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abstract: In this paper, we proposed a three compartment model consisting of
non-adopter, adopter and frustrated classes of population to discuss the influence
of media coverage in spreading and controlling of adopter of a particular product
in a region. The model exhibits two equilibria:(i) a adopter-free and (ii) unique
interior equilibrium. Stability analysis of the model shows that the adopter-free
equilibrium is always locally asymptotically stable if the influence number of adopter
(R0), which depends on parameters of the system is less than unity. Otherwise if
R0 > 1, a unique interior equilibrium exists, it is locally asymptotically stable under
some set of conditions. Further analytically and numerically it is observed that the
region for backward bifurcation of adopter population increases with the decrease
of the valid contact rate before media alert. Finally, numerically experimentation
are presented to establish the effect of different media alert rate on adopter and non
adopter population.

Key Words: Innovation diffusion model, Impact of media, Influence number,
Asymptotically stable, Backward bifurcation.
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1. Introduction

A manager seeking to introduce a new product into the potential market has a
limited number of variables under his control. The marketing manager must under-
stand how these decision variables impact the diffusion process if he hopes to use
them effectively [1,25,26]. A review on the theory of adoption of new products by
a social system has been presented in [2]. These ideas have been expressed mathe-
matically in diffusion models which emerged early in epidemiology and population
models [3]- [12]. The diffusion of an innovation has traditionally been defined as
the process by which an innovation is communicated through certain channels over
time among the members of a particular geographical region [2,26].
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The diffusion process has frequently been modeled via a two-stage single dif-
ferential equation approach, representing the epidemics manner in which the pen-
etration and adoption of the innovation are influenced simultaneously by external
and internal sources [13,14,15,16]. The price and advertising variables have been
typically incorporated in these models to determine the basic parameters of the
differential equation [17,18,19].

The theory of innovation diffusion when viewed as a theory of communication,
centers around communication channels, which transmitted information to social
system and also with in social system. The communication channels considered
in the theory are two: mass media and interpersonal communication. The first
one mass media facilitate gain if of information of innovation by the individuals,
it is more effective in imparting knowledge, whereas second interpersonal commu-
nication plays a decisive role of persuasion level in the society, where face-to-face
exchange of view is a continues process [24]. In developing this model the basic be-
havior theory which stipulates that the innovation is at first adopted by innovators
them self which encourages its adoption by the society via interpersonal commu-
nication. The diffusion process in marketing has been described by classical bass
1969 [13] model as this differential equation.

dN

dt
= p[m−N(t)] +

q

m
N(t)[m−N(t)], (1.1)

where N(t) is the cumulative number of adopter at time t, m is the total population
of potential adopters, p is the coefficient of innovation and q is the coefficient of
imitation.The first term in equation (1) denotes the adoption by innovators and
the second term denotes the adoption by imitators.

Therefore, in this paper, we propose a non-linear mathematical model to study
the media alert effect on innovation diffusion by using the stability theory of differ-
ential equations. In section 2, we have developed and analyzed a model to incorpo-
rate the media impact considering three classes of population namely, non-adopter,
adopter and frustrated. The calculation of adopter free and endemic equilibrium,
the basic influence number and proof of the local stability of adopter free equilib-
rium and the local stability of the endemic equilibrium are presented in section 3.
Again in section 4 and 5, we have discussed existence of backward bifurcation and
numerical simulation of the system respectively.

2. Mathematical Model

We proposed a non-linear dynamical mathematical model considering three
types of population classes, first is non-adopter class second is adopter class and
third is frustrated class with population densities N(t), A(t) and R(t) respectively
at time t. Let r is the recruitment rate of population which will join non-adopter
class, ν is the rate of frustration from adopter population which will join frustrated
class, δ is the coefficient of discontinuance rate of adopters, d1 is the natural death
rate of population for all classes, β1 is the contact rate before media alert and

β(A) = β1 +
β2A

m+A
is the contact rate after media alert. We choose this function
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to model the media alert with the assumption that β2A

m+A
to reflect the transmis-

sion rate when adopter individuals appear and are reported. When A → ∞, the
increased value of the transmission rate approaches its maximum β2, and the in-
creased value of the transmission rate equals half of the maximum β2 when the
reported adopter arrives at m (i.e., half saturation period).

