρ(un) = 0 (resp +∞).

Remark 2.2. We have similar results (1) and (2) for ρ1(u) =
∫

Ω | u |p(x) dx as
in the above.

Proposition 2.3. For any u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω), we have

|

∫

Ω

uv dx |≤ 2 | u |p(x)| v |p′(x),

with
1

p(x)
+

1

p′(x)
= 1.

Lemma 2.4. Assume that the boundary of Ω possesses the cone property and
p ∈ C(Ω) and 1 ≤ q(x) < p∗(x) for x ∈ Ω, then there is a compact embedding
W 1,p(x)(Ω) →֒ Lq(x)(Ω), where

p∗(x) =

{

Np(x)
N−p(x) , if p(x) < N ;

+∞, if p(x) ≥ N.
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Lemma 2.5. If f : Ω× R → R is a Carathéodory function and

|f(x, s)| ≤ a(x) + b|s|
p1(x)

p2(x) , a.e.x ∈ Ω, for all t ∈ R,

where p1(x), p2(x) ∈ C(Ω), a(x) ∈ Lp2(x)(Ω), p1(x) > 1, p2(x) > 1, a(x) ≥ 0
and b ≥ 0 is a constant, then the Nemytskii operator from Lp1(x)(Ω) to Lp2(x)(Ω)
defined by Nf (u)(x) = f(x, u(x)) is a continuous and bounded operator.

Define

p∂(x) = (p(x))∂ :=

{

(N−1)p(x)
N−p(x) , if p(x) < N,

∞, if p(x) ≥ N.

Lemma 2.6. Assume that the boundary of Ω possesses the cone property and
p ∈ C(Ω) with p− > 1, there is a compact embedding W 1,p(x)(Ω) →֒ Lq(x)(∂Ω),
where 1 ≤ q(x) < p∂(x), ∀x ∈ ∂Ω.

3. Proof of the main result

(A) I, J, K and L are bounded, in fact, let ‖ u ‖≤ M,

Since I and J are the Fréchet derivative of the functional
∫

Ω
1

p(x) (| ∇u |p(x) + |

u |p(x))dx and
∫

Ω
1

p(x) | u |p(x) dx respectively, therefore I and J are bounded.

We have the same deduction for
∫

∂Ω
β(x)|u|p(x)−2udx.

Moreover, from proposition 2.3 and lemma 2.4, there exists C1 > 0 such that

‖ L(u) ‖X∗ = sup
‖v‖=1

| 〈L(u), v〉 |

≤ sup
‖v‖=1

2 | f |p′(x)| v |p(x)

≤ C1 | f |p′(x) .

Similarly, in view of lemma 2.6 there exists C2 > 0, such that

‖ K(u) ‖X∗≤ C2 | g |lp′(x)(∂Ω) .

so K is a bounded operator.
(B) I , J , K and L are continuous operators,
We have I and J are continuous operators because that are the Frêchet deriva-

tive of the functional
∫

Ω
1

p(x) (| ∇u |p(x) + | u |p(x))dx and
∫

Ω
1

p(x) | u |p(x) dx

respectively, and then I with J are continuous.
On the other hand, Let (un)n ⊂ X be a sequence such that un ⇀ u. Since there

is a compact embedding of X into Lq(x)(Ω), there is a subsequence, denoted also
by (un)n, such that un → u in Lq(x)(Ω). According to the Krasnoselki’s theorem,
the Nemytskii operator

Nf : Lq(x)(Ω) → L
q(x)

q(x)−1 (Ω)
u 7→ f(., u)
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is continuous. Hence, Nf (un) → Nf (u) in L
q(x)

q(x)−1 (Ω). Using Hölder’s inequality
and the continuous embedding of X into Lq(x)(Ω), we obtain

| 〈L(un)− L(u), v〉 | = |

∫

Ω

(f(x, un)− f(x, u))v(x)dx |

≤ 2 ‖ Nf(un)−Nf (u) ‖ q(x)
q(x)−1

| v(x) |q(x)

≤ C | Nf (un)−Nf(u) | q(x)
q(x)−1

‖ v ‖ .