Figure 1: Schematic model flow diagram

In real life, it is true, that almost everybody will take measures to affect themselves
from adopter as soon as adopted individuals are reported by media coverage, which
will raise the transmission rate more or less. Generally speaking, the more individ-
uals become adopter. The schematic flow diagram of our proposed system is show
in figure 1. Hence our proposed three compartment model is govern by following
system of equations:

dN

dt
= r − d1N − (β1 +

β2A

m+A
)NA+ δR, (2.1)

dA

dt
= (β1 +

β2A

m+A
)NA− (d1 + ν)A, (2.2)

dR

dt
= νA− (d1 + δ)R. (2.3)

where all the paraments are positive. In the next section, we will examine the
steady state behavior of the system.

3. Steady State, Basic Influence Number and Stability

The system (2.1)-(2.3) has one adopter free equilibrium: E0 = ( r
d1
, 0, 0) and

the interior equilibrium(s): E∗ = (N∗, A∗, R∗) satisfies N∗ > 0, A∗ > 0, R∗ > 0
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and N∗ = d1+ν

β1+β2
A

A+m

, R∗ = νA
(d1+δ) and A∗ is the positive solution of the following

equation:

XA∗2 + Y A∗ + Z = 0, (3.1)

where X = (β1+β2)d1(d1+δ+ν)
d1+δ

, Y = −(rβ1(1 −
1
R0

) + rβ2 − (d1 + ν)β1m+ δνβ1m

d1+δ
)

and Z = (d1(d1 + ν)m (1-R0)).
The local stability of E0 can be obtained through a straightforward calcula-

tion of the eigenvalues. It follows that for the proposed compartmental model,
local stability of adopter free equilibrium is governed by the basic influence num-
ber of model.The basic influence number R0, is defined as the expected number
of secondary adoption caused by an adopter individual upon entering a totally
non-adopter population, as similar to the disease spreading models [22]. Using the
notation in [22,23], we have two vectors F and V to represent the new infection
term and remaining transfer terms, respectively:

F =

(

(β1 + β2
A

A+m
)AN

0

)

, V =

(

(d1 + ν)A
(d1 + δ)R − νA

)

. (3.2)

The Adopter compartment is A, hence a straightforward calculation of jacobian
matrices gives

F = J(F(E0)) =

(

rβ1

d1
0

0 0

)

, V = J(V(E0)) =

(

(d1 + ν) 0
−ν (d1 + δ)

)

, (3.3)

where F is non-negative and V is a non-singular M-matrix, therefore FV −1 is
non-negative, and

V −1 =

( 1
d1+ν

ν
(d1+ν)(d1+δ)

0 1
d1+δ

)

, FV −1 =

(

β1r

d1(d1+ν) 0

0 0

)

. (3.4)

Hence the influence number is given ρ(FV −1) and

R0 =
β1r

d1(d1 + ν)
. (3.5)

Here the basic influence number (R0) define as on average the number of non-
adopter population become adopter under the influence of an adopter over the
course of its adopter period. Again the interior equilibrium E∗ = (N∗, A∗, R∗) to
exist, the solution of (3.1) must be real and positive. Since X > 0 and we can
easily summarize the following conditions for the existence:

Lemma 3.1. The system (2.1)-(2.3) has
(i) a unique interior equilibrium if Z < 0 ⇔ R > 1;
(ii)a unique interior equilibrium if Y < 0 and Z = 0 or Y 2 − 4XZ = 0;
(iii)two interior equilibrium if Z > 0, Y < 0 and Y 2 − 4XZ > 0;
(iv)no interior equilibrium otherwise.
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Now, we will show that all the solutions of the system (2.1)-(2.3) are bounded
in a region B ⊂ R3

+. We consider the following function:

ω(t) = N(τ ) +A(τ ) +R(τ ),

and substituting the values from (2.1)-(2.3), we get

dω

dτ
= r − (N +A+R)d1, (3.6)

dω

dτ
= r − ωd1, (3.7)

which implies as τ → ∞, ω → r
d1
. Hence consider the set:

B = {(N,A,R) ∈ R3
+ : 0 ≤ N(τ) +A(τ ) +R(τ ) ≤

r

d
,N(τ), A(τ ), R(τ ) ≥ 0},

we can state the following lemma:

Lemma 3.2. The system (2)-(4) is bounded in the region B ⊂ R3
+.

Now we will state and prove the local stability of all steady states.

Theorem 3.3. For the system (2.1)-(2.3),
(i)if R0 < 1, has a unique adopter free equilibrium E0 = ( r

d1
, 0, 0) which is always

locally asymptotically stable.
(ii) if R0 > 1, has a unique interior equilibrium E∗(N∗, A∗, R∗) and it is locally

asymptotically stable if q1 = β2mA∗(d1+ν)
(β1m+(β1+β2)A

∗)(m+A∗)) < p1 = (β1 +
β2A

∗

m+A∗
)A∗.