Thus, L(un) → L(u).
Further, it is known that the Nemytskii operator Ng : u 7→ g(x, u) is a con-

tinuous bounded operator from Lr(x)(∂Ω) into L
r(x)

r(x)−1 (∂Ω), and analogously, K is
completely continuous.

(C) T is strongly monotone,
We set

Up = {x ∈ Ω : p(x) ≥ 2},

Vp = {x ∈ Ω : 1 < p(x) < 2}.

By the elementary inequalities,(cf. [10]) we have ∀x, y ∈ R
N

| x− y |γ≤ 2γ(| x |γ−2 x− | y |γ−2 y).(x− y) if γ ≥ 2,

| x− y |2≤
1

γ − 1
(| x | + | y |)2−γ(| x |γ−2 x− | y |γ−2 y).(x − y) if 1 < γ < 2,

where x.y denotes the usual inner product in Ω. It follows that

〈(I + J)(u) − (I + J)(v), u − v〉 (3.1)

=

∫

Ω

[{| ∇u |p(x)−2 ∇u− | ∇v |p(x)−2 ∇v)}∇(u− v)

+{(| u |p(x)−2 u− | v |p(x)−2 v)}(u− v)]dx

≥
1

2p+

∫

Up

[ | ∇(u − v) |p(x) + | u− v |p(x) ]dx+

(p− − 1)

∫

Vp

[ | ∇(u− v) |p(x) + | u− v |p(x) ]dx.

From proposition 2.1, taking c0 = min{ 1
2p+ , p

− − 1}, then we have

〈(I + J)(u)− (I + J)(v), u− v〉 ≥ c0

{

‖ u− v ‖p
+

if 0 ≤‖ u− v ‖≤ 1,

‖ u− v ‖p
−

if ‖ u− v ‖> 1
(3.2)

hence I + J is strongly monotone(cf. [12]).
Since f is decreasing with respect to the second variable, then
〈L(u)− L(v), u− v〉 =

∫

Ω
(f(x, u)− f(x, v))(u − v)dx ≥ 0.
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Also,

〈K(u)−K(v), u− v〉 =
∫

∂Ω(g(x, u)− g(x, v))(u − v)dx ≥ 0.
Consequently, T is strongly monotone.

(D) T is is coercive,

we have for u ∈ X with ‖ u ‖> 1,

wether a = b = 1, c = d = 0,

1

‖ u ‖
〈Tu, u〉 =

1

‖ u ‖

∫

Ω

(| ∇u |p(x) + | u |p(x))dx−

∫

Ω

f(x, u)udx

≥
1

‖ u ‖
[‖ u ‖p

−

−2 | f |p′(x)| u |p(x)

≥
1

‖ u ‖
[‖ u ‖p

−

−C1 ‖ u ‖].

If a = c = 1, b = d = 0, we have

1

‖ u ‖
〈Tu, u〉 =

1

‖ u ‖

∫

Ω

(| ∇u |p(x) + | u |p(x))dx−

∫

∂Ω

g(x, u)udx

≥
1

‖ u ‖
[‖ u ‖p

−

−2 | g |Lr′(x)(∂Ω)| u |Lr(x)(∂Ω)

≥
1

‖ u ‖
(‖ u ‖p

−

−C2 ‖ u ‖).

For a = c = 0, b = d = 1,

1

‖ u ‖β
〈Tu, u〉 =

1

‖ u ‖β

∫

Ω

(| ∇u |p(x) + | β(x)u |p(x))dx −

∫

Ω

f(x, u)udx

≥
1

‖ u ‖β
[‖ u ‖p

−

−2 | f |q′(x)| u |q(x)

≥
1

‖ u ‖β
[‖ u ‖p

−

β −C1 ‖ u ‖β],

with ‖ u ‖β= |∇u|p(x) + |u|Lp(x)(∂Ω) is equivalent to ‖ u ‖ . It means that the
coercivity of T holds. The previous steps guarantee the existence of solution of the
problems (1.1)-(1.5).

For the uniqueness of weak solution for problems studied, suppose that u and
v be a weak solutions such that u 6= v. By the strong monotonicity of T, it follows
that

0 = 〈Tu− Tv, u− v〉 ≥ Cp ‖ u− v ‖p≥ 0.

Then u = v and the proof now is completed.
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