Proof: The jacobian matrix J = [jlk] for the system of equations (2.1)-(2.3) eval-
uated at equilibrium E0 = ( r

d1
, 0, 0) is

J(
r

d1
, 0, 0) =





−d1 −β1r

d1
δ

0 (d1 + ν)(R0 − 1) 0
0 ν −(d1 + δ)



 . (3.8)

The characteristic equation about E0 is given by

(d1 + λ)[((d1 + ν)(R0 − 1)− λ)][(d1 + δ) + λ] = 0. (3.9)

The eigenvalues of the characteristic equation of J( r
d1
, 0, 0) are λ1 = −d1, λ2 =

(d1 + ν)(R0 − 1) and λ3 = −(d1 + δ). Thus all the eigenvalue of equation (12)
are negative real when R0 < 1. It is observed from the above eigenvalues that
the equilibrium point E0 is always locally asymptotically stable of (2.1)-(2.3) for
R0 < 1. Thus, the adopter-free equilibrium is locally asymptotically stable.
The jacobian matrix J = [jlk] for the system of equations (2.1)-(2.3) evaluated at
equilibrium E∗ = (N∗, A∗, R∗) is
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J(N∗, A∗, R∗) =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 , (3.10)

where A11 = −d1 − (β1 +
β2A

∗

m+A∗
)A∗, A12 = −(d1 + ν) − β2mA∗(d1+ν)

(m+A∗)[β1m+(β1+β2)A
∗] ,

A13 = δ, A21 = (β1 +
β2A

∗

m+A∗
)A∗, A22 = β2mA∗(d1+ν)

(m+A∗)[β1m+(β1+β2)A
∗] , A23 = 0, A31 = 0,

A32 = ν, A33 = −(d1 + δ). The characteristic equation about E∗ is given by

λ3 + a1λ
2 + a2λ+ a3 = 0. (3.11)

After taking p1 = (β1 +
β2A

∗

m+A∗
)A∗ and q1 = β2mA∗(d1+ν)

(β1m+(β1+β2)A
∗)(m+A∗)) , we have a1 =

(2d1+p1+δ)−q1, a2 = d21+d1(2p1+δ)+p1(δ+ν)−q1(2d1+δ), a3 = d1(p1−q1)(d1+δ)
and a1a2 − a3 = (d1 + p1 − q1)(2d1 + δ)(d1 + p1 − q1 + δ) + p1(2d1 + p1 − q1 + δ)ν.

Now from Routh-Hurwitz criteria that all the eigenvalue of (3.11) have negative
real part for R0 > 1, iff q1 < 2d1 + p1 + δ, q1 < p1, q1 < p1 +

1
2d1+δ

[d21 + d1δ+ p1ν],

i.e, q1 < min{2d1+ p1 + δ, p1 +
1

2d1+δ
[d21 + d1δ+ p1ν], p1} = p1. Hence, for R0 > 1,

the interior steady state E∗ is locally asymptotically stable if q1 < p1. ✷

As similar as in [27], we will establish that R0 = 1 is a bifurcation point, in
fact, across R0 = 1 the adopter free equilibrium changes its stability properties.
In the following we consider system (2.1)-(2.3) and investigate the nature of the
bifurcation involving the adopter-free equilibrium E0 for R0 = 1. More precisely,
we look for conditions on the parameter values that cause a forward or a backward
bifurcation to occur. In order to do that, we will make use of the result summarized
below, which has been obtained in [20] and is based on the use of general center
manifold theory [21].

Consider the following general system of ordinary differential equations with a
parameter φ :

dx

dt
= f(x, φ), f : Rn ×R → R and f ∈ C

2(Rn ×R). (3.12)

Without loss of generality, it is assumed that x = 0 is an equilibrium for system
(3.12) for all values of the parameter φ, (that is f(0,φ)= 0, for all φ).

Theorem 3.4. [20] Assume
(A1) : A = Dxf(0, 0) is the is the liberalization matrix of the system (3.12) around
the equilibrium x = 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and
other eigenvalues of A have negative real parts;
(A2): Matrix A has a nonnegative right eigenvector w and a left eigenvector v (each
corresponding to the zero eigenvalue).
Let fk be the kth component of f , and

a =

n
∑

k,i,j=1

vkwiwj

∂2fk(0, 0)

∂xi∂xj

,
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b =

n
∑

k,i,j=1

vkwi

∂2fk(0, 0)

∂xi∂φ
.

Then, the local dynamics of the system (3.12) around x = 0 is totally determined
by a and b. Moreover, the requirement of nonnegative components of w is not
necessary.

1. a > 0, b > 0. When φ < 0, with |φ| ≪ 1, x = 0 is locally asymptotically
stable and there exists a positive unstable equilibrium; when 0 < φ ≪ 1, 0 is
unstable and there exists a negative, locally asymptotically stable equilibrium;

2. a < 0, b < 0. When φ < 0, with |φ| ≪ 1, x = 0 is unstable; when 0 < φ ≪
1, 0 is locally asymptotically stable equilibrium, and there exists a positive
unstable equilibrium;

3. a > 0, b < 0. When φ < 0, with |φ| ≪ 1, x = 0 is unstable and there exists a
locally asymptotically stable negative equilibrium; when 0 < φ ≪ 1, 0 is stable
and a positive unstable equilibrium appears;

4. a < 0, b > 0. When φ changes from negative to positive, x = 0 changes
its stability from stable to unstable. Correspondingly, a negative unstable
equilibrium becomes positive and locally asymptotically stable.

It clearly appears that, at φ = 0 a transcritical bifurcation takes place: more
precisely, when a < 0 and b > 0, such a bifurcation is forward; when a > 0 and
b > 0, the bifurcation at φ = 0 is backward. Now let φ = β1 be the bifurcation
parameter, such that R0 < 1 for φ < 0 and R0 > 1 for φ > 0, such that x0 is
a adopter-free equilibrium for all values of φ. Consider the system dx

dt
= f(x, φ),

where f is continuously differentiable at least twice in both x and φ. The adopter-
free equilibrium is the (x0;φ) and the local stability of the adopter-free equilibrium
changes at the point (x0;φ) [23]. Now we want to show that there are nontrivial
equilibrium near the bifurcation point (x0;φ). Let N = x1, A = x2, R = x3, the
system (2.1)-(2.3) reduces to

dx1(t)

dt
= r − d1x1(t)− (β1 +

β2x2(t)

m+ x2(t)
)x1(t)x2(t) + δx3(t) := f1, (3.13)

dx2(t)

dt
= (β1 +

β2x2(t)

m+ x2(t)
)x1(t)x2(t)− (d1 + ν)x2(t) := f2, (3.14)

dx3(t)

dt
= νx2(t)− (d1 + δ)x3(t) := f3. (3.15)

We will apply the result discussed above and explore the possibility of backward
bifurcation in the system at R0 = 1. We consider the adopter free equilibrium
E0 = ( r

d1
, 0, 0) and observe that the condition R0 = 1 is equivalent to β1 = β∗

1 =
d1(d1+ν)

r
. The eigenvalues of the matrix

J(E0, β
∗
1) =







−d1 −
β1r

d1
δ

0 β1r

d1
− (d1 + ν) 0

0 ν −(d1 + δ)






, (3.16)
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are given by λ1 = −d1, λ2 = −(d1 + δ), λ3 = 0. Thus λ3 = 0 is simple zero
eigenvalue of the matrix J(E0, β

∗
1) and the other eigenvalues are real and negative.

Therefore, we can use the center manifold theory. Hence, when β1 = β∗
1 (or

equivalently when R0 = 1), the Adopter free equilibrium.
Now we denote by W = (w1, w2, w3)

T, a right eigenvector associated with the
zero eigenvalue λ3 = 0. Then





−d1 −
β1r

d1
δ

0 0 0
0 ν −(d1 + δ)









w1

w2

w3



 = 0,

which gives, −d1w1 −
β∗

1r

d1 w2 + δw3 = 0 and νw2 − (d1 + δ)w3 = 0. Assuming

w3 = ν, from above equations we obtain w1 = δν
d1

− β1r(d1+δ)
d2
1

and w2 = (d1 + δ).

Therefore, the right eigenvector is

W = (
δν

d1
−

β1r(d1 + δ)

d21
, d1 + δ, ν). (3.17)

Furthermore, the left eigenvector V obtained from solving V.J = 0 and V.W = 1

is given by

V = (0,
1

δ + d1
, 0). (3.18)

Evaluating the partial derivatives at the adopter-free equilibrium, we obtain
∂2f1

∂x1∂x2
= ∂2f1

∂x2∂x1
= −β1,

∂2f2
∂x1∂x2

= ∂2f2
∂x2∂x1

= β1,
∂2f1
∂x2

2

= −2β2r

md1
, ∂2f2

∂x2
2

= 2β2r

md1
,

∂2f1
∂x2∂φ

= −r
d1

, and ∂2f2
∂x2∂φ

= r
d1

. and all the other second-order partial derivatives
are equal to zero. Thus, we can compute the coefficient a and b, i.e,

a =

n
∑

k,i,j=1

vkwiwj

∂2fk(E0, β
∗
1)

∂xi∂xj

,

b =

n
∑

k,i,j=1

vkwi

∂2fk(E0, β
∗
1)

∂xi∂φ
.

It follows that a = 2v2w1w2
∂2f2

∂x1∂x2
+ v2w

2
2
∂2f2
∂x2

2

and b = v2w2
∂2f2
∂x2∂φ

; in view (19)

and (20), we get

a =
2(d1 + δ)β2r

md1
−

2d1(d1 + ν)(d1 + δ + ν)

r
(3.19)

or a = 2d1(d1+ν)(d1+δ+ν)
r

( (d1+δ)β2r
2

md2
1
(d1+ν)(d1+δ+ν)

− 1) and b = r
d1

. It is observe that the

coefficient b is always positive so that, according to Theorem 1, it is the sign of the
coefficient a which decides the local dynamics around the adopter-free equilibrium

for β1 = β∗
1. Define R∗

1 = (d1+δ)β2r
2

md2
1
(d1+ν)(d1+δ+ν)

. Note that if R∗
1 < 1, then a < 0 and

a > 0 if R
∗
1 > 1. Hence, we have the following theorem, which is similar to the

result established in [27]:
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Theorem 3.5. If R∗
1 > 1, system (2.1)-(2.3) exhibits a backward bifurcation when

R0 = 1. If R∗
1 < 1, system (2.1)-(2.3) exhibits a forward bifurcation when R0 = 1.
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Figure 2: Population distributions with the existence of (a) Adopter free and (b)
Interior equilibrium.
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Figure 4: Bifurcation diagram in the plane (β1, A). In this diagram, solid line
indicate stability and the dashed lines indicate instability.

4. Numerical Simulations

In this section, we perform the numerical simulation of system (2.1)-(2.3) to ver-
ify the results obtained in previous sections. We choose following set of parametric
values for the numerical experimentation:

1. For the following parametric values: r = 1, β1 = 0.02, β2 = 0.02, δ = 0.01, ν =
0.4, d1 = 0.06 and m = 5, the condition of Theorem 1 is satisfied, i.e., R0 =
0.725 < 1. The system (2.1)-(2.3) has an adopter-free equilibrium E0 =
(16.67, 0, 0) is locally asymptotically stable (see Fig. 2(a)).

2. For the parameter values: r = 5, β1 = 0.002, β2 = 0.0002, δ = 0.01, ν =
0.05, d1 = 0.02 and m = 5, we can obtain R0 = 7.1429 > 1. In this case the
system(2.1)-(2.3) has an interior equilibrium E1 = (31.9858, 81.75, 136.25) is
locally asymptotically stable(see Fig. 2(b)).

3. For r = 0.5, β2 = 0.0018, δ = 0.7, ν = 0.1, d1 = 0.01 and m = 0.725. The
phenomenon of backward bifurcation at β1 = β∗

1 as shown in Fig. 4. There
exists two threshold values of β1, namely β∗

1 and β∗∗
1 , we observe that the

adopter equilibrium E0 is the only equilibrium for system (2.1) − (2.3) for
β1 < β∗

1 and a interior equilibrium occurs for β∗
1 < β1 < β∗∗

1 . Again, the
interior stable interior equilibrium is locally asymptotically stable for β1 >

β∗∗
1 and adopter free equilibrium E0 became unstable i.e. an unique interior

equilibrium exists is LAS.

4. For the parameter values r = 5, β1 = 0.002, δ = 0.01, ν = 0.05, d1 = 0.02,m =
5, shown the media effect of adopter and non-adopter in Fig. 3(a)-(b) when
media rate β2 is high adopter reached maximum with in a short period of
time, but the media is low then slowly adopter reached its maximum after a
certain period of time adopter population finally settle down to its equilibrium
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label, on the other hand as expected the opposite situation arise in the case
of non-adopter population.

5. Conclusion

In the present paper, we have analyzed a innovation diffusion model consisting
of three nonintersecting classes of population, namely, non-adopter, adopter and
frustrated. Here, we presented a new measure, i.e., basic influence number of an
individual adopter, which means that on an average the number of non-adopter
population become adopter under the influence of an adopter over the course of
its adoption period. We have studied the stability of adopter free equilibrium as
well as interior equilibrium and it is shown that the adopter free equilibrium is
locally asymmetrically stable if the basic influence number R0 < 1. Again, when
R0 > 1 the interior equilibrium state exists and it is locally asymptotically stable
under some parameter conditions. The existence of backward bifurcation of adopter
population has been studied with respect to the valid contact rate before media
alert (β1) and a numerical threshold is determined for a particular set of parametric
values.
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